NPFL120 Multilingual Natural Language Processing

Multilingual
 Machine Translation and Machine Translation for Multilinguality

Ondřej Bojar

\author{

- May 22, 2020
}

Outline

Part 1: Tools from MT for Exploring Multilinguality.

- Parallel and multi-lingual corpora.
- Sentence alignment.
- Word alignment.

Part 2: Exploiting Multilinguality for MT.

- Motivation for more than two languages in MT.
- Interesting configurations.
- Dedicated architectures vs. simple data mixing.
- Interlingua?

Embedded slides by Rico Sennrich and Adam Lopez.

Supplementary Materials

Videolectures \& Wiki:
http://mttalks.ufal.ms.mff.cuni.cz/

NPFL087 Slides and Lectures:
http://ufal.mff.cuni.cz/courses/npf1087
Books:

- Ondřej Bojar: Čeština a strojový překlad. ÚFAL, 2012.

- Philipp Koehn: Statistical Machine Translation. Cambridge University Press, 2009.
With some slides: http://statmt.org/book/
NMT: https://arxiv.org/pdf/1709.07809.pdf

Tools from MT for Exploring Multilinguality

A Classical Parallel Corpus

GENTEQTS

The Story of Creation

1In the beginning, when God created the universe, ${ }^{2}$ the earth was formless and desolate. The raging ocean that covered everything was engulfed in total darkness, and the Spirit of God was moving over the water. ${ }^{3}$ Then God commanded, "Let there be light ${ }^{*}$ - and light appeared. ${ }^{4}$ God was pleased with what he saw. Then he separated the light from the darkness, ${ }^{5}$ and he named the light "Day" and the darkness "Night". Evening passed and morning came - that was the first day.
6.7Then God commanded, ${ }^{\text {a }}$ Let there be a dome to divide the water and to keep it in two separate places" - and it was done. So God made a dome, and it separated the water under it from the water above it 8 He named the dome "\$ly" Fyening nassed and

(GETEGE

Dieu crée l'univers et l'humanité

1Au commencement Dieu créa le ciel et la terre.
${ }^{2}$ La terre était sans forme et vide, et l'obscurité couvrait l'océan primitif. Le souffle de Dieu se déplaçait à la surface de l'eau. ${ }^{3}$ Alors Dieu dit: "Que la lumière paraisse!" et la lumière parut, "Dieu constata que la lumière était une bonne chose, et il sépara la lumière de l'obscurité. ${ }^{5}$ Dieu nomma la lumière jour et l'obscurité nuit. Le soir vint, puis le matin; ce fut la première journée.
${ }^{\circ}$ Dieu dit encore: "Ou'il y ait une voute, pour séparer les eaux en deux masses!" ${ }^{7}$ Et cela se réalisa. Dieu fit ainsi la voûte qui sépare les eaux d'en bas de celles d'en haut. ${ }^{8} 11$ nomma cette voute ciel. Le

Another Classical One (1658)

ST. Veni, Puer! difce Sapere.
P. Quid hoc eft, Supere?

JN. Ommia,
2. Rommber/ Rnab! ferne W3cifbsit.
5. W3as fif dasl Deifbeit:
2. 2alles/

Parallel Corpora

- Web is an immense resource.
- People keep crawling it over and over:
- Bitextor: Esplà-Gomis and Forcada (2010)
- http://paracrawl.eu/releases.html (2018)
- Good sources of (multi-)parallel corpora:
- Corpus OPUS: http://opus.nlpl.eu/
- UN Corpus, various EU corpora (DGT-Acquis)...
- WMT tasks data: http://www.statmt.org/wmt20/
- University-specific corpora, e.g. UFAL released:
- http://ufal.mff.cuni.cz/czeng (Czech-English)
- http://ufal.mff.cuni.cz/hindencorp (Hindi-English), ..., Odia-English...
- http://ufal.mff.cuni.cz/umc/ (Czech, Russian, Urdu, with English)

Aligned Documents \leadsto Sentence Pairs

In my dream , there was a sycamore growing out of the ruins of the sacristy, and I was told that , if I dug at the roots of the sycamore , I would find a hidden treasure . But I m not so stupid as to cross an entire desert just because of a recurrent dream . " And they disappeared . The boy stood up shakily, and looked once more at the Pyramids . " It is I who dared to do so , " said the boy . This man looked exactly the same , except that now the roles were reversed . " It is I who dared to do so , " he

अपने सपने में मुझे एक गुलर का पेड़ दिखाई देता था और मुझे लगता था कि अगर मैं उस गुलर की जड़ें खोद डालूं तो मुझे छिपा हुआ खजाना मिल जाएगा। मगर मैं तुम्हारी तरह इतना बेवकूफ नहीं हूं कि महज बार - बार आने वाले एक सपने के कारण पूरे रेगिस्तान को पार करूं। वे लोग, उसके बाद वहां से चले गए । लड़का लड़खड़ाता हुआ किसी तरह खड़ा हो गया।<s>एक बार फिर उसने पिरामिडों को देखा। " यह जुर्रत मैंने की थी , " लड़के ने कहा $1<s>$ उसे सेंटियागो मातामोरोस कीं वह प्रतिमा याद आई जिसमें वह घोड़े पर सवार था और उसके घोड़े के खुरों में कितने ही नास्तिक कुचले हुए पड़े थे। यह घुड़सवार भी बिलकुल वैसा ही था। यह बात और थी कि इनके किरदार बदले हुए थे । " मैंने ही ऐसा करने का साहस किया था , " लड़के ने दोहराया और अपनी गर्दन तलवार का वार सहने के लिए झुका दी। ' जिंदगी ने भी हमेशा मेरे साथ अच्छा बर्ताव किया। '

Aligned Documents \leadsto Sentence Pairs

 But I' m not so stupid as to cross an entire desert just because of a recurrent dream. " मार मैं तुम्बारी तरह इतना बेवकृफ नहीं हूं कि महज बार - बार आने बाले एक सपने के कारण पूरे रेगिस्तान को पार करन । And they disappeared. वे लोग, उसके बाद वहां से चले गए।
The boy stood up shakily, and looked once more at the Pyramids . लड़का लड़खड़ाता हुआ किसी तरह खड़ा हो गया। एक बार फिर उसने पिरामिडों को देखा कितने ही नास्तिक कुचले हुए पड़े थे ।
"It is I who dared to do so " said the boy . यह घुडसबार भी बिलकुल वैसा ही था।
This man looked exactly the same, except that now the roles were reversed . यह बात और थी कि इनके किरदार बदले हुए थे
"It is I who dared to do so ," he repeated, and he lowered his head to receive a blow from the sword. " मंने ही ऐसा करने का साहस किया था, " लड़के ने दोहराया और अपनी गर्दन तलवार का बार सहने के लिए दुका दी
"Life was good to me, " the man said
"When you appeared in my dream, I felt that all my efforts had been rewarded, because my son's poems will be read by men for उस आदमी ने कहा, 'जब आप मेरे सपने में आए थे , तो मुझे लगा कि मेंने अपने कम्मों का पुरस्कार पा लिया ...
generations to come . मेर लिए इससे बढ़कर और क्या बात होती कि मेरे बेटे की कविताएं युग - युगों तक पदी जाएं
I don 't want anything for myself. नहीं , मुझे अपने लिए कुछ नहीं चाहिए ।
But any father would be proud of the fame achieved by one whom he had cared for as a child, and educated as he grew up . कोई भी बाप उस इंसान की शोहरत सुनकर फूला नहीं समाएगा जिसे उसने अपनी गेद में खिलाया , पढ़ाया - लिखाया और पाल - पोसकर बड़ा किया हो
We 're two very different things. " " हम दो अलग - अलग चीजें हैं । "
"That's not true, " the boy said . " यह सही नहीं है । " लड़के ने कहा
" I learned the alchemist 's secrets in my travels. " यात्रा के दौरान मैंते कीमियागर के रहस्यों को जाना है।
I have inside me the winds, the deserts, the oceans, the stars, and everything created in the universe. मेंर ही भीतर सब छिपा है - हवा , रेगिस्तान, समुद्र , तारे और बह सब कुछ जो बररहाण्ड ने सर्जित किया है
We were all made by the same hand, and we have the same soul .हम सबको उसी हाथ ने बनाया और हम सबकी आत्मा भी एक ही है ।
You ' 111 learn to love the desert, and you 'll get to know every one of the fifty thousand palms. तुद्हें रेगिस्तान से प्यार करना आ जाएगा और उन पचास हजार खजूरू के पेड़ों में तुम एक - एक को पहचानने लगोगे ।
You'll watch them as they grow, demonstrating how the world is always changing . उन्हें बढ़ता हुआ देखकर तुम अनुभव करोगे कि कैसे हर क्षण दुनियाँ बदलती रहती है ।
And you' ll get better and better at understanding omens, because the desert is the best teacher there is. तुम शकुन पहचानने में बेहतु से बेहतर बनते जाओगे चूंकि इस मामले में रिगस्तान से बढ़कर कोई अच्छ गुरू नही है।
"Sometime during the second year, you' 11 remember about the treasure. " फिर, किसी वक्त, द्ञरेे साल के दौरान तुम्हें खजाने की याद सताएगी।
The omens will begin insistently to speak of it, and you'll try to ignore them. शक्न कोरन तुम्हें उसके बारे में बताना शुरू कर देंगे, मगर तुम उन्हें अनदेखा करना चाहोगे।
But you know that I ' m not going to go to Mecca . Just as you know that you ' re not going to buy your sheep. " तुपु अच्छी तरह से जानते हो, कि मे मक्का नहीं जाने वाला हूं ठीक उसी तरह जिसे कि तुम कोई भेड़ - वेड़ नहीं खरीदने वाले हो !"
" Who told you that ? "asked the boy, startled " आपसे ऐसा किसने कड्ञ ?" लड़के को आश्चर्य हुआ ।
" Maktub " said the old crystal merchant. " मकतूब ! " किरस्टल - व्यापारी ने कहा
And he gave the boy his blessing . कुछ पल खमोश रह कर , उसने लउ़के को भरपूर आशीराद्द दिया ।
The boy went to his room and packed his belongings . कमरे में जाकर लड़के ने अपना सामान बांधा
They filled three sacks . तीन दोरे भर गए।
As he was leaving, he saw , in the corner of the room, his old shepherd's pouch . बाहर जाते हुए उसने कमरे के एक कोने में, अपनी पुरानी थैली देखी
"I want to see the greatness of Allah, " the chief said, with respect. " में अल्लाह की महानता देखना चाहता हु। " "बड़े आदर के साथ मुखिया ने कहा
"I want to see how a man turns himself into the wind . " " म दे देखना चाहता हू कि केसे कोई अदमी खुद को हवा में बदलता है ।"
But he made a mental note of the names of the two men who had expressed their fear, मार उसने अपने मन में उन दो सेनापतियों के नाम याद कर लिए जिन्होंने उर का इजहांर किया था

Sentence Alignment

Goal: Given a text in two languages, align sentences. Assume: Sentences hardly ever reordered.

- Classical algorithm: Gale and Church (1993).
- Based on similar character length of aligned sentences, no words examined.
- Dynamic-programming search for the best alignment.
- Allows 0 to 2 sentences in a group: 0-1, 1-0, 1-1, 2-1, 1-2, 2-2.
- Several algorithms for English-Czech evaluated by Rosen (2005).
- Nearly perfect alignment possible by a combination of aligners.
- The "standard tool": Hunalign (Varga et al., 2005).
- LF Aligner has even a user interface for correcting alignments.
- Another option: Gargantua (Braune and Fraser, 2010).

> MT Talk \#7
http://mttalks.ufal.ms.mff.cuni.cz/index.php?title=Sentence_Alignment

Word Alignment

Goal: Given a sentence in two languages, align words (tokens). State of the art: GIZA++ (Och and Ney, 2000):

- Unsupervised, only sentence-parallel texts needed.
- Word alignments formally restricted to a function:

$$
\text { src token } \mapsto \text { tgt token or NULL }
$$

- A cascade of models refining the probability distribution:
- IBM1: only lexical probabilities: $P($ kočka $=c a t)$
- IBM3: adds fertility: 1 word generates several others
- IBM4/HMM: to account for relative reordering
- Only many-to-one links created \Rightarrow used twice, in both directions.

IBM Model 1

"Model" $=$ word-for-word translation dictionary, $P($ kočka |cat $)$ $=$ "Lexical probabilities" only, positions of words disregarded. Probabilities estimated using Expectation-Maximization Loop:

1. Start by assuming any word can be translated as any word. ...i.e. a dictionary with flat probabilities.
2. (Expectation) Draw alignment links in sentences based on dict. ...this will be flat, every word with every word, in the first loop.
3. (Maximization) Set probabilities in the dict based on cooc. counts.
4. Go to Step 2.

EM Loop in IBM1

Phrase-Based MT Overview

$$
\begin{aligned}
\text { This time around } & =\text { Nyní } \\
\text { they 're moving } & =\text { zareagovaly } \\
\text { even } & =\text { dokonce ještě } \\
\ldots & =\ldots \\
\text { This time around, they 're moving } & =\text { Nyní zareagovaly } \\
\text { even faster } & =\text { dokonce ještě rychle } \\
\ldots & =\ldots
\end{aligned}
$$

Phrase-based MT: choose such segmentation of input string and such phrase "replacements" to make the output sequence "coherent" (3-grams most probable).

Extracting Linguistic Patterns (1/3)

Phrase extraction for standard phrase-based MT:

1. Run sentence and word alignment,

Extracting Linguistic Patterns $(2 / 3)$

Phrase extraction for standard phrase-based MT:

1. Run sentence and word alignment,
2. Extract all phrases consistent with word alignment.

\Rightarrow Extracted: natürlich hat john \rightarrow naturally john has

Extracting Linguistic Patterns $(3 / 3)$

Now reused for extracting some other linguistic correspondences:

1. Run sentence and word alignment,
2. Extract same phrases, but e.g. POS tags, not word forms.

\Rightarrow Extracted: ADV V NNP \rightarrow ADV NNP V

Exploiting Multilinguality for MT

Neural MT: Encoder-Decoder

[^0]
Why More than Two Languages?

- Help in low-resource settings.
- Words, morphemes or syntactic patterns common to more languages.
- Learning can reuse patterns seen in another dataset.
- Improve translation quality.
- Words are ambiguous, the third language can disambiguate.
- Truly multi-lingual environments.
- United Nations: 6 languages.
- EU official languages: 24.
- EUROSAI official languages: 43.
- INTOSAI official languages...

Multilingual MT Configurations

- Pivot translation (Cascading).
- Multi-lingual source (also called multi-way).
- Multi-lingual multi-source.
- Multi-lingual target.
- Multi-lingual multi-target.
- Both sides multi-lingual.
- (Both sides multi-lingual, multi-source, multi-target. ;-)
- Zero-shot training.
- i.e. translating an unseen pair when both the source and target langs were covered in the training data in other pairs.
- "Beyond zero-shot" is translating from an unseen language.

ELITR Multi-Target and Multi-Source MT

- Multi-Target focus: Efficiency
- Decrease hardware resources compared using many separate models.
- Multi-Source focus: Resolving ambiguity thanks to existing translation
- E.g. Translating German "Schloss" to French is easier if we can feed in the English translation ("castle" or "lock").
- Training on: Multi-parallel or bi-parallel multilingual corpora.

Figure 1: Multi-Target MT

Figure 2: Multi-Source MT

ELITR Y3 Goal: Flexible Multi-Lingual MT

Figure 3: Flexible multilingual MT

Strategies for NMT

- Simple data mixing.
- Multilingual models.
- Pre-training / Transfer learning.
- Dedicated architectures.

Simple Data Mixing

... simply feed in various language pairs.

Source Sent $1(\mathrm{De})$	2en versetzen Sie sich mal in meine Lage!
Target Sent 1 (En)	put yourselves in my position .
Source Sent 2 (En)	2nl I flew on Air Force Two for eight years .
Target Sent 2(NI)	ik heb acht jaar lang met de Air Force Two gevlogen .

- The model of the same size will learn both pairs.
- Hopefully benefiting from various similarities.
- Risk of catastrophic forgetting.

See Johnson et al. (2016) or Ha et al. (2017).

Interlude: Catastrophic Forgetting

- Kocmi and Bojar (2017) explore curriculum learning:
- Start with simpler sentences first, add complex ones later.

Interlude: Catastrophic Forgetting

- Kocmi and Bojar (2017) explore curriculum learning:
- Start with simpler sentences first, add complex ones later.
- When "simpler" means "shorter":

Interlude: Catastrophic Forgetting

- Kocmi and Bojar (2017) explore curriculum learning:
- Start with simpler sentences first, add complex ones later.
- When "simpler" means "shorter":
- Clear jumps in score as bins of longer sentences are allowed.

Interlude: Catastrophic Forgetting

- Kocmi and Bojar (2017) explore curriculum learning:
- Start with simpler sentences first, add complex ones later.
- When "simpler" means "shorter":
- Clear jumps in score as bins of longer sentences are allowed.
- Reversed curriculum unlearns to produce long sentences.

"Language Embeddings" from 927 Bibles

output sentence
Bible translations in 927 languages

Helsinki Neural MT System

of language embeddings

"Language Embeddings" from 927 Bibles

| Trans-New Guinea |
| :--- | :--- |
| Otomanguean |
| Quechuan |
| Indo-European |
| Austronesian |
| Nilo-Saharan |
| Afro-Asiatic |
| Mayan |
| Niger-Congo |
| Creole |

t-SNE of the language-embedding vectors, colored by language family.

Exploiting Multilinguality for MT
 Transfer Learning

Motivation for NN Transfer Learning

Training steps

Motivation for NN Transfer Learning

Training steps

Motivation for NN Transfer Learning

Steps of Transfer Learning

Parent dataset

Steps of Transfer Learning

Trivial Transfer Learning

- Early works (Zoph et al., 2016; Nguyen and Chiang, 2017) target one common language (English).
- Kocmi and Bojar (2018) try even unrelated languages.

The trivial procedure:

- Train on one pair ("parent"), switch corpus to another ("child").
- The only requirement: joint subword units across all langs.

Getting Balanced Vocabulary

Parent corpus

Getting Balanced Vocabulary

Parent corpus

Balanced
vocabulary

Getting Balanced Vocabulary

Parent corpus

Balanced
vocabulary

English on Same Side

Child model: Slovak

Parent model	Corpus size difference	Direction	Baseline (BLEU)	Transfer (BLEU)	Δ (BLEU)
Czech	$9 x$	from English	16.13	17.75	$1.62 *$
Czech	$9 x$	to English	19.19	22.42	$3.23 *$

* statistically significant

English on Same Side

Child model: Slovak

Parent model	Corpus size difference	Direction	Baseline (BLEU)	Transfer (BLEU)	Δ (BLEU)
Czech	$9 x$	from English	16.13	17.75	$1.62 *$
Czech	$9 x$	to English	19.19	22.42	$3.23 *$

* statistically significant

English on Same Side

Child model: Slovak

Parent model	Corpus size difference	Direction	Baseline (BLEU)	Transfer (BLEU)	Δ (BLEU)
Czech	$9 x$	from English	16.13	17.75	$1.62 *$
Czech	$9 x$	to English	19.19	22.42	$3.23 *$

Child model: Estonian

Parent model	Corpus size difference	Direction	Baseline (BLEU)	Transfer (BLEU)	Δ (BLEU)
Finnish	3.5 x	from English	17.03	19.74	$2.71 *$
Russian	16 x	from English	17.03	20.09	$3.06 *$
Czech	50 x	from English	17.03	20.41	$3.38 *$
Finnish	3.5 x	to English	21.74	24.18	$2.44 *$
Russian	16 x	to English	21.74	23.54	$1.80 *$

* statistically significant

English on Same Side

Child model: Slovak

Parent model	Corpus size difference	Direction	Baseline (BLEU)	Transfer (BLEU)	Δ (BLEU)
Czech	$9 x$	from English	16.13	17.75	$1.62 *$
Czech	$9 x$	to English	19.19	22.42	$3.23 *$

Child model: Estonian

Parent model	Corpus size difference	Direction	Baseline (BLEU)	Transfer (BLEU)	Δ (BLEU)
Finnish	3.5 x	from English	17.03	19.74	$2.71 *$
Russian	16 x	from English	17.03	20.09	3.06^{*}
Czech	50 x	from English	17.03	20.41	3.38^{*}
Finnish	3.5 x	to English	21.74	24.18	$2.44 *$
Russian	16 x	to English	21.74	23.54	$1.80 *$

* statistically significant

English on Same Side

Child model: Slovak

Parent model	Corpus size difference	Direction	Baseline (BLEU)	Transfer (BLEU)	Δ (BLEU)
Related	$9 x$	from English	16.13	17.75	$1.62 *$
Related	$9 x$	to English	19.19	22.42	$3.23 *$

Child model: Estonian

Parent model	Corpus size difference	Direction	Baseline (BLEU)	Transfer (BLEU)	Δ (BLEU)
Related	$3.5 x$	from English	17.03	19.74	$2.71 *$
Cyrillic	$16 x$	from English	17.03	20.09	3.06^{*}
Biggest	$50 x$	from English	17.03	20.41	3.38^{*}
Related	$3.5 x$	to English	21.74	24.18	$2.44 *$
Cyrillic	$16 x$	to English	21.74	23.54	$1.80 *$

* statistically significant

English on Same Side, Parent Low-Resource

Child model: Finnish

Parent model	Corpus size difference	Direction	Baseline (BLEU)	Transfer (BLEU)	$\boldsymbol{\Delta}$ (BLEU)
Estonian	$0.3 x$	from English	19.50	20.07	$0.57 *$
Estonian	$0.3 x$	to English	24.40	23.95	-0.45

Child model: Czech

Parent model	Corpus size difference	Direction	Baseline (BLEU)	Transfer (BLEU)	$\boldsymbol{\Delta}$ (BLEU)
Slovak	$0.1 x$	from English	23.48	22.99	$-0.49 *$
Slovak	$0.1 x$	to English	29.61	28.20	$-1.41 *$

English on Same Side, Parent Low-Resource

Child model: Finnish

Parent model	Corpus size difference	Direction	Baseline (BLEU)	Transfer (BLEU)	$\boldsymbol{\Delta}$ (BLEU)
Estonian	$0.3 x$	from English	19.50	20.07	$0.57 *$
Estonian	$0.3 x$	to English	24.40	23.95	-0.45

Child model: Czech

Parent model	Corpus size difference	Direction	Baseline (BLEU)	Transfer (BLEU)	$\boldsymbol{\Delta}$ (BLEU)
Slovak	$0.1 x$	from English	23.48	22.99	$-0.49 *$
Slovak	$0.1 x$	to English	29.61	28.20	$-1.41 *$

English on the Other Side

Parent model	Child model	Corpus size amplification	Baseline (BLEU)	Transfer (BLEU)	Δ (BLEU)	Parent Aligned Δ
EN - Finnish	Estonian - EN	$3.5 x$	21.74	22.75	1.01 *	2.44 *
EN - Russian	Estonian - EN	$16 x$	21.74	23.12	1.38 *	1.80 *
EN - Czech	Estonian - EN	$50 x$	21.74	22.80	1.06 *	
Finnish - EN	EN - Estonian	$3.5 x$	17.03	18.19	1.16 *	2.71^{*}
Russian - EN	EN - Estonian	$16 x$	17.03	18.16	1.13 *	3.06 *

No Language in Common

Child model: Estonian to English

Parent model	Corpus size amplification	Baseline (BLEU)	Transfer (BLEU)	$\boldsymbol{\Delta}$ (BLEU)
Arabic - Russian	$12 x$	21.74	22.23	0.49
Spanish - French	$12 x$	21.74	22.24	0.50 *
Spanish - Russian	$12 x$	21.74	22.52	0.78 *
French - Russian	$12 x$	21.74	22.40	0.66^{*}

No Language in Common

Child model: Estonian to English

Parent model	Corpus size amplification	Baseline (BLEU)	Transfer (BLEU)	Δ (BLEU)
Arabic Cyrillic $\times x$	21.74	22.23	0.49	
Spanish - French	$12 x$	21.74	22.24	0.50 *
Spanish -Cyrillic $\times x$	21.74	22.52	0.78 *	
French - R Cyrillic $\times x$	21.74	22.40	0.66 *	

The Better the Parent, the Better the Child

The Lesser the Child, the Bigger the Gain

Steps

Why it Helps? Not Really Vocabulary (1/2)

	Length	BLEU Components	BP
Base ENET	35326	$48.1 / 21.3 / 11.3 / 6.4$	0.979
ENRU+ENET	35979	$51.0 / 24.2 / 13.5 / 8.0$	0.998
ENCS+ENET	35921	$51.7 / 24.6 / 13.7 / 8.1$	0.996
(The reference length in the matching tokenization was 36062.)			

- Child models produce longer outputs \Rightarrow lower brevity penalty.
- But n-gram precisions also better.

1-gram present in	ENRU+ENET	ENCS+ENET
Child, Base, Ref	15902 (44.2 \%)	$15924(44.3$ \%)
Child only	$9635(26.8$ \%)	$9485(26.4 \%)$
Child, Base	$7209(20.0$ \%)	$7034(19.6 \%)$
Child, Ref	$\mathbf{3 2 3 3} \mathbf{(9 . 0 \%)}$	$\mathbf{3 4 7 8} \mathbf{(9 . 7 \%)}$
Total	$35979(100.0 \%)$	$35921(100.0 \%)$

- The $3 k$ better toks are regular ET words, not NEs or numbers.

Why it Helps? Not Really Vocabulary $(2 / 2)$

Estonian

Why it Helps? Sentence Lengths Somewhat

Parent

Sentence lengths	BLEU	Avg. words
1-10 words	8.57	10.9
10-20 words	16.21	15.4
20-40 words	12.59	21.9
40-60 words	5.76	35.5
$1-60$ words	22.30	15.3

Why it Helps? Sentence Lengths Somewhat

| | Parent | | | Child | |
| :--- | ---: | :---: | :--- | :---: | :---: | :---: |
| Sentence lengths | BLEU | Avg. words | | BLEU | Avg. words |
| 1-10 words | 8.57 | 10.9 | | 16.57 | 15.3 |
| 10-20 words | 16.21 | 15.4 | | 17.48 | 15.3 |
| 20-40 words | 12.59 | 21.9 | | 17.99 | 15.3 |
| 40-60 words | 5.76 | 35.5 | | 16.80 | 15.5 |
| 1-60 words | 22.30 | 15.3 | | 19.15 | 15.4 |

Why it Helps? Sentence Lengths Somewhat

| | Parent | | | Child | |
| :--- | ---: | :---: | :--- | :---: | :---: | :---: |
| Sentence lengths | BLEU | Avg. words | | BLEU | Avg. words |
| 1-10 words | 8.57 | 10.9 | | 16.57 | 15.3 |
| 10-20 words | 16.21 | 15.4 | | 17.48 | 15.3 |
| 20-40 words | 12.59 | 21.9 | | 17.99 | 15.3 |
| 40-60 words | 5.76 | 35.5 | | 16.80 | 15.5 |
| 1-60 words | 22.30 | 15.3 | | 19.15 | 15.4 |

Exploiting Multilinguality for MT
 Dedicated Architectures

Multi-source translation

Quite an old idea (e.g. Och \& Ney 2001)

Table 4: Absolute improvements in WER combining two languages using method MAX compared with the best WER obtained by any of the two languages.

	fr	pt	es	it	sv	da	nl
fr	0.0	1.5	1.2	0.5	2.7	1.9	0.8
pt		0.0	2.2	2.1	4.0	3.4	1.3
es			0.0	2.4	3.9	2.6	1.7
it				0.0	3.5	3.2	1.6
sv					0.0	2.7	1.7
da						0.0	4.3
nl							0.0

Table 5: Absolute improvements in WER combining two languages using method Prod compared with the best WER obtained by any of the two languages.

	fr	pt	es	it	sv	da	nl
fr	0.0	0.8	0.1	0.4	1.0	0.8	-0.2
pt		0.0	2.6	2.1	2.6	2.8	-0.1
es			0.0	2.4	3.4	3.7	1.1
it				0.0	1.9	3.0	0.3
sv					0.0	1.8	0.5
da						0.0	1.5
nl							0.0

Table 6: Language combination using method MAX.

languages	WER	PER
fr	55.3	45.3
$\mathrm{fr}+\mathrm{sv}$	52.6	43.7
$\mathrm{fr}+\mathrm{sv}+\mathrm{es}$	$\mathbf{5 2 . 0}$	$\mathbf{4 3 . 2}$
$\mathrm{fr}+\mathrm{sv}+\mathrm{es}+\mathrm{pt}$	52.3	43.6
$\mathrm{fr}+\mathrm{sv}+\mathrm{es}+\mathrm{pt}+\mathrm{it}$	52.7	44.0
$\mathrm{fr}+\mathrm{sv}+\mathrm{es}+\mathrm{pt}+\mathrm{it}+\mathrm{da}$	52.5	43.9

Table 7: Language combination using method PROD.

languages	WER	PER
fr	55.3	45.3
$\mathrm{fr}+\mathrm{sv}$	54.3	44.5
$\mathrm{fr}+\mathrm{sv}+\mathrm{es}$	51.0	41.4
$\mathrm{fr}+\mathrm{sv}+\mathrm{es}+\mathrm{pt}$	50.2	40.2
$\mathrm{fr}+\mathrm{sv}+\mathrm{es}+\mathrm{pt}+\mathrm{it}$	49.8	39.8
$\mathrm{fr}+\mathrm{sv}+\mathrm{es}+\mathrm{pt}+\mathrm{it}+\mathrm{da}$	$\mathbf{4 8 . 8}$	$\mathbf{3 9 . 1}$

Multi-source translation

- Assorted techniques to do this in IBM-style or phrasebased MT.
- Difficult to model directly due to independence assumptions of these models.
- Usually done as a kind of system combination (merging the output of two MT systems).
- But this introduces other problems, e.g. decoding.
- Fundamentally, it's interpolation of conditional LMs.

Direct multi-source

Zoph \& Knight 2016

- Directly learns and uses p(English|French,German)
- For attention: two context vectors (uses p-local attention of Luong, et al, but could use other methods).

Multi-way MT

Firat et al. 2016 (two papers)

- Assume only many bilingual parallel corpora.
- For N languages: learn N encoders and N decoders.
- But what about attention?

Multi-way MT

Firat et al. 2016 (two papers)

- Assume only many bilingual parallel corpora.
- For N languages: learn N encoders and N decoders.
- But what about attention?

$$
\begin{array}{r}
p\left(f_{i} \mid f_{i-1}, \ldots, f_{1}, \mathbf{e}\right)=g\left(f_{i-1}, s_{i}, c_{i}\right) \\
c_{i}=\sum_{j=1}^{|\mathbf{e}|} \alpha_{i j} h_{j}=\frac{\exp \left(a_{i j}\right)}{\sum_{k=1}^{|\mathbf{e}|} \exp \left(a_{i k}\right)} \\
a_{i j}=a\left(s_{i-1}, h_{j}\right)
\end{array}
$$

Multi-way MT

Firat et al. 2016 (two papers)

- Assume only many bilingual parallel corpora.
- For N languages: learn N encoders and N decoders.
- But what about attention?

$$
\begin{gathered}
p\left(f_{i} \mid f_{i-1}, \ldots, f_{1}, \mathbf{e}\right)=g\left(f_{i-1}, s_{i}, c_{i}\right) \quad \\
c_{i}=\sum_{j=1}^{|\mathbf{e}|} \alpha_{i j} h_{j} \quad \begin{array}{l}
\text { we need is } \\
\text { right here! } \\
\sum_{k=1}^{\mid \mathbf{e x p}\left(a_{i j}\right)} \exp \left(a_{i k}\right)
\end{array} \\
a_{i j}=a\left(s_{i-1}, h_{j}\right)
\end{gathered}
$$

Everything

Multi-way MT

Firat et al. 2016 (two papers)

- As in Bahdanu et al. (2014), attention mechanism is a feedforward function of both decoder hidden state and encoder context vector.
- Shared between all encoders and decoders.

$$
p\left(f_{i} \mid f_{i-1}, \ldots, f_{1}, \mathbf{e}\right)=g\left(f_{i-1}, s_{i}, c_{i}\right)
$$

Everything we need is right here!

$$
c_{i}=\sum_{j=1}^{|\mathbf{e}|} \alpha_{i j} h_{j}
$$

$$
\begin{array}{r}
\alpha_{i j}=\frac{\exp \left(a_{i j}\right)}{\sum_{k=1}^{|\mathbf{e}|} \exp \left(a_{i k}\right)} \\
a_{i j}=a\left(s_{i-1}, h_{j}\right)
\end{array}
$$

Multi-way MT

Firat et al. 2016 (two papers)

	Size	Single	Single+DF	Multi
空	100k	5.06/3.96	4.98/3.99	6.2/5.17
	200k	7.1/6.16	7.21/6.17	8.84/7.53
	400k	9.11/7.85	9.31/8.18	11.09/9.98
	800k	11.08/9.96	11.59/10.15	12.73/11.28
$\begin{aligned} & \text { fin } \\ & \uparrow \\ & 0 \end{aligned}$	210k	14.27/13.2	14.65/13.88	16.96/16.26
	420k	18.32/17.32	18.51/17.62	19.81/19.63
	840k	21/19.93	21.69/20.75	22.17/21.93
	1.68 m	23.38/23.01	23.33/22.86	23.86/23.52
	210k	11.44/11.57	11.71/11.16	12.63/12.68
	420k	14.28/14.25	14.88/15.05	15.01/15.67
	840k	17.09/17.44	17.21/17.88	17.33/18.14
	1.68 m	19.09/19.6	19.36/20.13	19.23/20.59

Low-resource simulation (using high-resource European languages)

Table 2: BLEU scores where the target pair's parallel corpus is constrained to be $5 \%, 10 \%, 20 \%$ and 40% of the original size. We report the BLEU scores on the development and test sets (separated by $/$) by the single-pair model (Single), the singlepair model with monolingual corpus (Single+DF) and the proposed multi-way, multilingual model (Multi).

Multi-way MT

Firat et al. 2016 (two papers)

Dir			Fr (39m)		Cs (12m)		De (4.2m)		$\mathrm{Ru}(2.3 \mathrm{~m})$		Fi (2m)	
			\rightarrow En	En \rightarrow	\rightarrow En	$\mathrm{En} \rightarrow$	\rightarrow En	En \rightarrow	\rightarrow En	En \rightarrow	\rightarrow En	En \rightarrow
な	$\begin{array}{ll} \hline \stackrel{\text { Dingle }}{ } & \text { Sing } \\ \text { Multi } \end{array}$		27.22	26.91	21.24	15.9	24.13	20.49	21.04	18.06	13.15	9.59
			26.09	25.04	21.23	14.42	23.66	19.17	21.48	17.89	12.97	8.92
	$\stackrel{\rightharpoonup}{*}$	Single	27.94	29.7	20.32	13.84	24	21.75	22.44	19.54	12.24	9.23
		Multi	28.06	27.88	20.57	13.29	24.20	20.59	23.44	19.39	12.61	8.98
el	$\stackrel{\rightharpoonup}{\mathrm{a}}$	Single	-50.53	-53.38	-60.69	-69.56	-54.76	-61.21	-60.19	-65.81	-88.44	-91.75
		Multi	-50.6	-56.55	-54.46	-70.76	-54.14	-62.34	-54.09	-63.75	-74.84	-88.02
	$\begin{aligned} & \text { 苟 } \\ & \hline \end{aligned}$	Single	-43.34	-45.07	-60.03	-64.34	-57.81	-59.55	-60.65	-60.29	-88.66	-94.23
		Multi	-42.22	-46.29	-54.66	-64.80	-53.85	-60.23	-54.49	-58.63	-71.26	-88.09

Table 3: (a) BLEU scores and (b) average log-probabilities for all the five languages from WMT' 15 .

Multi－way MT

Firat et al． 2016 （two papers）

Dir			Fr（39m）		Cs（12m）		De（4．2m）		$\mathrm{Ru}(2.3 \mathrm{~m})$		Fi（2m）	
			\rightarrow En	En \rightarrow								
$\begin{aligned} & \text { ® } \\ & \text { ® } \\ & \text { ® } \end{aligned}$	$\begin{array}{ll} \hline \stackrel{\rightharpoonup}{\mathrm{O}} & \text { Single } \\ \text { Multi } \end{array}$		27.22	26.91	21.24	15.9	24.13	20.49	21.04	18.06	13.15	9.59
			26.09	25.04	21.23	14.42	23.66	19.17	21.48	17.89	12.97	8.92
		Single	27.94	29.7	20.32	13.84	24	21.75	22.44	19.54	12.24	9.23
	$\stackrel{\text { ¢ }}{\sim}$	Multi	28.06	27.88	20.57	13.29	24.20	20.59	23.44	19.39	12.61	8.98
en	$\stackrel{\rightharpoonup}{0}$	Single	－50．53	－53．38	－60．69	－69．56	－54．76	－61．21	－60．19	－65．81	－88．44	－91．75
		Multi	－50．6	－56．55	－54．46	－70．76	－54．14	－62．34	－54．09	－63．75	－74．84	－88．02
	$\begin{aligned} & \stackrel{⿹ 勹 䶹}{6} \\ & \hline \end{aligned}$	Single	－43．34	－45．07	－60．03	－64．34	－57．81	－59．55	－60．65	－60．29	－88．66	－94．23
		Multi	－42．22	－46．29	－54．66	－64．80	－53．85	－60．23	－54．49	－58．63	－71．26	－88．09

Table 3：（a）BLEU scores and（b）average log－probabilities for all the five languages from WMT＇ 15 ．

ok，but what about multi－source？

Multi-way multi-source MT

 Firat et al. 2016 (two papers)- Still assumes only many bilingual parallel corpora.
- What to do if there are multiple input sentences?
- Early averaging (average context vectors). $\mathbf{c}_{t}=\frac{\mathbf{c}_{t}^{1}+\mathbf{c}_{t}^{2}}{2}$.
- Late averaging (aka linear interpolation).

$$
P\left(w_{i} \mid \boldsymbol{c}\right)=\sum_{k=1}^{K} \lambda_{k}(\boldsymbol{c}) P_{k}\left(w_{i} \mid \boldsymbol{c}\right)
$$

Early and late averaging are orthogonal, can be combined.

Multi-way multi-source MT

Firat et al. 2016 (two papers)

			Multi	Single
	Src	Trgt	Test	Test
(a)	Es	En	28.32	27.48
(b)	Fr	En	27.93	27.21
(c)	En	Es	28.41	28.90
(d)	En	Fr	23.41	24.05

Table 2: One-to-one translation qualities using the multi-way, multilingual model and four separate single-pair models.

Multi-way multi-source MT
 Firat et al. 2016 (two papers)

Table 3: Many-to-one quality ($\mathrm{Es}+\mathrm{Fr} \rightarrow \mathrm{En}$) using three transla-

Table 2: One-to-one translation qualities using the multi-way multilingual model and four separate single-pair models.
tion strategies. Compared to Table $2(\mathrm{a}-\mathrm{b})$ we observe a significant improvement (up to $3+$ BLEU), although the model was never trained in these many-to-one settings. The second column shows the quality by the ensemble of two separate single-pair models.

Multi-way multi-source MT
 Firat et al. 2016 (two papers)

Table 3: Many-to-one quality ($\mathrm{Es}+\mathrm{Fr} \rightarrow \mathrm{En}$) using three transla-

Table 2: One-to-one translation qualities using the multi-way multilingual model and four separate single-pair models.
tion strategies. Compared to Table $2(\mathrm{a}-\mathrm{b})$ we observe a significant improvement (up to $3+$ BLEU), although the model was never trained in these many-to-one settings. The second column shows the quality by the ensemble of two separate single-pair models.

Zero-shot MT

Firat et al. 2016 (two papers)

- Suppose our bilingual parallel data include a pair of languages for which we have no parallel data.

$$
\text { Spanish } \longleftrightarrow \text { English } \quad \text { English } \longleftrightarrow \text { French }
$$

- Q: Can we use the multi-way encoder-decoder system to translate Spanish into French?

Firat et al. 2016 (two papers)

- Suppose our bilingual parallel data include a pair of languages for which we have no parallel data.
- Q: Can we use the multi-way encoder-decoder system to translate Spanish into French?

	Pivot	Many-to-1	Dev	Test	
(a)			$\\|$	<1	
(b)	$\sqrt{ }$		$\\|$	<1	

Table 4: Zero-resource translation from Spanish (Es) to French (Fr) without finetuning. When pivot is $\sqrt{ }$, English is used as a pivot language.

A: Not really

Must pivot (explicitly) through English

Zero-shot MT

Firat et al. 2016 (two papers)

- Finetuning: what if we use a small amount of parallel data in this setting?
- Q : Where would we get this data?

	Pivot	Many-to-1	Dev	Test	
(a) \mid			$\\|$	<1	
(b)	$\sqrt{ }$			<1	

Table 4: Zero-resource translation from Spanish (Es) to French (Fr) without finetuning. When pivot is $\sqrt{ }$, English is used as a pivot language.

Zero-shot MT

Firat et al. 2016 (two papers)

- Finetuning: what if we use a small amount of parallel data in this setting?
- Q: Where would we get this data? Backtranslation

$$
\text { Spanish } \longleftrightarrow \text { English English } \longleftrightarrow \text { French }
$$

Zero-shot MT

Firat et al. 2016 (two papers)

- Finetuning: what if we use a small amount of parallel data in this setting?
- Q: Where would we get this data? Backtranslation
 English \longleftrightarrow French
\downarrow
Spanish (MT)

Zero-shot MT

Firat et al. 2016 (two papers)

- Finetuning: what if we use a small amount of parallel data in this setting?
- Q: Where would we get this data? Backtranslation
 English \longleftrightarrow French

Spanish (MT)

Zero-shot MT

Firat et al. 2016 (two papers)

- Finetuning: what if we use a small amount of parallel data in this setting?

Pivot	Many-to-1		Pseudo Parallel Corpus			
			1k	10k	100k	1 m
Single-Pair Models		Dev	-	-	-	-
		Test	-	-	-	-
$\sqrt{ }$	No Finetuning		Dev: 20.64, Test: 20.4			
		Dev	0.28	10.16	15.61	17.59
		Test	0.47	10.14	15.41	17.61

Zero-shot MT

Firat et al. 2016 (two papers)

- Finetuning: what if we use a small amount of parallel data in this setting?

Pivot	Many-to-1		Pseudo Parallel Corpus				True Parallel Corpus			
			1k	10k	100k	1 m	1k	10k	100k	1 m
Single-Pair Models		Dev	-	-	-	-	-	-	11.25	21.32
		Test	-	-	-	-	-	-	10.43	20.35
\checkmark	No Finetuning		Dev: 20.64, Test: 20.4				-			
		Dev	0.28	10.16	15.61	17.59	0.1	8.45	16.2	20.59
		Test	0.47	10.14	15.41	17.61	0.12	8.18	15.8	19.97

Zero-shot MT

Johnson et al. 2016 (Google)

- Incremental training: add a small amount of (true) parallel data in the language pair of interest.

Table 5: Portuguese \rightarrow Spanish BLEU scores using various models.

	Model	BLEU
(a)	PBMT bridged	28.99
(b)	NMT bridged	30.91
(c)	NMT Pt \rightarrow Es	31.50
(d)	Model 1 $(\mathrm{Pt} \rightarrow \mathrm{En}, \mathrm{En} \rightarrow$ Es $)$	21.62
(e)	Model 2 $(\mathrm{En} \leftrightarrow\{\mathrm{Es}, \mathrm{Pt}\})$	24.75
(f)	Model 2 + incremental training	31.77

Zero-shot MT

Johnson et al. 2016 (Google)

Table 6: BLEU scores for English $\leftrightarrow\{$ Belarusian, Russian, Ukrainian $\}$ models.

	Zero-Shot	From-Scratch	Incremental
English \rightarrow Belarusian	16.85	17.03	16.99
English \rightarrow Russian	22.21	22.03	21.92
English \rightarrow Ukrainian	18.16	17.75	18.27
Belarusian \rightarrow English	25.44	24.72	25.54
Russian \rightarrow English	28.36	27.90	28.46
Ukrainian \rightarrow English	28.60	28.51	28.58
Belarusian \rightarrow Russian	56.53	82.50	78.63
Russian \rightarrow Belarusian	58.75	72.06	70.01
Russian \rightarrow Ukrainian	21.92	25.75	25.34
Ukrainian \rightarrow Russian	16.73	30.53	29.92

> trained on
> parallel data

Zero-shot MT
 Johnson et al. 2016 (Google)

Table 6: BLEU scores for English $\leftrightarrow\{$ Belarusian, Russian, Ukrainian $\}$ models.

	Zero-Shot	From-Scratch	Incremental
English \rightarrow Belarusian	16.85	17.03	16.99
English \rightarrow Russian	22.21	22.03	21.92
English \rightarrow Ukrainian	18.16	17.75	18.27
Belarusian \rightarrow English	25.44	24.72	25.54
Russian \rightarrow English	28.36	27.90	28.46
Ukrainian \rightarrow English	28.60	28.51	28.58
Belarusian \rightarrow Russian	56.53	82.50	78.63
Russian \rightarrow Belarusian	58.75	72.06	70.01
Russian \rightarrow Ukrainian	21.92	25.75	25.34
Ukrainian \rightarrow Russian	16.73	30.53	29.92

actual zero-shot

Zero－shot MT

Johnson et al． 2016 （Google）

code－switching in the input language：

Japanese：私は東京大学の学生です。 $\rightarrow \mathrm{I}$ am a student at Tokyo University．
Korean：나는 도쿄 대학의 학생입니다．$\rightarrow \mathrm{I}$ am a student at Tokyo University．
Mixed Japanese／Korean：私は東京大学학생입니다．$\rightarrow \mathrm{I}$ am a student of Tokyo University

code－switching in the output language：

Spanish／Portuguese：Here the other guinea－pig cheered，and was suppressed．
$w_{p t}=0.00 \quad$ Aquí el otro conejillo de indias animó，y fue suprimido．
$w_{p t}=0.30 \quad$ Aquí el otro conejillo de indias animó，y fue suprimido．
$w_{p t}=0.40 \quad$ Aquí，o outro porquinho－da－índia alegrou，e foi suprimido．
$w_{p t}=0.42 \quad$ Aqui o outro porquinho－da－índia alegrou，e foi suprimido．
$w_{p t}=0.70 \quad$ Aqui o outro porquinho－da－índia alegrou，e foi suprimido．
$w_{p t}=0.80 \quad$ Aqui a outra cobaia animou，e foi suprimida．
$w_{p t}=1.00$
Aqui a outra cobaia animou，e foi suprimida．

Zero-shot MT

Johnson et al. 2016 (Google)

Portuguese informant: "we decided it's impossible to judge the correctness of the translation without context (but it's likely wrong). After finding the context (Alice in Wonderland) we can conclude it's wrong."
code-switching in the output language:
Spanish/Portuguese: Here the other guinea-pig cheered, and was suppressed.

$$
\begin{array}{ll}
w_{p t}=0.00 & \text { Aquí el otro conejillo de indias animó, y fue suprimido. } \\
w_{p t}=0.30 & \text { Aquí el otro conejillo de indias animó, y fue suprimido. } \\
w_{p t}=0.40 & \text { Aquí, o outro porquinho-da-índia alegrou, e foi suprimido. } \\
w_{p t}=0.42 & \text { Aqui o outro porquinho-da-índia alegrou, e foi suprimido. } \\
w_{p t}=0.70 & \text { Aqui o outro porquinho-da-índia alegrou, e foi suprimido. } \\
w_{p t}=0.80 & \text { Aqui a outra cobaia animou, e foi suprimida. } \\
w_{p t}=1.00 & \text { Aqui a outra cobaia animou, e foi suprimida. }
\end{array}
$$

Google Interlingua

Figure 2: A t-SNE projection of the embedding of 74 semantically identical sentences translated across all 6 possible directions, yielding a total of 9,978 steps (dots in the image), from the model trained on English \leftrightarrow Japanese and English \leftrightarrow Korean examples. (a) A bird's-eye view of the embedding, coloring by the index of the semantic sentence. Well-def ned clusters each having a single color are apparent. (b) A zoomed in view of one of the clusters with the same coloring. All of the sentences within this cluster are translations of "The stratosphere extends from about 10 km to about 50 km in altitude." (c) The same cluster colored by source language. All three source languages can be seen within this cluster.

Interlingua?

335
Automatic Translation

Figure 28.1
From Vauquois (1968), reproduced by Adam Lopez.

Interlingua?

- Theoretically, a very inspiring concept.
- Need for $2 N$ instead of n^{2} systems.
- Sceptical view:
- Need to capture all distinctions in word meanings: https://en.wikipedia.org/wiki/Eskimo_words_for_snow
- Text form underspecifies the meaning, formally captured content underspecifies the form (Lampert, 2001).
- Interannotator agreement decreases as we proceed along layers of linguistic analysis (Dorr et al., 2010).

Interlingua?

- Optimistic/wishful view:
- Molto-Project (EU FP7, 2011-2013), among others: http://www.molto-project.eu/

Isn't interlingua an unrealistic dream? Yes, it is, if we want to have a universal interlingua working for everything. This is why we don't believe we can ever translate newspapers with MOLTO techniques. However, domain-specific interlinguas have proved quite feasible. Notice that this move is similar to what has happened in ontologies: they have moved from universal ontologies to domain ontologies.

Massively Multi-Lingual Models

Available Data for $\mathrm{EN} \leftrightarrow 100+$ Langs

Data distribution over language pairs

Translation Quality of Bilingual MT

Data distribution over language pairs

Standard Transformer Model

Google Transformer Sizes

GPipe (Huang et al., 2019) introduces microbatches for faster training of deep models across multiple GPUs.

Enc/Dec Depth	FF Dim	Heads	Total Parameters	GPUs Used	
6	8192	16	400 M	1 default	
12	16384	32	1.3 B	2	"wide"
24	8192	16	1.3 B	4	"deep"
32	16384	32	3.0 B	8	
64	16384	32	6.0 B	16	

- "Deep" better than "wide" on low-resource languages.
- Indicates better generalization.
- Further tricks needed to keep the training stable.

Massively Multilingual Models

Massive Massively Multilingual Models

- Massively multilingual with 50 billion parameters
- Massively multilingual with 6 billion parameters
- Massively multilingual with 400 million parameters

High Resource Languages
Low Resource Languages

Google-Sized Experiment

The recent 50 billion parameters Transformer needed further trick:

- sparsely-gated mixture of experts (Shazeer et al., 2017):

\Rightarrow BLEU on 100 langs re-gained and improved by $125 \times$ larger model. https://ai.googleblog.com/2019/10/exploring-massively-multilingual.html

Domain Adapters to Recover Practical Sizes

- Bapna and Firat (2019) propose tiny tunable "adapter" layers.

1. Pretrain on a large mixed-language corpus.
2. Inject adapter layers.
3. Finetune adapter layers for each of the target tasks.

Domain Adapters into English

Any-to-English Translation performance for multilingual models with adapters

Domain Adapters from English

English-to-Any Translation performance for multilingual models with adapters

Summary

- Tools from machine translation for reuse in multilingual research.
- Machine translation is multilingual from the beginning.
- Transfer learning in NMT works.
\Rightarrow NMT can exploit more and less related data.
- Trivial Transfer: Parent just has to be larger.
- Even unrelated language pairs can help.
- Very big improvements in low-resource conditions.
- Language families emerge in language token embedding.
- Model capacity is the bottleneck.
- Models $125 x$ large for 100 languages in one model allow gains on high-resource languages, too.
- With tiny adaptors instead of mixture of experts model sizes can decrease again.

References

Ankur Bapna and Orhan Firat. 2019. Simple, scalable adaptation for neural machine translation. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 1538-1548, Hong Kong, China, November. Association for Computational Linguistics.
Fabienne Braune and Alexander Fraser. 2010. Improved Unsupervised Sentence Alignment for Symmetrical and Asymmetrical Parallel Corpora. In Coling 2010: Posters, pages 81-89, Beijing, China, August. Coling 2010 Organizing Committee.
Bonnie j. Dorr, Rebecca j. Passonneau, David Farwell, Rebecca Green, Nizar Habash, Stephen Helmreich, Eduard Hovy, Lori Levin, Keith j. Miller, Teruko Mitamura, Owen Rambow, and Advaith Siddharthan. 2010. Interlingual annotation of parallel text corpora: A new framework for annotation and evaluation. Nat. Lang. Eng., 16(3):197-243.
Miquel Esplà-Gomis and Mikel L. Forcada. 2010. Combining Content-Based and URL-Based Heuristics to Harvest
Aligned Bitexts from Multilingual Sites with Bitextor. In
Prague Bulletin of Mathematical Linguistics - Special Issue on Open Source Machine Translation Tools, number 93 in Prague Bulletin of Mathematical Linguistics. Charles University, January.
William A. Gale and Kenneth W. Church. 1993. A Program for Aligning Sentences in Bilingual Corpora.
Computational Linguistics, 19(1):75-102.
Thanh-Le Ha, Jan Niehues, and Alexander H. Waibel. 2017. Effective strategies in zero-shot neural machine translation. CoRR, abs/1711.07893.
Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao Chen, Mia Chen, HyoukJoong Lee, Jiquan Ngiam, Quoc V Le, Yonghui Wu, and zhifeng Chen. 2019. Gpipe: Efficient training of giant neural networks using pipeline parallelism. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems 32, pages 103-112. Curran Associates, Inc.

[^0]: https://devblogs.nvidia.com/parallelforall/introduction-neural-machine-translation-gpus-part-2/

