Multilingual Natural Language Processing: Week 5

Daniel Zeman, Rudolf Rosa, Ondřej Bojar
zeman@ufal.mff.cuni.cz
http://ufal.mff.cuni.cz/courses/npfl120
Part-of-Speech Tagset Conversion

- See also NPFL094 (Computational Morphology and Syntax) in Winter
- There: focus on linguistic diversity
- Here: focus on
 - Technical aspects
 - Different expressivity
 - Different granularity
Why Convert Tags?

- For a tool that uses tags (parser)
 - The meaning of the tags is significant (they are not just strings)
 - Or the tool has been trained on a particular tagset

- For a linguist who works with corpora
 - Reduce need to learn new tags
How to Convert Tags?

- Look at source tags only
How to Convert Tags?

- Look at source tags only
 - Conversion tailored to a pair of tagsets
How to Convert Tags?

- Look at source tags only
 - Conversion tailored to a pair of tagsets
 - Reusable “interlingua” *(Interset, Universal Dependencies)*
How to Convert Tags?

- Look at source tags only
 - Conversion tailored to a pair of tagsets
 - Reusable “interlingua” (*Interset, Universal Dependencies*)

- Look at source tags + words
How to Convert Tags?

- Look at source tags only
 - Conversion tailored to a pair of tagsets
 - Reusable “interlingua” (*Interset, Universal Dependencies*)

- Look at source tags + words

- Look at source tags + words + context
Related Work

- **EAGLES, PAROLE, MULTEXT**
 - Rather wanted to standardize tags
 - Not to work with the tags that are already there
 - Very euro-centric
Related Work

- **EAGLES, PAROLE, MULTEXT**
 - Rather wanted to standardize tags
 - Not to work with the tags that are already there
 - Very euro-centric

- **IIIT Hyderabad: all Indian languages**
 - Indo-Aryan
 - Dravidian
 - English!
Related Work

- **EAGLES, PAROLE, MULTEXT**
 - Rather wanted to standardize tags
 - Not to work with the tags that are already there
 - Very euro-centric

- **IIIT Hyderabad: all Indian languages**
 - Indo-Aryan
 - Dravidian
 - English!

- **Gold Ontology**
 - Defines linguistic terms
 - The same term may denote different things in different languages
Related Work

- EAGLES, PAROLE, MULTEXT
 - Rather wanted to standardize tags
 - Not to work with the tags that are already there
 - Very euro-centric
- IIIT Hyderabad: all Indian languages
 - Indo-Aryan
 - Dravidian
 - English!
- Gold Ontology
 - Defines linguistic terms
 - The same term may denote different things in different languages
- Interset, Google UPOS, Universal Dependencies
Related Work

- EAGLES, PAROLE, MULTEXT
 - Rather wanted to standardize tags
 - Not to work with the tags that are already there
 - Very euro-centric

- IIIT Hyderabad: all Indian languages
 - Indo-Aryan
 - Dravidian
 - English!

- Gold Ontology
 - Defines linguistic terms
 - The same term may denote different things in different languages

- Interset, Google UPOS, Universal Dependencies

- Papers claiming that universal tagset does not exist
Josef
následující
jejímuž
stě
jsem
nejméně
v
aby
jen
ejhle
noor
,
Prague Tags for Czech

<table>
<thead>
<tr>
<th>Tag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NNMS1--</td>
<td>NMS1A</td>
</tr>
<tr>
<td>AGFS3--A</td>
<td>AVGF3SA</td>
</tr>
<tr>
<td>P1ZS3FS3</td>
<td>PSEFSZS3</td>
</tr>
<tr>
<td>ClXP3---2</td>
<td>CGXP3-2</td>
</tr>
<tr>
<td>VB-S---1P-AA-</td>
<td>VPS1A</td>
</tr>
<tr>
<td>Dg-------3A----</td>
<td>DG3A</td>
</tr>
<tr>
<td>RR--6------------</td>
<td>R6</td>
</tr>
<tr>
<td>J,-X---3-------</td>
<td>JVX3</td>
</tr>
<tr>
<td>TT----------------</td>
<td>T</td>
</tr>
<tr>
<td>II------------</td>
<td>I</td>
</tr>
<tr>
<td>X@-------------</td>
<td>NOMORPH</td>
</tr>
<tr>
<td>Z:-------------</td>
<td>ZIP</td>
</tr>
</tbody>
</table>
Prague Tags for CoNLL 2006 Shared Task

NNMS1-------A----- N N Gen=M|Num=S|Cas=1...
AGFS3-------A----- A G Gen=F|Num=S|Cas=3...
P1ZS3FS3------- P 1 Gen=Z|Num=S|Cas=3...
C1XP3--------2 C 1 Gen=X|Num=P|Cas=3...
VB-S---1P-AA--- V B Num=S|Per=1|Ten=P...
Dg--------3A----- D g Gra=3|Neg=A
RR--6--------2 R R Cas=6
J,X---3------- J , Num=X|Per=3
TT----------- T T _
II------------ I I _
X@------------ X @ _
Z:------------ Z : _
Multtext East

NNMS1-----A---- Ncmsgny
AGFS3-----A---- Afpfsd
P1ZS3FS3------- Pr3mdsfnayn
C1XP3----------2 Mcmn3y
VB-S---1P-AA--- Vmip1smanyn
Dg---------3A---- Rgs
RR--6---------- Sps1
J,-X---3------- Css3
TT------------- Q
II------------- I
X@------------- X
Z:-------------
Majka Tagset from Brno

NNMS1------A----- k1gMnSc1eA
AGFS3------A----- k2gFnSc3eA
P1ZS3FS3------- k3gUnSc3p3hFxR
ClXP3----------2 k4gXnPc3xC
VB-S---1P-AA---- k5gXnSp1mIaIeA
Dg---------3A---- k6d3eAxD
RR--6---------- k7c6
J,-X---3------- k8p3xS
TT--------- k9
II--------- k0
X@---------
Z:---------
Penn Treebank Tags for English

CC CD DT EX FW IN JJ JJR JJS LS MD NN NNS NNP NNPS PDT POS PRP PRP$ RB RBR RBS RP SYM TO UH VB VBD VBG VBN VBP VBZ WDT WP WP$ WRB . , : $ # ` ` ' ' -LRB- -RRB-

- **EX** = existential *there*
- **FW** = foreign word
- **IN** = preposition or subordinating conjunction
- **TO** = *to*
- **UH** = interjection…
Brown Corpus Tags for English

SynTagRus Tags for Russian

S ЕД МУЖ ИМ
S МН РОД ОД
A МН ИМ
NUM ВИН
V НЕСОВ ИЗЪЯВ НЕПРОШ МН 3-Л
ADV СПАБ
PR
CONJ
PART
INTJ

NNMS1-----A-----
PSXXXXP3--------
AAXP1-----1A-----
ClXX4----------
VB-P---3P-AA---
Dg---------2A-----
RR--6----------
J^--------------
TT-------------
II-------------

Daniel Zeman (ÚFAL MFF UK) Multilingual NLP NPFL120-02 13 / 34
Stuttgart-Tübingen Tagset for German

Like in Penn TB: parts of speech only, but slightly more fine-grained

- No morphology (German has gender, number, case, degree, person…)
- “Substantive” vs. “attributive” pronouns (S vs. AT)
- Adposition = Präposition, Postposition, Zirkumposition
Anncorra from IIIT Hyderabad

- Ambition: common tagset for all Indian languages (IE and Dravidian!)
- No morphology (although the languages are rich on morphology)
 - Hierarchical tagset, morphology can be added at the end
 - And they “do not want to decrease tagging accuracy” (!)
- Cloned from Penn tagset and modified
 - New categories, e.g. postposition, “quotative”
 - Removed traces of morphology, e.g. plural, comparative, superlative
Tagging is interwined with tokenization.

<token_Arabic>وبالفالوجة</token_Arabic>

<voc>wabiAlfAlwjp</voc>

<pos>wa/CONJ+bi/PREP+AlfAlwjp/NOUN_PROP</pos>

</token_Arabic>

<token_Arabic>مثال</token_Arabic>

<voc>mivAlu</voc>

<pos>mivAl/NOUN+u/CASE_DEF_NOM</pos>

</token_Arabic>
ElixirFM (PADT) Arabic Tags by Ota Smrž

N-------1D NNXX1------A-----
Z-------1- NNXX1------A-----
A-------FP2D AAFP2------1A-----
S------3MP1- PPMP1--3--------
VIS-------- VcXX---XP-AA----
Rocling / Sinica Tagset for Chinese

Na = common noun
Nb = proper noun
Nc = location noun
Nd = time noun
Nf = classifier
Nh = pronoun
Ne = determiner or cardinal number
Ng = postposition
P = preposition
P01 = 為 wèi, 承蒙 chéngméng, 深為 shēnwèi
P02 = 被 bèi
P03 = 為了 wèile, 為 wèi
P04 = 給 gěi
P06 = 由 yóu
P07 = 把 bǎ, 將 jiāng
...
P66 = 為 wèi
PAROLE Danish and Swedish

NCCPU==I … *historikere*

NCNPU==D … *Charta_77-folkene*

ANP (CN) PU= (DI) U … *russiske*

AC----U=-- … *5.000*

VADR=-----A- … *har*

VAPR= (SP) (CN) (DI) A-U … *gældende*

RGU … *af*

PP3 (CN) (SP) U-YU … *sig*

NCUPN@DS … *konflikterna* (substantiv utrum pluralis bestämd not)

AQP0PN0S … *politiska*

MC00G0S … *fyras* (gt. gen.)

V@IPAS … *har*

AP000N0S … *oberoende*

RG0S … *inte*

PF@000@S … *sig*
MAMBA and PAROLE Tagsets for Swedish

<table>
<thead>
<tr>
<th>Tagset</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>NN</td>
<td>noun</td>
<td>konflikterna</td>
</tr>
<tr>
<td>PN</td>
<td>proper noun</td>
<td>(substantiv utrum pluralis bestämd nominativ)</td>
</tr>
<tr>
<td>VN</td>
<td>gerund</td>
<td>politiska</td>
</tr>
<tr>
<td>AJ</td>
<td>adjective</td>
<td>har</td>
</tr>
<tr>
<td>AV</td>
<td>verbs</td>
<td>oberoende</td>
</tr>
<tr>
<td>MV</td>
<td></td>
<td>inte</td>
</tr>
<tr>
<td>HV</td>
<td>the verb</td>
<td>sig</td>
</tr>
<tr>
<td>I?</td>
<td>punctuation</td>
<td></td>
</tr>
</tbody>
</table>

Daniel Zeman (ÚFAL MFF UK)
<table>
<thead>
<tr>
<th>pos</th>
<th>noun</th>
<th>adj</th>
<th>num</th>
<th>verb</th>
<th>adv</th>
<th>prep</th>
<th>conj</th>
<th>part</th>
<th>int</th>
<th>punc</th>
</tr>
</thead>
<tbody>
<tr>
<td>subpos</td>
<td>prop</td>
<td>class</td>
<td>pdt</td>
<td>det</td>
<td>art</td>
<td>digit</td>
<td>roman</td>
<td>card</td>
<td>ord</td>
<td>...</td>
</tr>
<tr>
<td>prontype</td>
<td>prs</td>
<td>rcp</td>
<td>int</td>
<td>rel</td>
<td>dem</td>
<td>neg</td>
<td>ind</td>
<td>tot</td>
<td></td>
<td></td>
</tr>
<tr>
<td>punctype</td>
<td>peri</td>
<td>quest</td>
<td>excl</td>
<td>quot</td>
<td>brck</td>
<td>comm</td>
<td>colo</td>
<td>semi</td>
<td>dash</td>
<td>symb</td>
</tr>
<tr>
<td>puncside</td>
<td>ini</td>
<td>fin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>synpos</td>
<td>subst</td>
<td>attr</td>
<td>adv</td>
<td>pred</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>poss</td>
<td>pos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>reflex</td>
<td>reflex</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>negativeness</td>
<td>pos</td>
<td>neg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>definiteness</td>
<td>ind</td>
<td>def</td>
<td>red</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>gender</td>
<td>masc</td>
<td>fem</td>
<td>com</td>
<td>neut</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>animateness</td>
<td>anim</td>
<td>inan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>number</td>
<td>sing</td>
<td>dual</td>
<td>plu</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>case</td>
<td>nom</td>
<td>gen</td>
<td>dat</td>
<td>acc</td>
<td>voc</td>
<td>loc</td>
<td>ins</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>prepcase</td>
<td>npr</td>
<td>pre</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>degree</td>
<td>pos</td>
<td>com</td>
<td>sup</td>
<td>abs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>person</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>politeness</td>
<td>inf</td>
<td>pol</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>possgender</td>
<td>masc</td>
<td>fem</td>
<td>com</td>
<td>neut</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>possnumber</td>
<td>sing</td>
<td>dual</td>
<td>plu</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>subcat</td>
<td>intr</td>
<td>tran</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>verbform</td>
<td>fin</td>
<td>inf</td>
<td>sup</td>
<td>part</td>
<td>trans</td>
<td>ger</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mood</td>
<td>ind</td>
<td>imp</td>
<td>cnd</td>
<td>sub</td>
<td>jus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tense</td>
<td>past</td>
<td>pres</td>
<td>fut</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>subtense</td>
<td>aor</td>
<td>imp</td>
<td>ppq</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>aspect</td>
<td>imp</td>
<td>perf</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>voice</td>
<td>act</td>
<td>pass</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>foreign</td>
<td>foreign</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>abbr</td>
<td>abbr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hyph</td>
<td>hyph</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>style</td>
<td>arch</td>
<td>form</td>
<td>nom</td>
<td>coll</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>typo</td>
<td>typo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>variant</td>
<td>short</td>
<td>long</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>tagset</td>
<td>cs:pdt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>other</td>
<td>obscure_feature_1 => [0, 7, 351.2, [a", b"]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Reference:
Multi-values (disjunction)

- A tag may say: gender = masculine OR neuter
- Interset allows multiple values of a feature
- Problem: multiple combinations of values
Multi-values (disjunction)

- A tag may say: gender = masculine OR neuter
- Interset allows multiple values of a feature

Problem: **multiple combinations of values**
 - EITHER (gender = feminine AND number = singular)
 - OR (gender = neuter AND number = plural)
 - BUT NOT (feminine plural or neuter singular)

Interset cannot represent this (only two separate feature structures)
Multi-values (disjunction)

- A tag may say: gender = masculine OR neuter
- Interset allows multiple values of a feature

Problem: multiple combinations of values
 - EITHER (gender = feminine AND number = singular)
 - OR (gender = neuter AND number = plural)
Multi-values (disjunction)

- A tag may say: gender = masculine OR neuter
- Intersect allows multiple values of a feature

Problem: multiple combinations of values
 - EITHER (gender = feminine AND number = singular)
 - OR (gender = neuter AND number = plural)
 - BUT NOT (feminine plural or neuter singular)

- Intersect cannot represent this (only two separate feature structures)
Tagset Drivers

- A (Perl) module with the following functions:
 - `decode()` … converts a tag to Interset
 - `encode()` … generates a tag from Interset
 - `list()` … lists known tags in the tagset (optional)
Not Everything Fits in the Target Tagset

- Throw away information that cannot be represented
- Warning! May generate “unexpected” tag
 - Swedish knows: noun, gender=com|neut
Not Everything Fits in the Target Tagset

- Throw away information that cannot be represented
- Warning! May generate “unexpected” tag
 - Swedish knows: noun, gender=com|neut
 - and also: personal pronoun, gender=masc|fem|com|neut
Not Everything Fits in the Target Tagset

- Throw away information that cannot be represented
- Warning! May generate “unexpected” tag
 - Swedish knows: noun, gender=com|neut
 - and also: personal pronoun, gender=masc|fem|com|neut
 - From Czech: noun, gender=masc
Not Everything Fits in the Target Tagset

- Throw away information that cannot be represented
- Warning! May generate “unexpected” tag
 - Swedish knows: noun, gender=com|neut
 - and also: personal pronoun, gender=masc|fem|com|neut
 - From Czech: noun, gender=masc
 - Either change noun to pronoun
 - or change gender=masc to gender=com
Not Everything Fits in the Target Tagset

- Throw away information that cannot be represented
- Warning! May generate “unexpected” tag
 - Swedish knows: noun, gender=com|neut
 - and also: personal pronoun, gender=masc|fem|com|neut
 - From Czech: noun, gender=masc
 - Either change noun to pronoun
 - or change gender=masc to gender=com
 - What has higher priority?
Does It Matter?

- Atomic tagsets (Penn): no choice
- Positional tagsets can encode “impossible” combinations, e.g. a plural accusative adverb

- What is our goal?
Does It Matter?

- Atomic tagsets (Penn): no choice
- Positional tagsets can encode “impossible” combinations, e.g. a plural accusative adverb

What is our goal?
- Just querying attributes? ⇒ Preserve as much info as possible!
Does It Matter?

- Atomic tagsets (Penn): no choice
- Positional tagsets can encode “impossible” combinations, e.g. a plural accusative adverb

What is our goal?
- Just querying attributes? ⇒ Preserve as much info as possible!
- Use a pre-trained black-box tool? ⇒ Don’t give it data that it doesn’t expect!
Enforcing Defaults

- Need the list of known target tags

Centrally for all tagsets:

- Priorities of features
- For every feature value, ordered list of substitutes
 - Typically, empty value is the best substitute
 - But: number = dual is better substituted by plural!

```json

[ "null" ],
"number" => [
  [ "sing" ],
  [ "dual", "plu" ],
  [ "plu" ]
],
"possnumber" => [

```

0 → sing, dual, plur; sing → 0, dual, plur
Enforcing Defaults

- Decode all known target tags
- Construct trie for known feature-value combinations
- Follow path in trie when encoding
- If a value is not allowed, find the best substitute

(It is more complex when multi-values come into play.)
Substitution Trie

Seminář ÚFAL, Homí Míšečky, 9.2.2009
Google Universal Part-of-Speech Tags

Google Universal Part-of-Speech Tags

- Just the POS category. No morphology
- For many tools this is enough
Google Universal Part-of-Speech Tags

- Just the POS category. No morphology
- For many tools this is enough
- Good idea
- But it must be applied well!
Google Universal Part-of-Speech Tags

- Just the POS category. No morphology
- For many tools this is enough
- Good idea
- But it must be applied well!

- pronoun \rightarrow PRON
 - determiners, numerals, adverbs
Google Universal Part-of-Speech Tags

- Just the POS category. No morphology
- For many tools this is enough
- Good idea
- But it must be applied well!
- `pronoun` → `PRON`
 - determiners, numerals, adverbs
- similar for numerals in Danish
- similar for nominal/adjectival verb forms
Lemma-based Re-tagging

```perl
my $lemma = $node->lemma();
# Fix Interset features of pronominal words.
if($node->is_pronominal())
{
    # Indefinite pronouns and determiners cannot be distinguished by
    if($lemma =~ m/^(ně|lec|ledas?|kde|bůhví|kdoví|nevím|málo|sotva)/)
    {
        $node->iset()->set('pos', 'noun');
    }
    elsif($lemma =~ m/^(jaký|který)|(jaký|který)$|^každý|všechen|sá\n    {
        $node->iset()->set('pos', 'adj');
    }
    # Pronouns čí, něčí, čísi, číkoli, ledačí, kdečí, bůhvíčí, nevímčí
    elsif($lemma =~ m/^(ně|lec|ledas?|kde|bůhví|kdoví|nevím|ni)?čí|č\n    {
        $node->iset()->set('pos', 'adj');
        $node->iset()->set('poss', 'poss');
    }
    # Pronoun (determiner) "sám" is difficult to classify in the trad
Universal Dependencies: UPOS and Features

- **UPOS** = extended version of Google universal tags

- **Features** = extended Interset
  - (now it is the target representation rather than something intermediate)
  - “Universal” feature + set of values
  - Language-specific value of universal feature
  - Language-specific (or treebank-specific) feature + set of values
A Grain of Salt: Even UD Can Be Used Inconsistently!

- [https://lindat.mff.cuni.cz/services/pmltq/](https://lindat.mff.cuni.cz/services/pmltq/)
  - Find two UD treebanks of related languages
  - Where the “same word” does not get the same UPOS category
A Grain of Salt: Even UD Can Be Used Inconsistently!

- https://lindat.mff.cuni.cz/services/pmltq/
  - Find two UD treebanks of related languages
  - Where the “same word” does not get the same UPOS category