Cross-lingual POS Tagging
Daniel Zeman, Rudolf Rosa

March 25, 2019

- Source language: English
- Target languages: French, Chinese
- Align words using EGYPT/IBM Model 3 (Al-Onaizan et al., 1999)
 - 1:N English-target word alignment
 - or 0:1 or 1:0 for unaligned words
- Tag the English side with an existing tagger (e.g., Brill, 1995)
- Direct projection across alignment
 - $ Laws \rightarrow Les\ loi s$
 - $NNS \rightarrow NNS_a\ NNS_b$
Training on Noisy Data

- Train a tagger on the target side
- Problem: lot of noise!
- **Core tags** only: first letter, i.e.:
 - **N** ... noun
 - **J** ... adjective
 - **V** ... verb
 - **R** ... adverb
 - **I** ... preposition or subordinating conjunction (?)
Training on Noisy Data

- Train a tagger on the target side
- Problem: lot of noise!
- **Core tags** only: first letter, i.e.:
 - **N** ... noun
 - **J** ... adjective
 - **V** ... verb
 - **R** ... adverb
 - **I** ... preposition or subordinating conjunction (?)
- Aggressive smoothing towards two most frequent core tags of each word
 - \(\hat{P}(t_{(2)}|w) = \lambda_1 P(t_{(2)}|w) \) where \(\lambda_1 < 1.0 \)
 - \(\hat{P}(t_{(1)}|w) = 1 - \hat{P}(t_{(2)}|w) \)
 - \(\hat{P}(t_{(c)}|w) = 0 \) for all \(c > 2 \)
Training on Noisy Data

- Recursively apply the smoothing to subtags
 - E.g. distribute the prob. mass of N to the two most probable subtags, NN and NNS
Training on Noisy Data

- Recursively apply the smoothing to subtags
 - E.g. distribute the prob. mass of N to the two most probable subtags, NN and NNS
- Linear interpolation of model obtained from 1:1 alignments, and of model obtained from 1:N alignments: \(P(t|w) = \lambda_2 P_{1:1}(t|w) + (1 - \lambda_2)P_{1:N}(t|w) \)
- \(\lambda_2 \) is some weight from (0; 1)
Training on Noisy Data

- Recursively apply the smoothing to subtags
 - E.g. distribute the prob. mass of **N** to the two most probable subtags, **NN** and **NNS**
- Linear interpolation of model obtained from 1:1 alignments, and of model obtained from 1:N alignments: \(P(t|w) = \lambda_2 P_{1:1}(t|w) + (1 - \lambda_2) P_{1:N}(t|w) \)
 - \(\lambda_2 \) is some weight from \((0; 1)\)
- Estimate tag sequence model on filtered, high-confidence alignment data. There are fewer parameters, therefore we can afford it.
 - Alignment confidence score provided by Model 3
 - Sentences where directly projected tags are compatible with the estimated lexical prior probability for each word – penalize less compatible sentences by pseudo-divergence weighting:
 - sentence length \(k \) ⇒ weight = \(\frac{1}{k} \sum_{i=1}^{k} \log \hat{P}(\text{projected_tag}_i|w_i) \)
- Differences from Yarowsky and Ngai (2001):
 - Graph-based projection
 - Projected labels are features in an unsupervised model

Projection Graph

- English vertices = word types
- Foreign vertices = word trigram types
Projection Graph

- English vertices = word types
- Foreign vertices = word trigram types
- English vertices are connected to foreign vertices
Projection Graph

- English vertices = word types
- Foreign vertices = word trigram types
- English vertices are connected to foreign vertices
- Foreign vertices are connected to other foreign vertices
Training

- Parallel English-foreign corpus, word-aligned
 - English side labeled by a supervised English tagger
- Monolingual foreign corpus, unlabeled
Monolingual Similarity of Foreign Trigrams

- Trigram type $x_2x_3x_4$ in a sequence $x_1x_2x_3x_4x_5$

- Features:
 - Trigram + Context: $x_1x_2x_3x_4x_5$
 - Trigram: $x_2x_3x_4$
 - Left Context: x_1x_2
 - Right Context: x_4x_5
 - Center Word: x_3
 - Trigram – Center Word: x_2x_4
 - Left Word + Right Context: $x_2x_4x_5$
 - Left Context + Right Word: $x_1x_2x_4$
 - Suffix: $HasSuffix(x_3)$
Pruthwik Mishra, Vandan Mujadia, Dipti Misra Sharma (2017). POS Tagging for Resource Poor Indian Languages through Feature Projection

In Proceedings of ICON 2017, Jadavpur, India

Source language: Hindi

Target languages:
- Urdu, Punjabi, Gujarati, Marathi, Konkani, Bengali (Indo-Aryan, i.e., related to Hindi)
- Telugu, Tamil, Malayalam (Dravidian, i.e., unrelated)
Pruthwik Mishra, Vandan Mujadia, Dipti Misra Sharma (2017). POS Tagging for Resource Poor Indian Languages through Feature Projection

- In *Proceedings of ICON 2017*, Jadavpur, India
- Source language: Hindi
- Target languages:
 - Urdu, Punjabi, Gujarati, Marathi, Konkani, Bengali (Indo-Aryan, i.e., related to Hindi)
 - Telugu, Tamil, Malayalam (Dravidian, i.e., unrelated)
- Parallel corpora: “Health” and “Tourism” (250 to 500K tokens each; not publicly available)
- Align words using GIZA++
Source Feature Extraction

- Hindi Treebank (450K tokens)
- Prefix features
 - 1 to 7 prefix characters
- Suffix features
 - 1 to 4 suffix characters
- Length of the word
- Previous word
- Current word
- Next word
Features in Hindi – Example

- पत्रकारों *patrakārom* “journalists”

<table>
<thead>
<tr>
<th>Prefix(1)</th>
<th>प pa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prefix(2)</td>
<td>पत pata</td>
</tr>
<tr>
<td>Prefix(3)</td>
<td>पत् pat</td>
</tr>
<tr>
<td>Prefix(4)</td>
<td>पत्र patra</td>
</tr>
<tr>
<td>Prefix(5)</td>
<td>पत्रक patraka</td>
</tr>
<tr>
<td>Prefix(6)</td>
<td>पत्रका patrakā</td>
</tr>
<tr>
<td>Prefix(7)</td>
<td>पत्रकार patrakāra</td>
</tr>
<tr>
<td>Suffix(1)</td>
<td>ं mì</td>
</tr>
<tr>
<td>Suffix(2)</td>
<td>ओं omì</td>
</tr>
<tr>
<td>Suffix(3)</td>
<td>ओं romi</td>
</tr>
<tr>
<td>Suffix(4)</td>
<td>लारों āromi</td>
</tr>
<tr>
<td>Length</td>
<td>9</td>
</tr>
<tr>
<td>Current</td>
<td>पत्रकारों patrakārom</td>
</tr>
<tr>
<td>Previous, Next</td>
<td>context dependent</td>
</tr>
</tbody>
</table>
Parallel Features in Hindi and Punjabi

- विवाहित vivaḥita “married”
- viāhuta “married”

Prefix(1) व va → व va
Prefix(2) वि vi → वि vi
Prefix(3) विव viva → विहा viā
Prefix(4) विवा vivā → विहास viāha
Prefix(5) विवाह vivāha → विहास विहास viāhu
Prefix(6) विवाहि vivāhi → विहास विहास viāhuta
Prefix(7) विवाहित vivaḥita → विहास विहास viāhutā

Suffix(1) त ta → त ta
Suffix(2) ित ita → त तa
t
Suffix(3) हित hita → उ उ∪ta
Suffix(4) ाहित āhita → ऊ∪hutā
Length 7 → 7
Current विवाहित vivaḥita → विहास विहास viāhutā
Feature Mapping

- Source features obtained from the Hindi Treebank.
- Projected through word alignment.
- Only the eleven affix features are projected.
- Unclear: what is the rest good for?

"If the same source feature maps to multiple target features, the most probable target feature is selected."

11 mapping files, 1 for each feature type

Previous slide: just one aligned pair of words

Hindi word occurred multiple times, different targets?

Unclear:

Probabilities of the alignment?

Or just the count of this correspondence?
Feature Mapping

- Source features obtained from the Hindi Treebank.
- Projected through word alignment.
- Only the eleven affix features are projected.
- Unclear: what is the rest good for?

- “If the same source feature maps to multiple target features, the most probable target feature is selected.”
 - 11 mapping files, 1 for each feature type
 - Previous slide: just one aligned pair of words
 - Hindi word occurred multiple times, different targets?
Feature Mapping

- Source features obtained from the Hindi Treebank.
- Projected through word alignment.
- Only the eleven affix features are projected.
- Unclear: what is the rest good for?

- “If the same source feature maps to multiple target features, the most probable target feature is selected.”
 - 11 mapping files, 1 for each feature type
 - Previous slide: just one aligned pair of words
 - Hindi word occurred multiple times, different targets?

- Unclear:
 - Probabilities of the alignment?
 - Or just the count of this correspondence?
Feature Mapping

- Known source feature, but no projection available?
Feature Mapping

- Known source feature, but no projection available?
- Back-off model → shorter feature.
 - Unclear:
 - Map the long source feature to the short target feature?
 - Or simply omit the long feature from the tagging model?
Tagging Model

- POS tags from the Hindi Treebank
- Each Hindi word gets target features
 - \Rightarrow its Hindi features projected to target language
- Similar to word-by-word translation of the training corpus

- Train a model that looks at the target features and predicts a POS tag
- Such model can be applied to the target language
- Features can be obtained directly there

- Method in the paper: CRF++ (Conditional Random Fields)