
Working with UD data (practical session for NPFL075)
Daniel Zeman (zeman@ufal.mff.cuni.cz)

Universal Dependencies (UD) annotated data is stored in a format called CoNLL-U
(https://universaldependencies.org/format.html). It is a vertical, table-like format (i.e., not XML),
which is relatively easily readable even for humans.

There are various freely available tools that support this file format
(https://universaldependencies.org/tools.html). You can use Tred to visualize UD data if you install
the corresponding Tred extension.

Once the extension is installed, the “*.conllu” file type will appear in the File / Open dialog box.
You can obtain UD data in two ways. Either you download the entire UD release from the Lindat
repository (go to https://universaldependencies.org/, follow the “Download UD treebanks” links).
The TGZ package is worth several hundred megabytes. If you do not want to use so much
bandwidth and disk space, you can download individually only the languages you are interested in.
Back on the UD title page, click the language line, then select one of the treebanks (if there are
multiple UD treebanks for the language), then find the link “Repository master”. You will land in a
Github repository whose master branch contents is identical to the latest official UD release of that
treebank. You can clone that repository via Git or you can download its contents as a zipped
package. Unpack it and open one of the CoNLL-U files in Tred:

mailto:zeman@ufal.mff.cuni.cz
https://universaldependencies.org/
https://universaldependencies.org/tools.html
https://universaldependencies.org/format.html

Udapi
We will work with the UD data using a tool/framework called Udapi (https://udapi.github.io/). It
takes care of reading and writing the CoNLL-U file, and it provides your code with an API, i.e.,
methods of accessing the tree structure and attributes of individual nodes. The actual code that
searches the trees and/or modifies them is organized in blocks. Any number of blocks can be
applied in sequence to the same tree, gradually modifying the data.

Udapi is available in three programming languages: Python, Perl, and Java. However, most people
use the Python version and the other two do not seem to be actively developed. Also, a number of
useful blocks is available for the Python version but not for the other two (note that the block would
have to be converted to the syntax of the other programming language if it shall be used with Perl or
Java).

The main developer of Udapi, Martin Popel, has created a tutorial at https://udapi.github.io/tutorial/.
It will help you install the Python version (once installed, the Python command to use is spelled
“udapy”). Note that the sample data referred in the tutorial step 2 is taken from UD release 2.0,

2

https://udapi.github.io/tutorial/
https://udapi.github.io/

which is now outdated (and there is another version of the tutorial on the web, with even more
outdated sample data). I recommend using the latest release instead (see the previous section on
how to obtain such data). Assuming that you have downloaded the UD_English-PUD treebank and
you are in Bash in the folder of that treebank, you can use Udapi to visualize the tree using fixed-
font characters and terminal colors:

cat en_pud-ud-test.conllu | udapy -T | less -R

A similar output can be generated also as a HTML document (use option -H instead of -T),
viewable in any browser.

3

Udapi blocks

Udapi comes with a number of ready-to-use processing blocks. The documentation contains a list of
currently available blocks (https://udapi.readthedocs.io/en/latest/py-modindex.html) with a short
description of each block. You can write your own blocks and add them to your copy of Udapi to

the folder udapi-python/udapi/block. Then they will be visible to Udapi and you can use

them to process data. When calling Udapi, you give it as arguments the sequence of blocks you
want to apply to your data. For example:

cat mydata.conllu | udapy -s ud.FixPunct check_paired_punct_upos=True
ud.FixChain > fixed.conllu

The above command lists two blocks to be applied to the trees in this order: ud.FixPunct and

ud.FixChain. Each of the blocks addresses one type of commonly encountered annotation error

and tries to fix it automatically. Arguments containing the equals-to symbol (such as

check_paired_punct_upos=True in the above example) are parameters of the immediately

preceding block. The sequence of blocks could start with a reader block that reads data in other

format than CoNLL-U; if no such block is listed, Udapi uses read.Conllu by default. Similarly,

the last block could be a writer block that will write the possibly modified trees to STDOUT or to a
file. The option -s we used above means “save” and it is a shortcut that tells Udapi to add the block

write.Conllu. Similarly, the option -T in the example in the previous section is a shortcut for the

block write.TextModeTrees. We may want to specify parameters for that writer block, and

unless those parameters have their own shortcut, we will have to list the block verbosely:

cat en_pud-ud-test.conllu | udapy write.TextModeTrees
attributes='form,lemma,upos,deprel' color=1 | less -R

We can also not require any writing of the full trees; perhaps we want to print some statistics or

examples directly from other blocks. A simple example of that is the block util.Wc, which prints

the number of trees and nodes in the input file:

cat mydata.conllu | udapy util.Wc

The util.Eval block

For simple tasks, you do not have to write a block and save it in a file. You can use a generic block

called util.Eval (https://udapi.readthedocs.io/en/latest/udapi.block.util.html#module-

udapi.block.util.eval) and supply your own code as a parameter. For example, if you provide the
parameter “node”, its value is interpreted as Python code that will be applied to every tree node
encountered in the input file. For example, the following command will read the English PUD
treebank, find all nodes whose POS tag (upos) is “AUX” (auxiliary verb or particle). It will print the
word form of those nodes converted to all-lowercase (so that capitalized words in the beginning of
sentences don’t look different) and their lemmas to STDOUT. The subsequent Linux commands
will then transform the output to a sorted list with frequencies.

udapy util.Eval node='if node.upos == "AUX": print(node.form.lower(),
node.lemma)' < en_pud-ud-test.conllu | sort | uniq -c | sort -rn | less

4

https://udapi.readthedocs.io/en/latest/udapi.block.util.html#module-udapi.block.util.eval
https://udapi.readthedocs.io/en/latest/udapi.block.util.html#module-udapi.block.util.eval
https://udapi.readthedocs.io/en/latest/py-modindex.html

The main node properties that you can access have self-explanatory names derived from the names
of corresponding columns in the CoNLL-U file (see also
https://udapi.readthedocs.io/en/latest/udapi.core.html#udapi.core.node.Node):

• form … actual word form in the sentence

• lemma … lemma (base dictionary form)

• upos … universal part of speech tag

• xpos … treebank-specific part of speech tag (optional)

• feats … morphological features stored in an object of the type DualDict

(https://github.com/udapi/udapi-python/blob/master/udapi/core/dualdict.py). For example,

you can query the value of the feature Case like this: node.feats['Case']

• deprel … dependency relation type/label (pertains to the relation incoming from the parent

to this node)

◦ udeprel … universal part of the dependency relation type. Some treebanks use optional

subtypes, e.g., the deprel “acl” (adnominal clause) may have the subtype “acl:relcl”
(relative clause). If we want to find all instances of “acl” regardless their subtype, we

can ask whether node.udeprel == 'acl'. This is equivalent to asking whether

node.deprel.split(':')[0] == 'acl'.

• misc … additional attributes from the MISC column stored in an object of the type

DualDict. For example, you can ask if node.misc['SpaceAfter'] == "No".

• ord … this attribute is not named after a CoNLL-U column, yet it roughly corresponds to

the ID column. It is the ordinal numeric value that represents the position of the word in the

sentence (the first word has node.ord == 1).

Exercise: Find all UPOS tags that co-occur with the deprel “nmod” in your dataset.

Exercise: Find all XPOS tags and their correspondences to UPOS tags. Sort them alphabetically by
XPOS tags.

Exercise: Find all UPOS tags that co-occur with a non-empty value of the Case feature and list the
Case values they appear with.

In the above list of node attributes that correspond to CoNLL-U columns, we omitted two columns:
HEAD and DEPS. The latter encodes the enhanced UD graph and we will ignore it for now. The

former encodes the basic tree structure, which in Udapi is accessed via the properties parent and

children:

• parent … the Node object of the parent of the current node

• children … list of Node objects of the children of the current node, sorted by word order

The following command will find all verbs that have at least two children and print their counts:

5

https://github.com/udapi/udapi-python/blob/master/udapi/core/dualdict.py
https://udapi.readthedocs.io/en/latest/udapi.core.html#udapi.core.node.Node

udapy util.Eval node='if node.upos == "VERB" and len(node.children) >= 2:
print(node.lemma, len(node.children))' < en_pud-ud-test.conllu | sort |
uniq -c | sort -rn | less

We can use Python list comprehension to find children with specific properties. Here is a
modification of the previous command that will find verbs with two nominal core arguments (their
deprel must be “nsubj”, “obj” or “iobj”):

udapy util.Eval node='if node.upos == "VERB" and len([x for x in
node.children if x.deprel in ["nsubj", "obj", "iobj"]]) == 2:
print(node.lemma)' < en_pud-ud-test.conllu | sort | uniq -c | sort -rn |
less

Exercise: Find nodes whose UPOS tag is “AUX” and the UPOS tag of their parent is not “VERB”.
Print the deprel of the parent, then create a sorted list of such deprels with counts.

Exercise: Find inherently reflexive verbs. Czech example: smát se is an inherently reflexive verb
and it consists of the verbal form smát and of the obligatory “reflexive” marker se. You will need a
language where inherently reflexive verbs exist (i.e., not English; examples include German, or
various Slavic and Romance languages). Among such languages, you need a treebank that uses the
optional relation subtype “expl:pv” to mark the relation between the verb and its “reflexive”
morpheme. List lemmas of the verbs together with the surface forms of their reflexive morphemes;
sort them alphabetically. As an English alternative to this exercise, look for phrasal verbs where the
verbal particle is attached via a relation labeled “compound:prt”.

Sometimes you want to perform an action for every tree rather than for every node. To do so, use

the tree parameter instead of node. Within the parameter value (the Python code), the identifier

tree will give you access to the Node object of the artificial root of the tree (this node does not

correspond to any surface token and the HEAD column of the CoNLL-U file refers to it using the

index 0). If you use the property descendants of the root, you will get the list of tree nodes sorted

by word order.

udapy util.Eval tree='print("sentence with", len(tree.descendants),
"nodes")' < en_pud-ud-test.conllu | sort | uniq -c | sort -rn | less

Writing your own block

Python syntax relies on line breaks and indentation, which means that it is very unfriendly for

squeezing multiple statements on one line. If you need just one if statement but multiple

commands when the condition is satisfied, you can use semicolons to separate the commands. But if
you need multiple conditional branches, you will have to put multiple indented lines inside the

single quotes that delimit your node parameter:

cat en_pud-ud-test.conllu | udapy util.Eval node='if node.deprel ==
"case":
 if len([x for x in node.children if x.udeprel == "fixed"]) >= 1:
 print("FIXED: ", " ".join([node.form.lower()]+[x.form.lower()
for x in node.children if x.udeprel == "fixed"]))

6

 else:
 print("SINGLE: ", node.form.lower())
' | sort | uniq -c | sort -rn | less

It is quite messy to do all this directly in the shell, and if there is any chance that you will run the
task more than once, you probably want to save the code in a file and use it as a regular block.
Fortunately, the blocks can be fairly simple. Examine the folder where you installed Udapi (let’s

refer to it as $UDAPI), take a block, make a copy of it and modify it to suit your needs. For

example, $UDAPI/udapi/block/demo/rehangprepositions.py is an example of a very

simple block that finds a preposition, detaches it from its current parent, attaches it to its current
grandparent, then re-attaches the former parent as a child of the preposition. Here is the full code:

"""RehangPrepositions demo block."""
from udapi.core.block import Block

class RehangPrepositions(Block):
 """This block takes all prepositions (upos=ADP) and rehangs them
above their parent."""

 def process_node(self, node):
 if node.upos == "ADP":
 origparent = node.parent
 node.parent = origparent.parent
 origparent.parent = node

Defining a function called process_node() in your block is equivalent to supplying a node

parameter to the util.Eval block: the code of the function is what you would supply as the value

of the node parameter. Nevertheless, you also must not forget to import the Block class and

declare your block as a new class derived from the Block class. Also note the correspondence

between the name of the class and the name of the file.

Let’s create a folder for our own blocks, $UDAPI/udapi/block/my, and let’s copy the

RehangPrepositions demo block as $UDAPI/udapi/block/my/demo.py. Let’s modify the code

to just print some info about the current node:

"""My demo block."""
from udapi.core.block import Block

class Demo(Block):

 def process_node(self, node):
 cdeprels = ["nsubj", "obj", "iobj"]
 if node.upos == "VERB":
 coreargs = [x for x in node.children if x.deprel in cdeprels]
 if len(coreargs) == 2:
 print(node.lemma)

7

Now you can run Udapi with your new block:

udapy my.Demo < en_pud-ud-test.conllu | sort | uniq -c | sort -rn | less

Exercise: Find all verbs governing a nominal subject (“nsubj”) and/or one or more objects (“obj”,
“iobj”) (plus possibly any number of other children). For each such case, print a line that expresses
the order of these elements. In the line, use “V” to represent the verb, and use the deprels to
represent the arguments. For example: “nsubj V obj”. Do not print other children of the verb (like
adverbial modifiers). If there are multiple objects, print them all. Count the distribution of the word
orders and list them sorted by frequencies.

Location of the blocks on the disk

In the above example we created our own block directly in the folder where we have installed our

copy of Udapi: $UDAPI/udapi/block/my/demo.py. This is the simplest way of making sure

that Python will find the block. When we tell Udapi to use a block, e.g., “my.Demo”, Udapi will

lowercase it, change periods to slashes and prepend “udapi/block/”, that is, it will tell Python to

look for the module “udapi/block/my/demo”. Python will then search the paths from the

$PYTHONPATH variable for this module.

This may not exactly be how we want to organize our code. Maybe we want to treat Udapi as an
external tool and keep our own blocks separate from it, but bundled and versioned with our own

project. Creating our own folder “udapi/block” and adding it to $PYTHONPATH is not

recommended. Python has been known to get confused when there are multiple instances of

“udapi/block” in $PYTHONPATH, and to only search the first instance and ignore the subsequent

ones. However, you can insert a dot at the beginning when giving the block name to Udapi; this will

signal that Udapi should not prepend “udapi/block/” to the block name. Then you can simply

have the block in your project folder and add that to $PYTHONPATH (or keep it in the current

working folder, which will be searched by Python, too).

udapy .my.Demo < en_pud-ud-test.conllu | sort | uniq -c | sort -rn | less

Using Udapi as a library from your Python script

If you need to do something very specific (i.e., not worth being implemented as a reusable block)
and/or you need to process CoNLL-U files in your own Python project (perhaps surrounded by
other code), you can import the Udapi modules in your script.

The easiest way of using the Udapi interface to CoNLL-U files is to import the Document class.

Note an important terminological detail: a “document” here refers to the entire contents of one

CoNLL-U file. Some UD files contain metadata lines (starting “# newdoc”) that indicate

boundaries of separate logical documents within the underlying text corpus. Udapi even has some
limited support for work with these boundaries, if they are present. But these logical documents are

not what the Document class refers to.

"""A script that processes a CoNLL-U file. It adds VerbForm=Fin to the
features of every verb that has no VerbForm so far. The modified file

8

will be saved as output.conllu, but the script also prints sentence ids
and forms of the modified verbs to STDOUT."""
from udapi.core.document import Document

Read the CoNLL-U file.
document = Document(filename='in.conllu')
Examine every node in every tree and do something with it.
for b in document.bundles:
 root = b.get_tree()
 print(root.sent_id)
 nodes = root.descendants
 for node in nodes:
 if node.upos == 'VERB' and node.feats['VerbForm'] == '':
 print(node.form)
 node.feats['VerbForm'] = 'Fin'
Write the modified CoNLL-U file.
document.store_conllu('out.conllu')

You can also run an existing Udapi block from your code. If you know that the only functionality of

the block is implemented in its process_node() method, you can call that method as you loop

over the nodes in the document, and combine it with your additional code if needed. Same for

process_tree(), process_bundle() and process_document(). However, you should

know that some blocks also implement initialization and finalization methods, such as

before_process_document(), after_process_document(), process_start() (to be

invoked once before processing any documents) and process_end(). You are responsible for

calling these methods at appropriate places, too. If you do not need to add your own code in the

loop, you can rely on Udapi to construct the loop for you, and call either block.run(document)

(calls all pre- and postprocessing methods) or block.apply_on_document(document) (calls

before/after_process_document() but not process_start/end()).

from udapi.core.document import Document
from udapi.block.ud.fixpunct import FixPunct

document = Document(filename='in.conllu')
We can add parameters to the block that we would otherwise add on the
command line.
fixpunct = FixPunct(check_paired_punct_upos=True)
fixpunct.run(document)
document.store_conllu('out.conllu')

The blocks util.Filter and util.Mark

Another useful block that comes with Udapi is util.Filter

(https://udapi.readthedocs.io/en/latest/udapi.block.util.html#module-udapi.block.util.filter). As the
name suggests, it filters the trees from the input, i.e., subsequent blocks will only see trees that

fulfill a constraint. In the following example, the parameter keep_tree_if_node provides a

9

https://udapi.readthedocs.io/en/latest/udapi.block.util.html#module-udapi.block.util.filter

Python expression that evaluates to a True|False value. If the current tree contains at least one

node for which the expression evaluates to True, the tree is kept; otherwise it is discarded. Our

condition is a regular expression match: the feature “PronType” must contain either the string “Rel”

(relative) or the string “Int” (interrogative). We use the option -T, hence the trees that survive will

be rendered using text characters and sent to STDOUT. This time we also use the -N option

(equivalent: --no_color) because we want to save a text file instead of looking at the trees

directly in the terminal, and we want to skip the color control characters. Run udapy --help to

discover other command-line options.

udapy -TN util.Filter keep_tree_if_node='re.match("Rel|Int",
node.feats["PronType"])' < en_pud-ud-test.conllu > rel-int-trees.txt

Optionally, we can also add a mark parameter. Its value will be used as a label that will be added to

the MISC column of the node where the _if_node condition is met. For instance, if we add the

parameter mark=here, the MISC column of the given node will contain the attribute “Mark=here”.

It can be used by subsequent blocks and it can be saved in the CoNLL-U file if Udapi is called with

the -s option. If we call Udapi with the -T option, the nodes containing a Mark attribute will be

highlighted:

udapy -T util.Filter keep_tree_if_node='re.match("Rel|Int",
node.feats["PronType"])' mark=here < en_pud-ud-test.conllu | less -R

Note: There is also a block called util.Mark

(https://udapi.readthedocs.io/en/latest/udapi.block.util.html#module-udapi.block.util.mark), which
marks nodes that fulfill a condition but does not remove trees in which no node is marked:

udapy -T util.Mark node='re.match("Rel|Int", node.feats["PronType"])'
add=False < en_pud-ud-test.conllu | less -R

10

https://udapi.readthedocs.io/en/latest/udapi.block.util.html#module-udapi.block.util.mark

Exercise: Find nodes whose dependency on their parent is non-projective, mark those nodes and
display the respective trees in the textual form. Hint: You do not have to implement the condition
whether all nodes between the node and its parent are descendants of the parent. It has been already

implemented. All you have to do is to use the method is_nonprojective() of the Node object.

The block provides multiple ways of specifying the filtering constraint:

• keep_tree_if_node … see above. Every node is examined individually but any node

fulfilling the constraint will make the whole tree survive.

• delete_tree_if_node … complementary constraint: any node fulfilling the condition

will cause the tree to disappear.

• keep_tree … we specify a condition for the whole tree rather than for an individual node.

• delete_tree … we specify a negative condition for the whole tree.

• keep_subtree … we specify a condition for a node; the node and its subtree (all its

descendants) will survive if the condition evaluates to True. If there are multiple surviving

subtrees within one original tree, each of them will be attached directly to the artificial root
node (note that this diverges from the UD treebanks where there is always just one node
attached as child of the artificial root). If no node fulfills the condition, the entire tree will be
discarded.

• delete_subtree … removes a node and its descendants if the condition evaluates to

True.

• keep_node … only nodes fulfilling the condition will be kept. If a node’s parent is

removed, the node will be re-attached to the next available ancestor. If no node fulfills the
condition, the entire tree will be removed.

Exercise: Remove punctuation (UPOS = “PUNCT”) from all trees. Find trees that, after removing
punctuation, have at least 5 but no more than 15 nodes. Among these trees, mark each node whose
form contains an uppercase letter but the node is not the first word of the sentence and its UPOS tag
is not “PROPN” (proper noun); keep only trees that contain at least one such node.

Exercise: Same as the previous one but instead of printing the filtered trees, count their number and
the number of words in them.

Exercise: Filter a corpus so that only trees whose sentence id does not start with “vesm” are
preserved. (You can try this with UD_Czech-PDT where “vesm” denotes one of the four newspaper

sources of the corpus text.) Hint: You can query tree.sent_id.

Exercise: Filter a corpus so that only trees whose sentence-level comments contain the comment
“Tectogrammatical annotation available.” are preserved (this, too, holds for some but not all

sentences in UD_Czech-PDT). Hint: You can query tree.comment.split("\n"). All the

sentence-level comment lines are available in this attribute in their original order, delimited by line
breaks. The comment-signalizing character “#” is not included but everything else (including

11

leading spaces) is. This is only useful for comments that have no special meaning for Udapi and are
not consumed by Udapi and presented as separate tree attributes. For comments that are expected
and consumed by Udapi, the respective comment line will contain only a placeholder such as

$SENT_ID, $TEXT, $NEWDOC, $NEWPAR, $GLOBAL.ENTITY.

Navigating the nodes in the tree

As we have seen, Udapi allows us to easily access the parent and the children of a node in the tree.
There are more methods (or properties) that help us navigate the tree both vertically (parent-child
relations) and horizontally (word order). Here is an overview; see
https://udapi.readthedocs.io/en/latest/udapi.core.html#udapi.core.node.Node for details.

• node.root … returns the node object of the artificial root of the tree; this is not the word

with the “root” deprel but its parent!

• node.parent … returns the parent node object

• node.children … returns the list of children sorted by word order. You can request

adding the current node to the sorted list. You can also restrict the list to left children or right
children of the current node:

◦ phrase = node.children(add_self = True)

◦ lchildren = node.children(preceding_only = True)

◦ rchildren = node.children(following_only = True)

◦ selfleft = node.children(preceding_only = True, add_self = True)

• node.descendants … returns the list of descendants sorted by word order. Parentheses

with the same modifiers can be added as for node.children.

• node.siblings … returns the list of siblings of the current node, sorted by word order.

Parentheses with the same modifiers can be added as for node.children.

• node.prev_node … returns the preceding node according to word order (or None if this is

the first node).

• node.next_node … returns the following node according to word order (or None if this is

the last node).

Exercise: In a Spanish corpus, find all examples of subordinate clauses that start el que “the one
that”, optionally with a preposition, such as sobre el que “about the one that”. The determiner el can
be in various forms (masculine, feminine, singular, plural); find all whose lemma is “el”. You can
assume that que is attached as a child of a predicate (typically a verb) but you do not know how el
and the preposition are attached (perhaps it is inconsistent and needs to be fixed). However, you
know that these words immediately precede que in the sentence. (In contrast, the verbal parent of
que is not necessarily adjacent to que.) For each instance found, print the structure of the
construction in Stanford notation, i.e., deprel(parent word, child word), for example

nsubj(corre, que). Use “ADP” to represent the preposition, “el” to represent the determiner el

12

https://udapi.readthedocs.io/en/latest/udapi.core.html#udapi.core.node.Node

(la, los, las), “que” to represent the relative pronoun que, “VERB” to represent the predicate that
que is attached to, “OTHER” to represent any other node that el or the preposition or the verb may

be attached to. So the full Stanford-style description of the structure may be, e.g., “case(el,

ADP); root(OTHER, el); nsubj(VERB, que); acl:relcl(el, VERB)” (relations are

sorted by word order of the child nodes). Summarize all patterns observed and print them with their
frequencies, most frequent pattern first.

Exercise: In any corpus that uses the fixed relation, collect all types of fixed multiword

expressions (two or more words connected with fixed relations, with the leftmost word as the

technical head). Then search the corpus again and see if any of these expressions also occur with

different relations than fixed.

Reading large files

By default, Udapi reads the entire input file into memory before processing it. This may be a
problem if the input is too large. If we know that we only need to look at one sentence at a time, we
can instruct Udapi to split the input into small documents, each consisting of one “bundle”
(sentence). That way we will not have to wait until the whole input is read before we see the first
results, and we will not risk running out of memory. To achieve this, the reader block must receive

the parameter bundles_per_doc=1.

zcat huge.conllu.gz | udapy -T read.Conllu bundles_per_doc=1 util.Mark
node='re.match("Rel|Int", node.feats["PronType"])' add=False | less -R

Modifying the data

So far we have mostly focused on getting information from the data, without modifying the data.
(But strictly speaking, we did modify the data occasionally. Sometimes we filtered the trees or
added marks to nodes. If we then saved the CoNLL-U file instead of just displaying the trees, we
would have a modified corpus.)

Udapi is often used to automatically modify UD data following specific rules or heuristics. The
modification can consist of changing tags or features of individual nodes, but also of transforming
the tree structure.

As with collecting information, you can either write your own block, or, if the modification is

simple, you can specify it as a parameter to the util.Eval block.

To demonstrate a potentially useful modification, we will now turn to data in languages other than
English, written in a non-Latin alphabet. UD defines two MISC attributes that can help non-native
users to read the words and lemmas: “Translit” and “LTranslit”. These attributes are completely
optional (as almost everything in MISC) but some treebanks have it. In addition, some treebanks
also have the “Gloss” attribute, which provides a translation of the word (usually English

translation). Now if you are looking at trees via udapy -T and you cannot read the script used by

the language, you may prefer to see the transliteration in the FORM and LEMMA fields. And if the
script is written right-to-left, you may prefer to see the transliteration even when you can read the

13

script, because otherwise the terminal messes up the text on the line. Consider the following
example from the beginning of the training data of UD_Arabic-PADT:

cat ar_padt-ud-train.conllu | udapy -T | less -R

When the first letter encountered on a line is Arabic, the terminal renders the line right-to-left, but
then switches to left-to-right when Latin letters are encountered. The two lines with quotation marks
as tokens are entirely left-to-right. In either case, the tree structure is obscured. So let’s modify the
data before we display it. Let’s replace the word form by its transliteration from MISC (fortunately,
Arabic PADT is one of the treebanks that have it).

cat ar_padt-ud-train.conllu | udapy -T util.Eval node='if
node.misc["Translit"] != "": node.form = node.misc["Translit"]' | less -R

Moreover, PADT also has English glosses, so we can even get a rough idea of the meaning of the
individual words:

cat ar_padt-ud-train.conllu | udapy -T util.Eval node='if
node.misc["Translit"] != "": node.form = node.misc["Translit"] + " (" +
node.misc["Gloss"] + ")"' | less -R

14

How to split a sentence into two

If we spot a sentence that is in fact two sentences and needs to be split, we do not want to do it with
manual editing, even if it is just a single split operation, because it would be tedious: All nodes in
the second part and all references to them must be renumbered. Fortunately, there is now a block
that can do it for us. You should still check the result, as there may be multiple root relations (if
there were multiple relations between the first and the second part), which is not allowed in UD.
Also be warned that the current version of the block does not take care of enhanced dependencies if
they are present. The word_id parameter is the old ID of the first node of the second part of the
sentence.

cat hi_hdtb-ud-train.conllu | udapy -s util.SplitSentence sent_id='train-
s842' word_id=7 > hi_hdtb-ud-train-split842.conllu

How to split a node (word, token) into two

Suppose the treebank uses different tokenization rules than you prefer. For example, 20% is one
node and you want it always split into two nodes, the number 20 and the symbol %. You can use a
regular expression to identify all such nodes. When you find one, you need to create a new node,
give it the correct position in the tree, and move part of the original word to it. New nodes are

always created as children of existing nodes, using the parent node’s method create_child().

The default linear position of a new node is at the end of the sentence but we can re-position it using

the methods shift_before_node() and shift_after_node(), which will also take care of

renumbering the ids of the other nodes.

def process_node(self, node):
 m = re.match(r'^([0-9]+(?:[\.,][0-9]+)?)%$', node.form)
 if m:
 number = m.group(1)

15

https://udapi.readthedocs.io/en/latest/udapi.core.html#module-udapi.core.node

 numbernode = node.create_child()
 numbernode.shift_before_node(node)
 numbernode.form = number
 numbernode.misc['SpaceAfter'] = 'No'
 # Make the lemma same as the form.
 # If the original lemma normalizes decimal comma to point,
 # we may want to use regex and split the orig lemma instead.
 numbernode.lemma = number
 numbernode.upos = 'NUM'
 numbernode.feats['NumType'] = 'Card'
 numbernode.feats['NumForm'] = 'Digit'
 numbernode.deprel = 'nummod'
 node.form = '%'
 node.lemma = '%'
 node.upos = 'SYM'
 # If the original node had any features, remove them.
 node.feats = {}

Important notes: The above code does not assume that the original node can be a part of a multi-
word token (see below), which might require additional steps to make sure that the newly created
node is also part of that multi-word token. Furthermore, if there is an enhanced graph for the
sentence (see below), the attachment of the new node to the enhanced graph must be taken care of.

Exercise: Find all nodes that correspond to ranges of positive integer numbers (such as years:
1968-1971). When you find such a node, split it to three: each number will have its own node, and
the hyphen will be separate, too. Treat the range as coordination, i.e., the second number is attached

to the first one as conj, and the hyphen is attached to the second number as punct.

Multi-word tokens

A specialty of UD and its CoNLL-U file format is that it can work with syntactic words (nodes) that
correspond only to a part of an orthographic word (surface token). For example, the Spanish word
al is a contraction of the preposition a and the definite article el. A CoNLL-U file has an extra line
describing the surface word (multi-word token, MWT) al, showing only its ID, FORM, and MISC
(the other columns have underscores in them). The line is followed by normal lines corresponding
to the nodes a and el. When processing a Spanish UD tree in Udapi, you will see the nodes
corresponding to a and el but you will normally not encounter the MWT they are part of—the
MWT is not a node! However, if you need to work with the MWT, you can access it from any node

that belongs to it. MWTs in Udapi are objects of the class MWT (see udapi.core.mwt) and their

attributes are form, misc, ord_range, and words (a list of node objects that belong to the MWT).

Here is how we can list all multi-word tokens in a UD treebank:

cat es_pud-ud-test.conllu | udapy util.Eval node='if node.multiword_token
and (node == node.multiword_token.words[0]):
print(node.multiword_token.form, "=", [x.form for x in
node.multiword_token.words])' | sort | uniq -c | sort -rn | less

Exercise: The MISC column in CoNLL-U may contain the attribute “SpaceAfter=No”, which
indicates that in the original untokenized text there was no space between this and the following

16

https://udapi.readthedocs.io/en/latest/udapi.core.html#module-udapi.core.mwt

token. In case of a multi-word token, this attribute must occur on the line describing the MWT
rather than its last (or any other) node. If it occurs at a node within a MWT, the UD validator will
report it as an error. Your task is to look for such errors in the data and fix them, i.e., remove the
attribute from the MISC of the node and, if it was the last node of the MWT, add it to the MISC of
the MWT.

Enhanced UD

If the treebank includes enhanced dependencies, the CoNLL-U file has two parallel structures for
each sentence: the basic tree and the enhanced graph. Everything we were doing so far pertained to
the basic tree. The enhanced graph structure is stored in the DEPS column of the CoNLL-U file.
Essentially, when looking at the DEPS field on the line of a particular word (node), we see a list of
incoming edges from all parents of the current node in the enhanced graph. Each edge consists of
two components: the identification of the parent node, and the label (type) of the edge.

If you access the node.deps property, you should receive a list of Python dictionaries, each with

two elements: parent and deprel. The former should be a Node object. Here is how we could

remove the enhanced annotation from the file:

udapy -s util.Eval node='node.deps = []' < en_pud-ud-test.conllu >
without_enhanced.conllu

The following command will copy the enhanced dependency type to the basic tree, provided there is
only one enhanced parent, it is identical to the basic parent, and the enhanced dependency label
does not violate the rules for basic dependency relations.

udapy -s util.Eval node='if not node.is_empty() and (len(node.deps) == 1)
and (node.deps[0]["parent"] == node.parent) and (node.deps[0]["deprel"] !
= node.deprel) and (re.match(r"[a-z]+(:[a-z]+)?$", node.deps[0]
["deprel"])): node.deprel = node.deps[0]["deprel"]' < input.conllu >
output.conllu

The following command will find and show examples of the English enhanced relation “obl:with”.

udapy -T util.Filter mark=here keep_tree_if_node='len(node.deps)>=1 and
"obl:with" in [x["deprel"] for x in node.deps]' < input.conllu | less -R

Important: The method process_node() (and, by extension, the node attribute of util.Eval)

works only with the regular nodes of the basic tree. It skips empty nodes, which are part of the
enhanced graph but not of the basic tree. If we want to visit all nodes of the enhanced graph, we

have to take a different approach. We have to use the method process_tree(), then at the root of

each tree/graph we get the property root.descendants_and_empty, which will return a list of

nodes. We can then loop over that list and do for each node what we need to do. If we want to visit

only empty nodes, we can use the property root.empty_nodes instead.

At present (still in July 2023), there is a bug in Udapi: the methods node.shift_after_node()

and shift_before_node() will not update enhanced relations in the DEPS column, nor the

empty node ids. See issue https://github.com/udapi/udapi-python/issues/95.

17

https://github.com/udapi/udapi-python/issues/95

Tree visualization in LaTeX

LaTeX is a typesetting system used to write conference papers, diploma theses, or even presentation
slides. While there are multiple ways of showing dependency trees in LaTeX, the most popular way
seems to be the package called tikz-dependency. Udapi can print trees in the format required by
tikz-dependency, so you can easily find examples in the treebank and immediately insert them in

your article. Just use the block write.Tikz

(https://udapi.readthedocs.io/en/latest/udapi.block.write.html#module-udapi.block.write.tikz):

cat en_pud-ud-test.conllu | udapy util.Filter
keep_tree='len(tree.descendants) == 6' write.Tikz > examples.tex

pdflatex examples.tex

xdg-open examples.pdf

Homework 4
Morphological features are an optional part of UD annotation, although all data providers are
strongly encouraged to provide them. If a treebank has features, it should provide a non-empty
value of the “PronType” feature for every pronoun (UPOS tag “PRON”) and determiner (UPOS tag
“DET”). In addition, there are probably also pronominal adverbs such as where and when; these

18

https://udapi.readthedocs.io/en/latest/udapi.block.write.html#module-udapi.block.write.tikz

should have the “PronType” feature but regular adverbs do not have it. For documentation of the
feature, see https://universaldependencies.org/u/feat/PronType.html.

Your task is to find a treebank in the UD release 2.11 where some or all pronouns or determiners
lack the “PronType” feature. Collect all lemmas (or word forms, if the treebank lacks lemmas) of
pronouns and determiners in the treebank. Write a block that will examine each pronoun/determiner
(and optionally also adverb) node. If it lacks the “PronType” feature, the block decides, based on its
lemma (or word form) what value of “PronType” it should have, and adds the value to the features
of the node.

Submission: Upload the block to your folder in the SVN repository. Name the block

“addprontype.py”. After uploading the block, send me (zeman at ufal) a message that your block

is ready for review; also tell me in the message which language your block works with and which
treebank of the language you used for testing. Deadline: TBA, 23:59 CEST.

19

https://universaldependencies.org/u/feat/PronType.html

	Working with UD data (practical session for NPFL075)
	Udapi
	Udapi blocks
	The util.Eval block
	Writing your own block
	Location of the blocks on the disk
	Using Udapi as a library from your Python script
	The blocks util.Filter and util.Mark
	Navigating the nodes in the tree
	Reading large files
	Modifying the data
	How to split a sentence into two
	How to split a node (word, token) into two
	Multi-word tokens
	Enhanced UD
	Tree visualization in LaTeX

	Homework 4

