Projection of Trees across Parallel Texts

Daniel Zeman, Rudolf Rosa

April 8, 2019
Rebecca Hwa, Philip Resnik, Amy Weinberg, Clara Cabezas, Okan Kolak (2004). Bootstrapping Parsers via Syntactic Projection across Parallel Texts

- Source: English
- Target: Spanish, Chinese
- Dependency trees (not phrase structure)
Direct Projection

Given sentence pair \((E, F)\) and a set of syntactic relations for \(E\), where \(E = e_1, ..., e_n\) is an English sentence and \(F = f_1, ..., f_m\) is its non-English parallel, syntactic relations \(R(x, y)\) are projected from English as follows:

- **one-to-one** – \(e_i\) aligned with a unique \(f_x\) and \(e_j\) aligned with a unique \(f_y\) – then \(R(e_i, e_j) \Rightarrow R(f_x, f_y)\)

- **unaligned English** – \(e_j\) not aligned with any word in \(F\) – create new empty word \(f_y\) so that for any \(e_i\) aligned with a unique \(f_x\), \(R(e_i, e_j) \Rightarrow R(f_x, f_y)\) and \(R(e_j, e_i) \Rightarrow R(f_y, f_x)\)

- **one-to-many** – \(e_i\) aligned with \(f_x, ..., f_y\) – then create new empty \(f_z\), parent of \(f_x, ..., f_y\), and set \(e_i\) to align to \(f_z\) instead

- **many-to-one** – \(e_i, ..., e_j\) uniquely aligned to \(f_x\) – then keep the head of \(e_i, ..., e_j\) aligned to \(f_x\), and delete other alignments

- **many-to-many** – decompose: first one-to-many, then many-to-one

- **unaligned foreign** – leave them out of the projected tree
Direct Projection

Given sentence pair \((E, F)\) and a set of syntactic relations for \(E\), where \(E = e_1, \ldots, e_n\) is an English sentence and \(F = f_1, \ldots, f_m\) is its non-English parallel, syntactic relations \(R(x, y)\) are projected from English as follows:

- **one-to-one** – \(e_i\) aligned with a unique \(f_x\) and \(e_j\) aligned with a unique \(f_y\) – then \(R(e_i, e_j) \Rightarrow R(f_x, f_y)\)

- **unaligned English** – \(e_j\) not aligned with any word in \(F\) – create new empty word \(f_y\) so that for any \(e_i\) aligned with a unique \(f_x\), \(R(e_i, e_j) \Rightarrow R(f_x, f_y)\) and \(R(e_j, e_i) \Rightarrow R(f_y, f_x)\)

- **one-to-many** – \(e_i\) aligned with \(f_x, \ldots, f_y\) – then create new empty \(f_z\), parent of \(f_x, \ldots, f_y\), and set \(e_i\) to align to \(f_z\)

- **many-to-one** – \(e_i, \ldots, e_j\) uniquely aligned to \(f_x\) – then keep the head of \(e_i, \ldots, e_j\) aligned to \(f_x\), and delete other alignments

- **many-to-many** – decompose: first one-to-many, then many-to-one

- **unaligned foreign** – leave them out of the projected tree
Given sentence pair \((E, F)\) and a set of syntactic relations for \(E\), where \(E = e_1, ..., e_n\) is an English sentence and \(F = f_1, ..., f_m\) is its non-English parallel, syntactic relations \(R(x, y)\) are projected from English as follows:

- **one-to-one** – \(e_i\) aligned with a unique \(f_x\) and \(e_j\) aligned with a unique \(f_y\) – then \(R(e_i, e_j) \Rightarrow R(f_x, f_y)\)

- **unaligned English** – \(e_j\) not aligned with any word in \(F\) – create new empty word \(f_y\) so that for any \(e_i\) aligned with a unique \(f_x\), \(R(e_i, e_j) \Rightarrow R(f_x, f_y)\) and \(R(e_j, e_i) \Rightarrow R(f_y, f_x)\)

- **one-to-many** – \(e_i\) aligned with \(f_x, ..., f_y\) – then create new empty \(f_z\), parent of \(f_x, ..., f_y\), and set \(e_i\) to align to \(f_z\) instead
Direct Projection

Given sentence pair \((E, F)\) and a set of syntactic relations for \(E\), where \(E = e_1, ..., e_n\) is an English sentence and \(F = f_1, ..., f_m\) is its non-English parallel, syntactic relations \(R(x, y)\) are projected from English as follows:

- **one-to-one** – \(e_i\) aligned with a unique \(f_x\) and \(e_j\) aligned with a unique \(f_y\) – then
 \[R(e_i, e_j) \Rightarrow R(f_x, f_y) \]

- **unaligned English** – \(e_j\) not aligned with any word in \(F\) – create new empty word \(f_y\) so that for any \(e_i\) aligned with a unique \(f_x\),
 \[R(e_i, e_j) \Rightarrow R(f_x, f_y) \] and
 \[R(e_j, e_i) \Rightarrow R(f_y, f_x) \]

- **one-to-many** – \(e_i\) aligned with \(f_x, ..., f_y\) – then create new empty \(f_z\), parent of \(f_x, ..., f_y\), and set \(e_i\) to align to \(f_z\) instead

- **many-to-one** – \(e_i, ..., e_j\) uniquely aligned to \(f_x\) – then keep the head of \(e_i, ..., e_j\) aligned to \(f_x\), and **delete other alignments**
Direct Projection

Given sentence pair \((E, F)\) and a set of syntactic relations for \(E\), where \(E = e_1, \ldots, e_n\) is an English sentence and \(F = f_1, \ldots, f_m\) is its non-English parallel, syntactic relations \(R(x, y)\) are projected from English as follows:

- **one-to-one** – \(e_i\) aligned with a unique \(f_x\) and \(e_j\) aligned with a unique \(f_y\) – then
 \[R(e_i, e_j) \Rightarrow R(f_x, f_y) \]

- **unaligned English** – \(e_j\) not aligned with any word in \(F\) – create new empty word \(f_y\) so that for any \(e_i\) aligned with a unique \(f_x\),
 \[R(e_i, e_j) \Rightarrow R(f_x, f_y) \]
 and
 \[R(e_j, e_i) \Rightarrow R(f_y, f_x) \]

- **one-to-many** – \(e_i\) aligned with \(f_x, \ldots, f_y\) – then create new empty \(f_z\), parent of \(f_x, \ldots, f_y\), and set \(e_i\) to align to \(f_z\) instead

- **many-to-one** – \(e_i, \ldots, e_j\) uniquely aligned to \(f_x\) – then keep the head of \(e_i, \ldots, e_j\) aligned to \(f_x\), and delete other alignments

- **many-to-many** – decompose: first one-to-many, then many-to-one
Given sentence pair (E, F) and a set of syntactic relations for E, where $E = e_1, ..., e_n$ is an English sentence and $F = f_1, ..., f_m$ is its non-English parallel, syntactic relations $R(x, y)$ are projected from English as follows:

- **one-to-one** – e_i aligned with a unique f_x and e_j aligned with a unique f_y – then $R(e_i, e_j) \Rightarrow R(f_x, f_y)$

- **unaligned English** – e_j not aligned with any word in F – create new empty word f_y so that for any e_i aligned with a unique f_x, $R(e_i, e_j) \Rightarrow R(f_x, f_y)$ and $R(e_j, e_i) \Rightarrow R(f_y, f_x)$

- **one-to-many** – e_i aligned with $f_x, ..., f_y$ – then create new empty f_z, parent of $f_x, ..., f_y$, and set e_i to align to f_z instead

- **many-to-one** – $e_i, ..., e_j$ uniquely aligned to f_x – then keep the head of $e_i, ..., e_j$ aligned to f_x, and delete other alignments

- **many-to-many** – decompose: first one-to-many, then many-to-one

- **unaligned foreign** – leave them out of the projected tree
Direct Projection Example

He took a picture of my daughter

Vyfotil si moji dceru
He took a picture of my daughter.
He took a picture of my daughter.

Projection of Trees across Parallel Texts
Direct Projection Example 2

He took a picture of my daughter.
He took a picture of my daughter.

Projection of Trees across Parallel Texts
He took a picture of my daughter.
He took a picture of my daughter.
He took a picture of my daughter Vyfotil si moji dceru
He took a picture of my daughter "Vyfotil si moji dceru"
Direct Projection Example 3

He took a picture of my daughter

Projection of Trees across Parallel Texts
He took a picture of my daughter.

\[
\begin{align*}
&f_1 \quad f_2 \quad \text{Vyfotil} \quad f_4 \quad \text{si} \quad f_6 \\
&\text{nsubj} \quad \text{det} \quad \text{obj} \quad \text{nmod} \\
&\text{nsubj} \quad \text{det} \quad \text{obj} \quad \text{case} \\
\end{align*}
\]
Many-to-One Assumption:

e_i, \ldots, e_j is a Phrase with One Head

He took a picture of my daughter

Vyfotil si moji dceru
Many-to-One Assumption:

e_i, \ldots, e_j is a phrase with one head. What if not?
Experiments with Direct Projection

- 100 gold trees projected from English to Spanish
- 88 gold trees projected from English to Chinese
- Word alignments are gold-standard too!
 - The goal is just to check the direct correspondence assumption.
Experiments with Direct Projection

- 100 gold trees projected from English to Spanish
- 88 gold trees projected from English to Chinese

- Word alignments are gold-standard too!
 - The goal is just to check the direct correspondence assumption.

- Compared with target gold-standard trees
 - Spanish unlabeled F-score = 37%
 - Chinese unlabeled F-score = 38%
Problems

- Many-to-one deletes alignments \Rightarrow tree is not connected
 - Possible solution: transitive closure?

He took a picture of my daughter

f_1 Vyfotil f_6 moji dceru
• Many-to-one deletes alignments \Rightarrow tree is not connected
 - Possible solution: transitive closure?

He took a picture of my daughter

Projection of Trees across Parallel Texts
Problems

- Many-to-one deletes alignments \Rightarrow tree is not connected
 - Possible solution: transitive closure?

- Unaligned foreign words remain unattached
 - Possible solution: postprocessing with target language knowledge
Postprocessing Rules

- A few dozen rules, less than a month work

- Spanish example
 - A reflexive clitic should modify the verb to its left.

- Chinese example
 - An aspectual marker should modify the verb to its left.
Experiments with Postprocessing on Gold Data

- 100 gold trees projected from English to Spanish
- 88 gold trees projected from English to Chinese
- Word alignments are gold-standard too!
- Compared with target gold-standard trees
 - Spanish unlabeled F-score = 70%
 - Chinese unlabeled F-score = 67%
Real-World Setting

- Collins Model2 (1997) English parser trained on Penn Treebank / WSJ
- Converted to dependencies (Magerman 1994, Xia and Palmer 2001)
- Word alignments computed with GIZA++ (Och and Ney 2003)
 - 100K en-es sentence pairs (Bible, Federal Broadcasting Information Service, United Nations Parallel Corpus)
 - 240K en-zh sentence pairs (Federal Broadcasting Information Service)
- Project trees using direct correspondence + postprocessing
Real-World Setting

- Collins Model2 (1997) English parser trained on Penn Treebank / WSJ
- Converted to dependencies (Magerman 1994, Xia and Palmer 2001)
- Word alignments computed with GIZA++ (Och and Ney 2003)
 - 100K en-es sentence pairs (Bible, Federal Broadcasting Information Service, United Nations Parallel Corpus)
 - 240K en-zh sentence pairs (Federal Broadcasting Information Service)
- Project trees using direct correspondence + postprocessing
- Aggressive filtering: discard projected trees of poor quality
Real-World Setting

- Collins Model2 (1997) English parser trained on Penn Treebank / WSJ
- Converted to dependencies (Magerman 1994, Xia and Palmer 2001)
- Word alignments computed with GIZA++ (Och and Ney 2003)
 - 100K en-es sentence pairs (Bible, Federal Broadcasting Information Service, United Nations Parallel Corpus)
 - 240K en-zh sentence pairs (Federal Broadcasting Information Service)
- Project trees using direct correspondence + postprocessing
- Aggressive filtering: discard projected trees of poor quality
- Train Collins dependency parser (1999) on remaining trees
- Apply the parser to unseen target-language sentences
Pruning Criteria

- Based on tuning on development set, discard if...
 - > 20% of the English words have no Spanish counterpart
Pruning Criteria

- Based on tuning on development set, discard if...
 - > 20% of the English words have no Spanish counterpart
 - > 30% of the Spanish words have no English counterpart
Pruning Criteria

- Based on tuning on development set, discard if...
 - > 20% of the English words have no Spanish counterpart
 - > 30% of the Spanish words have no English counterpart
 - > 4 Spanish words were aligned to the same English word
Pruning Criteria

- Based on tuning on development set, discard if...
 - > 20% of the English words have no Spanish counterpart
 - > 30% of the Spanish words have no English counterpart
 - > 4 Spanish words were aligned to the same English word
- Additional criteria for English-Chinese:
 - Crossing dependencies
 - Number of unattached nodes after postprocessing
 - Number of words with unknown POS category
Pruning Criteria

- Based on tuning on development set, discard if...
 - > 20% of the English words have no Spanish counterpart
 - > 30% of the Spanish words have no English counterpart
 - > 4 Spanish words were aligned to the same English word
- Additional criteria for English-Chinese:
 - Crossing dependencies
 - Number of unattached nodes after postprocessing
 - Number of words with unknown POS category

- 20K projected Spanish trees after filtering
- 50K projected Chinese trees after filtering
Experiments

- **Spanish**
 - Baseline (left-to-right) unl F-score = 33.8%
 - Parser on unfiltered data (98K) F = 67.3%
 - Parser on filtered data (20K) F = 72.1%
 - Commercial parser F = 69.2%
Experiments

- **Spanish**
 - Baseline (left-to-right) unl F-score = 33.8%
 - Parser on unfiltered data (98K) F = 67.3%
 - Parser on filtered data (20K) F = 72.1%
 - Commercial parser F = 69.2%

- **Chinese**
 - Baseline (left-to-right) F = 35.1%
 - Baseline + postprocessing F = 44.3%
 - Parser on filtered data (50K) F = 53.9%
 - Parser on PennChineseTB (10K) F = 64.3%
Experiments

- **Spanish**
 - Baseline (left-to-right) unl F-score = 33.8%
 - Parser on unfiltered data (98K) F = 67.3%
 - Parser on filtered data (20K) F = 72.1%
 - Commercial parser F = 69.2%

- **Chinese**
 - Baseline (left-to-right) F = 35.1%
 - Baseline + postprocessing F = 44.3%
 - Parser on filtered data (50K) F = 53.9%
 - Parser on PennChineseTB (10K) F = 64.3%

- Learning curve: projected parser = about 2K manual sentences