Cross-lingual POS Tagging

Daniel Zeman, Rudolf Rosa

March 27, 2020
POS Tags Projection across Parallel Corpora

 - Source language: 🇬🇧 English
 - Target languages: 🇫🇷 French, 🇨🇳 Chinese

- Source language: English
- Target languages: French, Chinese
- Align words using EGYPT/IBM Model 3 (Al-Onaizan et al., 1999)
 - 1:N English-target word alignment
 - or 0:1 or 1:0 for unaligned words

- Source language: English
- Target languages: French, Chinese
- Align words using EGYPT/IBM Model 3 (Al-Onaizan et al., 1999)
 - 1:N English-target word alignment
 - or 0:1 or 1:0 for unaligned words
- Tag the English side with an existing tagger (e.g., Brill, 1995)

- Source language: 🇬🇧 English
- Target languages: 🇫🇷 French, 🇨🇳 Chinese
- Align words using EGYPT/IBM Model 3 (Al-Onaizan et al., 1999)
 - 1:N English-target word alignment
 - or 0:1 or 1:0 for unaligned words
- Tag the English side with an existing tagger (e.g., Brill, 1995)
- Direct projection across alignment
 - *Laws* → *Les lois*
 - NNS → NNS\textsubscript{a} NNS\textsubscript{b}
Training on Noisy Data

- Train a tagger on the target side
- Problem: lot of noise!
- **Core tags** only: first letter, i.e.:
 - N ... noun
 - J ... adjective
 - V ... verb
 - R ... adverb
 - I ... preposition or subordinating conjunction (?)
Training on Noisy Data

- Train a tagger on the target side
- Problem: lot of noise!
- Core tags only: first letter, i.e.:
 - N ... noun
 - J ... adjective
 - V ... verb
 - R ... adverb
 - I ... preposition or subordinating conjunction (?)

- Aggressive smoothing towards two most frequent core tags of each word
 - \(\hat{P}(t(2)|w) = \lambda_1 P(t(2)|w) \) where \(\lambda_1 < 1.0 \)
 - \(\hat{P}(t(1)|w) = 1 - \hat{P}(t(2)|w) \)
 - \(\hat{P}(t(c)|w) = 0 \) for all \(c > 2 \)
Training on Noisy Data

- Recursively apply the smoothing to subtags
 - E.g. distribute the prob. mass of **N** to the two most probable subtags, **NN** and **NNS**
Training on Noisy Data

- Recursively apply the smoothing to subtags
 - E.g. distribute the prob. mass of N to the two most probable subtags, NN and NNS
- Linear interpolation of model obtained from 1:1 alignments, and of model obtained from 1:N alignments: $P(t|w) = \lambda_2 P_{1:1}(t|w) + (1 - \lambda_2) P_{1:N}(t|w)$
- λ_2 is some weight from $(0; 1)$
Training on Noisy Data

- Recursively apply the smoothing to subtags
 - E.g. distribute the prob. mass of N to the two most probable subtags, NN and NNS
- Linear interpolation of model obtained from 1:1 alignments, and of model obtained from 1:N alignments:
 \[P(t|w) = \lambda_2 P_{1:1}(t|w) + (1 - \lambda_2) P_{1:N}(t|w) \]
 \[\lambda_2 \text{ is some weight from } (0; 1) \]
- Estimate tag sequence model on filtered, high-confidence alignment data. There are fewer parameters, therefore we can afford it.
 - Alignment confidence score provided by Model 3
 - Sentences where directly projected tags are compatible with the estimated lexical prior probability for each word – penalize less compatible sentences by pseudo-divergence weighting:
 - sentence length \(k \Rightarrow weight = \frac{1}{k} \sum_{i=1}^{k} \log \hat{P}(\text{projected_tag}_i|w_i) \)
- Differences from Yarowsky and Ngai (2001):
 - Graph-based projection
 - Projected labels are features in an unsupervised model

Projection Graph

- English vertices = word types
- Foreign vertices = word trigram types
Projection Graph

- English vertices = word types
- Foreign vertices = word trigram types
- English vertices are connected to foreign vertices
Projection Graph

- English vertices = word types
- Foreign vertices = word trigram types
- English vertices are connected to foreign vertices
- Foreign vertices are connected to other foreign vertices
Training

- Parallel English-foreign corpus, word-aligned
 - English side labeled by a supervised English tagger
- Monolingual foreign corpus, unlabeled
 - Used to compute target edge weights (similarity)
 - \(\Rightarrow \) We will propagate tags across edges
Monolingual Similarity of Foreign Trigrams

- Trigram type $x_2x_3x_4$ in a sequence $x_1x_2x_3x_4x_5$

- Features:
 - Trigram + Context: $x_1x_2x_3x_4x_5$
 - Trigram: $x_2x_3x_4$
 - Left Context: x_1x_2
 - Right Context: x_4x_5
 - Center Word: x_3
 - Trigram – Center Word: x_2x_4
 - Left Word + Right Context: $x_2x_4x_5$
 - Left Context + Right Word: $x_1x_2x_4$
 - Suffix: HasSuffix(x_3)
- Pruthwik Mishra, Vandan Mujadia, Dipti Misra Sharma (2017). POS Tagging for Resource Poor Indian Languages through Feature Projection
 - In *Proceedings of ICON 2017*, Jadavpur, India
 - Source language: Hindi
 - Target languages:
 - Urdu, Punjabi, Gujarati, Marathi, Konkani, Bengali (Indo-Aryan, i.e., related to Hindi)
 - Telugu, Tamil, Malayalam (Dravidian, i.e., unrelated)
• Pruthwik Mishra, Vandan Mujadia, Dipti Misra Sharma (2017). POS Tagging for Resource Poor Indian Languages through Feature Projection
 • In Proceedings of ICON 2017, Jadavpur, India
 • Source language: Hindi
 • Target languages:
 • Urdu, Punjabi, Gujarati, Marathi, Konkani, Bengali (Indo-Aryan, i.e., related to Hindi)
 • Telugu, Tamil, Malayalam (Dravidian, i.e., unrelated)
 • Parallel corpora: “Health” and “Tourism” (250 to 500K tokens each; not publicly available)
 • Align words using GIZA++
Source Feature Extraction

- Hindi Treebank (450K tokens)
- Prefix features
 - 1 to 7 prefix characters
- Suffix features
 - 1 to 4 suffix characters
- Length of the word
- Previous word
- Current word
- Next word
Features in Hindi – Example

- पत्रकारों patrakārom “journalists”

Prefix(1) प pa
Prefix(2) पत्त pata
Prefix(3) पत् pat
Prefix(4) पत्र patra
Prefix(5) पत्रक patraka
Prefix(6) पत्रका patrakā
data
Prefix(7) पत्रकार patrakāra
Suffix(1) ◌ं mī
Suffix(2) ◌ँ omī
data
Suffix(3) ◌ँ romī
data
Suffix(4) ◌ँ āromī
data
Length 9
Current पत्रकारों patrakārom
Previous, Next context dependent
Parallel Features in Hindi and Punjabi

- विवाहित
 vivāhita “married”
- विहुत
 viāhutā “married”

| Prefix(1) | व
va | →
va |
|---|---|---|
| Prefix(2) | वि
vi | →
vi |
| Prefix(3) | विव
viva | →
viā |
| Prefix(4) | विवा
vivāha | →
viāha |
| Prefix(5) | विवाह
vivāha | →
viāhu |
| Prefix(6) | विवाहि
vivāhi | →
viāhuta |
| Prefix(7) | विवाहित
vivāhita | →
viāhutā |
| Suffix(1) | त
ta | →
ā |
| Suffix(2) | ीत
ita | →
tā |
| Suffix(3) | ीहत
ihita | →
utā |
| Suffix(4) | ाहित
āhita | →
hutā |
| Length | 7 | →
7 |
| Current | विवाहित
vivāhita | →
viāhutā |
Feature Mapping

- Source features obtained from the Hindi Treebank.
- Projected through word alignment.
- Only the eleven affix features are projected.
- Unclear: what is the rest good for?
Feature Mapping

- Source features obtained from the Hindi Treebank.
- Projected through word alignment.
- Only the eleven affix features are projected.
- Unclear: what is the rest good for?

- “If the same source feature maps to multiple target features, the most probable target feature is selected.”
 - 11 mapping files, 1 for each feature type
 - Previous slide: just one aligned pair of words
 - Hindi word occurred multiple times, different targets?
Feature Mapping

- Source features obtained from the Hindi Treebank.
- Projected through word alignment.
- Only the eleven affix features are projected.
- Unclear: what is the rest good for?

“If the same source feature maps to multiple target features, the most probable target feature is selected.”

- 11 mapping files, 1 for each feature type
- Previous slide: just one aligned pair of words
- Hindi word occurred multiple times, different targets?

Unclear:
- Probabilities of the alignment?
- Or just the count of this correspondence?
Feature Mapping

- Known source feature, but no projection available?
Feature Mapping

- Known source feature, but no projection available?
- Back-off model → shorter feature.
 - Unclear:
 - Map the long source feature to the short target feature?
 - Or simply omit the long feature from the tagging model?
Tagging Model

- POS tags from the Hindi Treebank
- Each Hindi word gets target features
 - \(\Rightarrow\) its Hindi features projected to target language
- Similar to word-by-word translation of the training corpus

- Train a model that looks at the target features and predicts a POS tag
- Such model can be applied to the target language
- Features can be obtained directly there

- Method in the paper: CRF++ (Conditional Random Fields)