
Reusable Tagset Conversion Using Tagset Drivers

Daniel Zeman
Univerzita Karlova

Ústav formální a aplikované lingvistiky
Malostranské nám�stí 25

CZ-11800 Praha
E-mail: zeman@ufal.mff.cuni.cz

Abstract

Part-of-speech or morphological tags are important means of annotation in a vast number of corpora. However, different sets of tags are
used in different corpora, even for the same language. Tagset conversion is difficult, and solutions tend to be tailored to a particular pair
of tagsets. We propose a universal approach that makes the conversion tools reusable. We also provide an indirect evaluation in the
context of a parsing task.

1. Introduction
Most annotated corpora use various types of tags to
encode additional information on words. In some cases
this information is merely the part of speech (“noun”,
“verb” etc.-–hence the term part-of-speech or POS tags).
In many cases, however, the string of characters
comprising the tag is a compressed representation of a
feature-value structure. Most of the features encoded this
way are morphosyntactic (e.g. “gender = masculine”,
“number = singular”), hence the term morphological tags.

Unfortunately, it is very rare to see two corpora sharing
a common set of tags. Language differences are only
partially responsible—it is the corpus designers, their
diverse views, theories and intended uses of the corpora,
what matters most. Even two corpora of the same
language may define two completely incompatible
tagsets.

Such diversity proves disadvantageous for both human
users and NLP software. A human user (linguist) typically
wants to submit queries such as “show me all occurrences
of a noun in plural, preceded by a preposition”. Tags
however rarely contain statements like “number = plural”
literally. That would be prohibitively space-consuming.
Instead we have to know that e.g. the fourth character of
the tag being “P” means “plural”. For instance, the tag
NNIS7-----A----1 may read as “part of speech =
noun, detailed part of speech = common noun, gender =
masculine inanimate, number = singular, case = 7th
(instrumental), negativeness = affirmative”. To work with
the corpus efficiently, a linguist either needs to interpret
the tags using specialized software, or to memorize the
particular tag scheme. Obviously, if the same linguist has
to switch to a different corpus, he/she must memorize
more schemes or replace the tag interpretation software.

Similarly, various NLP tools may depend on particular
tagsets. While some tools indeed treat tags as atomic
strings, others could exploit the tag structure to dig more

1 This example is taken from the Prague Dependency
Treebank (Böhmová et al. 2003)

information about the word—no matter whether they use
the features in machine learning, or in human-designed
rules. If the tagset changes, manual rules become useless
and statistical models have to be retrained at least; even
that may not be possible in case the training procedure
works with selected subsets of the feature pool.
Applicability of NLP software to multiple corpora is
exactly the reason why one would want to convert tags
from one tagset to another.

For many tagset pairs, designing the conversion
procedure is not easy. On one hand, there are rare tagsets
(e.g. MULTEXT-EAST, Erjavec 2004) fitting at the same
time languages as distant as Czech and Estonian; on the
other hand, tagsets of two closely related languages (e.g.
Danish and Swedish) or even two tagsets of the same
language may differ substantially (for instance, the
Mamba tagset of Swedish (Nivre et al. 2006) contains
detailed classification of auxiliary verbs and punctuation
but lacks features like number, mood, tense etc.; this is in
sharp contrast to another Swedish tagset, Parole (Cinková
and Pomikálek 2006), which in turn is not compatible
with the Danish Parole (Kromann et al. 2004) tagset (the
former classifies participles as verb forms, the latter as
adjective forms; the former has separate tags for
numerals, the latter classifies both cardinal and ordinal
numbers as adjectives; etc.)

From the above said it follows that the typical tag
conversion is an information-losing process. Though it is
often desirable to perform it anyway and preserve as
much information as possible. We have not been able to
identify any previously published universal approach to
do tagset conversion, which is not so surprising given the
fact that for most part the conversion code must simply
mimic the interpretation charts of the particular tagsets.
We believe that most researchers solve the problem using
specialized programs tailored to the two tagsets at hand.
For subtly differing tagsets this may be the best thing to
do; however, in all other cases, there is considerable effort
put into analyzing the tag schemes, that cannot be reused
for converting, say, the same source tagset into a new
target tagset.

In the present paper we propose an approach that
makes the conversion code reusable. We define a (nearly)
universal set of features and their values, and describe a
way how tagset drivers can be used to convert various
tagsets in and out of the universal feature set. In Section 2
we describe our universal set of features, in Section 3 we
describe the encoding algorithm and the architecture of
tagset drivers, in Section 4 we mention difficult
phenomena and in Section 5 we present experiments.

2. Universal Set of Features
The key idea of our approach is to have a feature structure
capable of storing all or most information from any tagset.
The structure contains all features whose values are
usually encoded in tags. The role of this universal set
(“Interset”) is similar to the role of Interlingua in
Interlingua-based machine translation (Richens 1958) or
the role of Unicode among character sets. The Interset
serves as an intermediate step on the way from tagset A to
tagset B. The interaction between the Interset and tagsets
A and B, respectively, is described in what we call tagset
drivers. Once we write the drivers, we can do the two-way
conversion A to B and B to A, plus the conversion
between one of these tagsets and any other tagset that has
been defined so far.

We are not likely to spare much time during the initial
phase, if compared to just writing a targeted A-to-B
conversion procedure. Actually, covering two completely
new tagsets requires more work and care: we should
describe both encoding and decoding of each tagset, we
may have to think about features that are present in neither
of them, and we will probably want to be more careful
about aspects that may not matter to our current
application. However, the reusability of the resulting code
should compensate for the effort more than adequately.
Plus we provide some algorithms to make adding new
tagsets easier, and it is also possible that the required
tagset has been covered by someone else who is sharing
the code on the web.

Having analyzed about dozen tagsets, 2 we have
identified the following features:

o part of speech

2 Penn tagset of English, PDT tagset of Czech, STTS
tagset of German, Mamba and Parole tagsets of Swedish,
CoNLL tagsets of Arabic, Bulgarian, Chinese, Danish
(and of Czech, English, German and Swedish; these four
are however based on the other tagsets mentioned earlier).

o various features for further details on

part-of-speech: subpos, pronoun type,

punctuation class and side (left vs. right bracket),

syntactic part of speech, subcat

o yes/no features related to part of speech:

possessive, reflexive, foreign, abbreviation, first

part of hyphenated compound

o various inflectional features: gender,

animateness, number, case, degree, definiteness,

negativeness, person, politeness, possessor’s

gender and number, verbal form, mood, tense,

subtense, aspect, voice

o the rest: style, variant, other, tagset
Although covering new tagsets may lead to adding new

features to the central pool, it is desirable to find most of
them in the very beginning. It is good to know what can be
there when writing drivers. On the other hand, we do not
intend to cram the Interset with hundreds of features, each
of them specific to just one corpus. Some information in
tags is really difficult to use out of the context of the
original tagset. It is delicate to judge what belongs here;
however, if there were a tag defined as “the word ‘apple’
occurring in a nested clause,” we could probably live
without that information saved. The only reason of saving
really everything is that converting a tagset to itself
should not lose information. For that purpose we use the
“other” feature. It contains arbitrary information that does
not fit in other features and distinguishes tags. Since the
information is not understood by any other tagset, we
need to know which tagset the value comes from. Thus
the identifier of the tagset should be stored in the “tagset”
feature.

Except for “tagset” and “other”, there is a predefined
list of possible values for each feature. Every feature also
allows the empty value. While several feature-based
tagsets distinguish between unknown values and
irrelevant features, we do not find it wise in Interset. For
instance, the fifth character in the PDT Czech tagset
identifies grammatical case. Its normal values are 1 to 7.
For parts of speech that do not have case (e.g.
interjections) the fifth character is - (dash). Adjectives
generally do have case, yet there are borrowed words
without Czech case suffixes whose case value is unknown
(X). An example is the tag AAIPX----1A---- for
“Buenos” in Buenos Aires. The benefit of making this
distinction explicit in a tagset is unclear. What is clear,
however, is that we must not reflect it in the universal
feature set. Who can say that a feature will be
irrelevant—given the context of the values of the other
features—in any tagset whatsoever? It is quite easy to find
features that are relevant in one tagset and not the other:
e.g. Czech past participles distinguish gender, English
don’t.

source tag

target tag

(nearly)

universal set of

features
dec

enc

source tagset

driver

target tagset

driver

3. Tagset Drivers
While the Interset is merely an abstract definition, the real
implementation lies in the tagset drivers. A driver is a
code library responsible for decoding and encoding tags.
Decoding is reading a string (tag) into an internal data
structure, in accordance with the list of possible features
and their values. Encoding works the other way around.

The encoder obviously is the more difficult part. The
decoder just reads and sorts the information, ideally not
losing a single piece of it. If anything has to be discarded
because it does not fit the target tagset, the discarding is
encoder’s task. There are two main reasons why encoding
is not easy:

1. The encoder should be prepared to all values of
all features, regardless that some of them are
unknown in the particular tagset. For instance, if
number = dual and the tagset does not know
dual, it is probably better to encode plural than
just leave number unknown.

2. Even if the target tagset knows features A and B,
concrete value of A can restrict permitted values
of B. Some combinations of feature values are
not allowed. For instance, the Swedish Parole
tagset allows “pos = noun & gender = common |
neuter”, and also “pos = pronoun & gender =
masculine | feminine | common | neuter”. If we
are to encode “pos = noun & gender =
masculine”, we can either honor the part of
speech, or the gender, but not both.

Fortunately enough, unknown feature values /
combinations can be dealt with automatically if the driver
has the list of all possible tags. By decoding all tags on the
list, we get feature values for every tag. We thus know all
feature values permitted in the given tagset and we know
all value combinations. We have defined an ordered list of
back-off values for every Interset feature value. The
back-off lists contain all other values of the feature,
including the empty value, so it is guaranteed that we
always find a value that is permitted.3 Of course, the
encoder can override the default back-off list if necessary.

As for unknown feature combinations, there is a
predefined total ordering of the features that defines their
priority (this can be overridden, too). Since features are
ordered, all value combinations can be stored in a trie
structure. On selecting value of a higher-priority feature,
the structure immediately reveals restricted value space
for all lower-priority features.

This back-off technique is implemented in a helper
module. Any driver can call it and have the features
adjusted to something the driver itself might produce
during decoding. The encoder can then concentrate on the
driver’s native feature combinations. Besides that, the
helper module can also check a driver’s integrity by
looking whether the decoder only sets known features and
values, whether encode(decode(x)) = x etc.

3 The necessary condition is that the decoder only sets
known feature values, which is desirable anyway.

The whole thing is implemented in Perl4. The drivers
are Perl modules whose encode and decode functions
can be called from other Perl programs, either to access
the feature values, or to convert tagsets. The conversion
script is very simple and looks like this:5
use tagset::cs::pdt;
use tagset::en::penn;
while(<>)
{
 print tagset::en::penn::encode

 tagset::cs::pdt::decode $_, "\n";
}
So far we have implemented and tested drivers for

several tagsets of the CoNLL 2006 (Buchholz and Marsi
2006) and 2007 (Nivre et al. 2007) shared task treebanks,
for the Penn Treebank (Marcus et al. 1993), the Prague
Dependency Treebank (Böhmová et al. 2003) and others,
totaling 14 drivers. Those drivers are freely available on
the web.6 We believe that the reusability will only be truly
exploited if the drivers are shared in the community and
we encourage everyone to contribute with drivers they
need to write for themselves.

4. Difficult Phenomena
Working with various tagsets, we identified several fields
that were difficult to capture and unify.

Endemic word classes7 were one example. Whenever
seen fit, we tried to roof them with some more common
parts of speech, instead of introducing a new high-level
class. We wanted to reduce the necessity of encoders’
taking care of parts of speech unknown in their home
tagsets. Roofed word classes are usually distinguishable
by one of the detailed-part-of-speech features.

As mentioned earlier, some tagsets consider participles
forms of verbs, others classify them as adjectives; some
tagsets make numerals special cases of adjectives, others
have separate POS tags for cardinals, ordinals and various
other numeral classes, yet others separate cardinal
numbers and put the rest under other POSes. Differences
in approaches taken by different tagsets might result in
different feature values; for instance, we could decode
verbform = “participle” without regard to whether pos =
“verb” or pos = “adj”. Naturally it is desirable to decode
the same thing into the same set of features each time.
Although we could ban particular feature-value
combinations in Interset, effectively forcing the driver
authors to seek the permitted decoding, we prefer to leave
it as a recommendation, since we do not want to predict,
which feature combinations will never ever be needed to
distinguish two different words. The recommending

4 http://www.perl.org/
5 Real conversion script would also have to deal with the
format in which the tags are mixed with text in the corpus.
This example merely assumes a list of tags, without the
actual words and other annotation.
6 https://wiki.ufal.ms.mff.cuni.cz/user:zeman:interset
7 Examples include infinitival markers (English to),
English existential there, Chinese classifiers before
counted nouns etc.

guidelines (part of Interset documentation) are another
output of our study.

Probably the broadest source of problems is pronouns,
determiners and various WH-words. Somewhere
pronouns are only personal or possessive; somewhere
there is a diversity of interrogative, relative,
demonstrative, indefinite and negative pronouns. In the
BulTreeBank (Simov et al. 2004), anything interrogative
is a pronoun, although it could be considered numeral
(how much?) or adverb (where? when? how?) elsewhere.
Some tagsets address the variable syntactic behavior of
pronouns (I substitutes a noun, my substitutes an
adjective). Some tagsets and languages do not have
determiners but they have pronouns (demonstrative,
indefinite) instead. All that lead us to remove pronouns
and determiners as independent parts of speech. Instead,
nouns, adjectives and adverbs have the feature “prontype”
to distinguish the various types (personal, demonstrative,
interrogative…) Empty value of this feature signals a
normal noun (adjective, adverb).

Note however, that any guidelines are only to ensure
unified approach to different presentations of the same
information. It does not apply to information that simply
is not there. If cardinals were tagged as normal adjectives
(without sub-classing adjectives to numeral and others)
they would remain so in Interset and also in the target
tagset. We cannot add information, we only can lose it.

5. Experiments
At the time of writing, 14 drivers have been completed,
with quite differing numbers of tags. 8 Some of the
CoNLL tagsets are derived from other tagsets and share
their properties (except for Czech, there is a one-to-one
mapping between the original and the derived tagset; for
Czech, the original PDT tagset is a subset of the CoNLL
tagset). Table 1 shows an overview:

Tagset / Driver Number of

tags
Approximate
implementation
time

ar::conll 241 13 h
bg::conll 528 35 h
cs::conll 4854 6 h
cs::pdt 4288 18 h
da::conll 143 7 h
de::conll 54 10 min
de::stts 54 4 h
en::conll 45 45 min
en::penn 45 3 h
sv::conll 41 20 min
sv::hajic 156 estimated 8 h
sv::mamba 41 3 h
sv::svdahybrid 76 estimated 2 h
zh::conll 294 21 h

Table 1: Overview of tagset drivers.

8 For some of the tagsets, the number of tags in the
respective corpus has been counted; the true total of
possible tags is probably higher.

The working times needed to design particular drivers

differ greatly due to various reasons. The Czech tagsets
are the most complex but they did not take the most time
because the PDT tagset is the native environment for the
author. On the other hand, Bulgarian was both complex
and differing enough from Czech in approach to pronouns,
necessity of introducing new verb tenses, definiteness
values etc. Also, the CoNLL conversion of this and other
tagsets is quite inconsistent and represents the same
feature-value pair in different tags differently. The most
exotic tagset w.r.t. this work is the Chinese (Chen and
Hsieh 2004) one. Its nearly 300 tags encode mostly things
that cannot be represented in Interset (e.g., there are more
than 60 classes of prepositions, containing one to three
words each). The intersection of the information encoded
by the Chinese tagset with the other tagsets contains only
about 10 basic parts of speech. Processing time of Chinese
has been further extended because of poor documentation
bundled with the CoNLL data.

The processing times are to be compared to time
needed to accomplish a targeted conversion for a given
tagset pair. Earlier experiments showed us that they are
roughly comparable to writing a driver. (We were able to
implement conversion from the Russian Dependency
Treebank (Boguslavsky et al. 2000) to the Czech PDT
tags in about 12 hours; Arabic tags by the Tim
Buckwalter’s morphological analyzer (Buckwalter 2002)
took about 8 hours. However, drivers presented in Table 1
allow for 14 × 13 = 182 conversions, yielding less than 1
hour per conversion on average.

Table 2 illustrates the proportion of information that is
shared by tagsets and can be preserved by the conversion.
Note that even tagsets for the same language or closely
related languages (Danish, Swedish) can be quite
divergent due to different corpus designs.

 ar bg csc csp da de en svh svm zh

ar 241 42 68 54 29 17 15 33 12 11

bg 65 528 104 94 64 32 25 50 15 11

csc 68 46 4854 4288 44 21 26 56 14 11

csp 66 42 4288 4288 42 20 24 54 13 11

da 25 46 55 54 143 24 24 71 14 11

de 14 16 17 16 17 54 20 18 15 10

en 16 17 28 26 22 20 45 28 17 11

svh 33 34 63 62 62 22 28 156 17 11

svm 14 15 15 14 15 17 17 16 41 10

zh 10 9 10 10 10 11 9 10 9 294

Table 2: Number of tags resulting from conversion
from drivers named in row headers to drivers named in
column headers.

As a practical application, driver-based tag conversion

has been used in experiments with cross-language parser
adaptation from Danish to Swedish (Zeman and Resnik
2008). We have used the reranking parser by (Charniak
and Johnson 2005), originally written for the English
Penn Treebank. Although the parser can be given a table
of symbols from a new corpus, with Interset we could take

a much faster approach: we simply converted the Danish
and Swedish data to the Penn Treebank format (including
the POS tags), and made the parser think it was working
with Penn data. Also, converting the divergent Danish and
Swedish data to a common tagset was a crucial point in
the adaptation technique itself.

Finally, we experimented with a dependency parser
that is statistical in nature (Zeman 2004) and can learn
dependencies of tags from any tagset; however it contains
also many ad-hoc rules that bound it to the format of the
Prague Dependency Treebank. The results of the
experiments, shown in Table 3, reveal that tagset
conversion help the parser better adapt to new corpora.
Experiments have been conducted with the CoNLL data.

Lang Year P(orig) P(conv) McNemar
ar 2006 64.3 67.6 yes
ar 2007 59.8 66.9 yes
bg 2006 68.0 71.3 yes
cs 2006 56.1 71.4 yes
cs 2007 58.7 74.0 yes
da 2006 68.3 69.8 yes
en 2007 63.8 67.3 yes
sv 2006 71.0 73.5 yes
zh 2006 69.0 68.0 no
zh 2007 66.1 63.5 yes

Table 3: Accuracy of the parser on various CoNLL
data sets, using original and converted tags. The last
column indicates whether the change was statistically
significant, using the McNemar’s test with p�0.05.

The decrease of accuracy for Chinese can be easily

explained due to the large divergence of the Chinese
tagset from the others: too much information gets lost
during the conversion.

We are currently experimenting with other parsers
(Malt parser, MST parser) as well; however, we do not
expect significant improvements here, since these parsers
are not so heavily dependent on one “home” treebank.

Conclusion
We have proposed a method for tagset conversion that is
reusable and, to a reasonable extent, universal. Our
interlingua-inspired approach enables to interpret
part-of-speech and morphological tags in a uniform way,
and to convert information that is shared by two tagsets.
Besides the obvious advantage of being able to use tools
that expect a particular tagset, we also observed
improvements in performance of a statistical parser.

6. Acknowledgements
I would like to thank Philip Resnik for helpful comments
and encouragement.

The research reported on in this paper has been
supported by Grant No. N00014-01-1-0685 ONR.
Ongoing research is supported by the Ministry of
Education of the Czech Republic, project

MSM0021620838, and Czech Academy of Sciences,
project No. 1ET101470416.

7. References
Igor Boguslavsky, Svetlana Grigorieva, Nikolai Grigoriev,

Leonid Kreidlin, Nadezhda Frid (2000): Dependency
Treebank for Russian: Concept, Tools, Types of
Information. In: Proceedings of COLING 2000.
Saarbrücken, Germany.

Alena Böhmová, Jan Haji�, Eva Haji�ová, Barbora
Hladká (2003). The Prague Dependency Treebank: A
Three-Level Annotation Scenario. In: Anne Abeillé
(ed.): Treebanks: Building and Using Syntactically
Annotated Corpora. Kluwer Academic Publishers,
Dordrecht, The Netherlands.

Sabine Buchholz, Erwin Marsi (2006). CoNLL-X Shared
Task on Multilingual Dependency Parsing. In:
Proceedings of the Tenth on Computational Natural
Language Learning (CoNLL). New York, USA.

Tim Buckwalter (2002). Buckwalter Arabic
Morphological Analyzer Version 1.0. Linguistic Data
Consortium, LDC Catalog No. LDC2002L49,
University of Pennsylvania, Philadelphia, USA.

Eugene Charniak, Mark Johnson (2005). Coarse-to-Fine
N-Best Parsing and MaxEnt Discriminative Reranking.
In: Proceedings of ACL, pp. 173–180. Ann Arbor,
Michigan, USA.

Keh-Jiann Chen, Yu-Ming Hsieh (2004). Chinese
Treebanks and Grammar Extraction. In: Proceedings
of IJCNLP 2004, pp. 560–565. Hainan, China.

Silvie Cinková, Jan Pomikálek (2006). LEMPAS: A
Make-Do Lemmatizer for the Swedish
PAROLE-Corpus. In: Prague Bulletin of Mathematical
Linguistics, vol. 86. Univerzita Karlova, Praha,
Czechia.

Tomaž Erjavec (2004). MULTEXT-East Version 3:
Multilingual Morphosyntactic Specifications, Lexicons
and Corpora. In: Fourth International Conference on
Language Resources and Evaluation (LREC 2004).
Lisboa, Portugal.

Jan Haji�, Otakar Smrž, Petr Zemánek, Jan Šnaidauf,
Emanuel Beška (2004): Prague Arabic Dependency
Treebank: Development in Data and Tools. In:
Proceedings of NEMLAR-2004, pp. 110–117.

Matthias T. Kromann, Line Mikkelsen, Stine Kern Lynge
(2004). Danish Dependency Treebank. At
http://www.id.cbs.dk/~mtk/treebank/. København,
Denmark.

Mitchell P. Marcus, Beatrice Santorini, Mary Ann
Marcinkiewicz (1993). Building a Large Annotated
Corpus of English: the Penn Treebank. In:
Computational Linguistics, vol. 19, pp. 313–330. USA.

Joakim Nivre, Johan Hall, Sandra Kübler, Ryan
McDonald, Jens Nilsson, Sebastian Riedel, Deniz Yuret
(2007). The CoNLL 2007 Shared Task on Dependency
Parsing. In: Proceedings of the CoNLL Shared Task
Session of EMNLP-CoNLL 2007, pp. 915–932. Praha,
Czechia.

Joakim Nivre, Jens Nilsson, Johan Hall (2006).
Talbanken05: A Swedish Treebank with Phrase
Structure and Dependency Annotation. In: Proceedings
of the 5th International Conference on Language

Resources and Evaluation (LREC 2006). May 24–26.
Genova, Italy.

Richard Hook Richens (1958). Interlingual Machine
Translation. In: The Computer Journal 1958
1(3):144–147. British Computer Society, United
Kingdom.

Kiril Simov, Petya Osenova, Milena Slavcheva (2004).
BTB-TR03: BulTreeBank Morphosyntactic Tagset.
BulTreeBank Project Technical Report No. 03. Sofija,
Bulgaria.

Daniel Zeman (2004): Parsing with a Statistical
Dependency Model (Ph.D. thesis). Univerzita Karlova,
Praha, Czechia.

Daniel Zeman, Philip Resnik (2008): Cross-Language
Parser Adaptation between Related Languages. In:
Proceedings of IJCNLP. Hyderabad, India.

