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Tomáš Holan and Zdeněk Žabokrtský
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Abstract. In this paper we describe in detail two dependency parsing
techniques developed and evaluated using the Prague Dependency Tree-
bank 2.0. Then we propose two approaches for combining various existing
parsers in order to obtain better accuracy. The highest parsing accuracy
reported in this paper is 85.84 %, which represents 1.86 % improvement
compared to the best single state-of-the-art parser. To our knowledge,
no better result achieved on the same data has been published yet.

1 Introduction

Within the domain of NLP, dependency parsing is nowadays a well-established
discipline. One of the most popular benchmarks for evaluating parser quality is
the set of analytical (surface-syntactic) trees provided in the Prague Dependency
Treebank (PDT). In the present paper we use the beta (pre-release) version of
PDT 2.0,1 which contains 87,980 Czech sentences (1,504,847 words and punc-
tuation marks in 5,338 Czech documents) manually annotated at least to the
analytical layer (a-layer for short).

In order to make the results reported in this paper comparable to other works,
we use the PDT 2.0 division of the a-layer data into training set, development-
test set (d-test), and evaluation-test set (e-test). Since all the parsers (and parser
combinations) presented in this paper produce full dependency parses (rooted
trees), it is possible to evaluate parser quality simply by measuring its accuracy:
the number of correctly attached nodes divided by the number of all nodes (not
including the technical roots, as used in the PDT 2.0). More information about
evaluation of dependency parsing can be found e.g. in [1].

Following the recommendation from the PDT 2.0 documentation for the
developers of dependency parsers, in order to achieve more realistic results we
use morphological tags assigned by an automatic tagger (instead of the human
annotated tags) as parser input in all our experiments.

The rest of the paper is organized as follows: in Sections 2 and 3, we describe
in detail two types of our new parsers. In Section 4, two different approaches
to parser combination are discussed and evaluated. Concluding remarks are in
Section 5.
? The research reported on in this paper has been carried out under the projects

1ET101120503, GAČR 207-13/201125, 1ET100300517, and LC 536.
1 For a detailed information and references see http://ufal.mff.cuni.cz/pdt2.0/
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2 Rule-based Dependency Parser

In this section we will describe a rule-based dependency parser created by one of
the authors. Although the first version of the parser was implemented already in
2002 and its results have been used in several works (e.g. [2]), no more detailed
description of the parser itself has been published yet.

The parser in question is not based on any grammar formalism (however,
it has been partially inspired by several well-known formal frameworks, espe-
cially by unification grammars and restarting automata). Instead, the grammar
is ‘hardwired’ directly in Perl code. The parser uses tred/btred/ntred2 tree pro-
cessing environment developed by Petr Pajas. The design decisions important
for the parser are described in the following paragraphs.
One tree per sentence. The parser outputs exactly one dependency tree for
any sentence, even if the sentence is ambiguous or incorrect. As illustrated in
Figure 1 step 1, the parser starts with a flat tree – a sequence of nodes attached
below the auxiliary root, each of them containing the respective word form,
lemma, and morphological tag. Then the linguistically relevant oriented edges
are gradually added by various techniques. The structure is connected and acyclic
at any parsing phase.
No backtracking. We prefer greedy parsing (allowing subsequent corrections,
however) to backtracking. If the parser makes a bad decision (e.g. due to insuf-
ficient local information) and it is detected only much later, then the parser can
‘rehang’ the already attached node (rehanging becomes necessary especially in
the case of coordinations, see steps 3 and 6 in Figure 1). Thus there is no danger
of exponential expansion which often burdens symbolic parsers.
Bottom-up parsing (reduction rules). When applying reduction rules, we
use the idea of a ‘sliding window’ (a short array), which moves along the sequence
of ‘parentless’ nodes (the artificial root’s children) from right to left.3 On each
position, we try to apply simple hand-written grammar rules (each implemented
as an independent Perl subroutine) on the window elements. For instance, the
rule for reducing prepositional groups works as follows: if the first element in the
window is an unsaturated preposition and the second one is a noun or a pronoun
agreeing in morphological case, then the parser ‘hangs’ the second node below
the first node, as shown in the code fragment below (compare steps 9 and 10 in
Figure 1):

sub rule_prep_noun($) { sub rule_adj_noun($) {

my $win = shift; my $win = shift;
if (preposition($win->[0]) if (adjectival($win->[0]) and noun($win->[1])

and nominal($win->[1]) and ($win->[0]->{p_ordinal} or
and not $win->[0]->{p_saturated}){ (agr_case($win->[0],$win->[1]) and

$win->[0]->{p_saturated}=1; agr_number($win->[0],$win->[1]) and
return hang($win->[1],$win->[0]); agr_gender($win->[0],$win->[1])))) {

} else { return 0 } return hang($win->[0],$win->[1]);

} } else { return 0 }
}

2 http://ufal.mff.cuni.cz/~pajas/tred/index.html
3 Our observations show that the direction choice is important, at least for Czech.
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The rules are tried out according to their pre-specified ordering; only the
first applicable rule is always chosen. Then the sliding window is shifted several
positions to the right (outside the area influenced by the last reduction, or to
the right-most position), and slides again on the shortened sequence (the node
attached by the last applied rule is not the root’s child any more). Presently, we
have around 40 reduction rules and – measured by the number of edges – they
constitute the most productive component of the parser.

Interface to the tagset. Morphological information stored in the morpho-
logical tags is obviously extremely important for syntactic analysis. However,
the reduction rules never access the morphological tags directly, but exclusively
via a predefined set of ‘interface’ routines, as it is apparent also in the above
rule samples. This routines are not always straightforward, e.g. the subroutine
adjectival recognizes not only adjectives, but also possessive pronouns, some
of the negative, relative and interrogative pronouns, some numerals etc.

Auxiliary attributes. Besides the attributes already included in the node
(word form, lemma, tag, as mentioned above), the parser introduces many new
auxiliary node attributes. For instance, the attribute p saturated used above
specifies whether the given preposition or subordinating conjunction is already
‘saturated’ (with a noun or a clause, respectively), or special attributes for co-
ordination. In these attributes, a coordination conjunction which coordinates
e.g. two nouns pretends itself to be a noun too (we call it the effective part of
speech), so that e.g. a shared attribute modifier can be attached directly below
this conjunction.

External lexical lists. Some reduction rules are lexically specific. For this
purpose, various simple lexicons (containing e.g. certain types of named entities
or basic information about surface valency) have been automatically extracted
either from the Czech National Corpus or from the training part of the PDT,
and are used by the parser.

Clause segmentation. In any phase of the parsing process, the sequence of
parentless nodes is divided into segments separated by punctuation marks or
coordination conjunctions; the presence of a finite verb form is tested in ev-
ery segment, which is extremely important for distinguishing interclausal and
intraclausal coordination.4

Top-down parsing. The application of the reduction rules can be viewed as
bottom-up parsing. However, in some situations it is advantageous to switch
to the top-down direction, namely in the cases when we know that a certain
sequence of nodes (which we are not able to further reduce by the reduction rules)
is of certain syntactic type, e.g. a clause delimited on one side by a subordinating
conjunctions, or a complex sentence in a direct speech delimited from both sides
by quotes. It is important especially for the application of fallback rules.

Fallback rules. We are not able to describe all language phenomena by the
reduction rules, and thus we have to use also heuristic fallback rules in some
situations. For instance, if we are to parse something what is probably a single

4 In our opinion, it is especially coordination (and similar phenomena of non-
dependency nature) what makes parsing of natural languages so difficult.
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1.
Od správy se rovněž očekává , že zabezpečí levné a poslušné pracovní síly .

2. Od správy se rovněž očekává , že zabezpečí levné a poslušné

pracovní

síly .

3. Od správy se rovněž očekává , že zabezpečí levné a

poslušné pracovní

síly .

4. Od správy se rovněž očekává , že zabezpečí

levné

a

poslušné pracovní

síly .

5.
Od správy se rovněž očekává , že zabezpečí

levné

a poslušné pracovní

síly .

6.
Od správy se rovněž očekává , že zabezpečí

levné

a

poslušné

pracovní

síly .

7.

Od správy se rovněž očekává , že zabezpečí

levné

a

poslušné

pracovní

síly

.

8.

Od správy se rovněž očekává , že

zabezpečí

levné

a

poslušné

pracovní

síly

.

9.

Od správy se rovněž očekává

,

že

zabezpečí

levné

a

poslušné

pracovní

síly

.

10.

Od

správy

se rovněž očekává

,

že

zabezpečí

levné

a

poslušné

pracovní

síly

.

11.
Od

správy

se rovněž očekává

,

že

zabezpečí

levné

a

poslušné

pracovní

síly

.

12.

Od

správy

se rovněž očekává

,

že

zabezpečí

levné

a

poslušné

pracovní

síly

.

13.

Od

správy

se

rovněž očekává

,

že

zabezpečí

levné

a

poslušné

pracovní

síly

.

14.

Od

správy

se rovněž

očekává

,

že

zabezpečí

levné

a

poslušné

pracovní

síly

.

Fig. 1. Step-by-step processing of the sentence ‘Od správy se rověž očekává, že

zabezpeč́ı levné a poslušné pracovńı śıly.’ (The administration is also supposed to ensure
cheap and obedient manpower.) by the rule-based parser.
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clause and no reduction rules are no longer applicable, then the finite verb is
selected as the clause head and all the remaining parentless nodes are attached
below it (steps 11-14 in Figure 1).

Similar attempts to parsing based on hand-coded rules are often claimed to
be hard to develop and maintain because of the intricate interplay of various
language phenomena. In our experience and contrary to this expectation, it is
possible to reach a reasonable performance (see Table 1), speed and robustness
within one or two weeks of development time (less than 2500 lines of Perl code).
We have also verified that the idea of our parser can be easily applied on other
languages – the preliminarily estimated accuracy of our Slovene, German, and
Romanian rule-based dependency parsers is 65-70 % (however, the discussion
about porting the parser to other languages goes beyond the scope of this paper).

As for the parsing speed, it can be evaluated as follows: if the parser is
executed in the parallelized ntred environment employing 15 Linux servers, it
takes around 90 seconds to parse all the PDT 2.0 a-layer development data (9270
sentences), which gives roughly 6.9 sentences per second per server.

3 Pushdown Dependency Parsers

The presented pushdown parser is similar to those described in [3] or [4]. Dur-
ing the training phase, the parser creates a set of premise-action rules, and
applies it during the parsing phase. Let us suppose a stack represented as a se-
quence n1..nj , where n1 is the top element; stack elements are ordered triplets
< form, lemma, tag >. The parser uses four types of actions:

– read a token from the input, and push it into the stack,
– attach the top item n1 of the stack below the artificial root (i.e., create a

new edge between these two), and pop it from the stack,
– attach the top item n1 below some other (non-top) item ni, and pop the

former from the stack,
– attach a non-top item ni below the top item n1, and remove the former from

the stack.5

The forms of the rule premises are limited to several templates with various
degree of specificity. The different templates condition different parts of the stack
and of the unread input, and previously performed actions.

In the training phase, the parser determines the sequence of actions which
leads to the correct tree for each sentence (in case of ambiguity we use a pre-
specified preference ordering of the actions). For each performed action, the
counters for the respective premise-action pairs are increased.

During the parsing phase, in each situation the parser chooses the premise-
action pair with the highest score; the score is calculated as a product of the
value of the counter of the given pair and of the weight of the template used in

5 Note that the possibility of creating edges from or to the items in the middle of the
stack enables the parser to analyze also non-projective constructions.
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the premise (see [5] for the discussion about template weights), divided by the
exponentially growing penalty for the stack distance between the two nodes to
be connected.

In the following section we use four versions of the pushdown parser: L2R
– the basic pushdown parser (left to right), R2L – the parser processing the
sentences in reverse order, L23 and R23 – the parsers using 3-letter suffices of
the word forms instead of the morphological tags.

The parsers work very quickly; it takes about 10 seconds to parse 9270 sen-
tences from PDT 2.0 d-test on PC with one AMD Athlon 2500+. Learning phase
takes around 100 seconds.

4 Experiments with Parser Combinations

This section describes our experiments with combining eight parsers. They are re-
ferred to using the following abbreviations: McD (McDonnald’s maximum span-
ning tree parser, [6]),6 COL (Collins’s parser adapted for PDT, [7]), ZZ (rule-
based dependency parser described in Section 2), AN (Holan’s parser ANALOG
which has no training phase and in the parsing phase it searches for the local
tree configuration most similar to the training data, [5]), L2R, R2L, L23 and R32
(pushdown parsers introduced in Section 3). For the accuracy of the individual
parsers see Table 1.

We present two approaches to the combination of the parsers: (1) Simply
Weighted Parsers, and (2) Weighted Evaluation Classes.

Simply Weighted Parsers (SWP). The simplest way to combine the
parsers is to select each node’s parent out of the set of all suggested parents by
simple parser voting. But as the accuracy of the individual parsers significantly
differ (as well as the correlation in parser pairs), it seems natural to give differ-
ent parsers different weights, and to select the eventual parent according to the
weighted sum of votes. However, this approach based on local decisions does not
guarantee cycle-free and connected resulting structure. To guarantee its ‘tree-
ness’, we decided to build the final structure by the Maximum Spanning Tree
algorithm (see [6] for references). Its input is a graph containing the union of
all edges suggested by the parsers; each edge is weighted by the sum of weights
of the parsers supporting the given edge. We limited the range of weights to
small natural numbers; the best weight vector has been found using a a simple
hill-climbing heuristic search.

We evaluated this approach using 10-fold cross evaluation applied on the
PDT 2.0 a-layer d-test data. In each of the ten iterations, we found the set of
weights which gave the best accuracy on 90 % of d-test sentences, and evaluated
the accuracy of the resulting parser combination on the unseen 10 %. The average
accuracy was 86.22 %, which gives 1.98 percent point improvement compared to
McD. It should be noted that all iterations resulted in the same weight vector:

6 We would like to thank Václav Novák for providing us with the results of McD on
PDT 2.0.
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Table 1. Percent accuracy of the individual parsers when applied (separately) on the
PDT 2.0 d-test and e-test data.

McD COL ZZ AN R2L L2R R23 L23

d-test 84.24 81.55 76.06 71.45 73.98 71.38 61.06 54.88
e-test 83.98 80.91 75.93 71.08 73.85 71.32 61.65 53.28

(10, 10, 9, 2, 3, 2, 1, 1) for the same parser ordering as in Table 1. Figure 2 shows
that the improvement with respect to McD is significant and relatively stable.

When the weights were ‘trained’ on the whole d-test data and the parser
combination was evaluated on the e-test data, the resulting accuracy was 85.84 %
(1.86 % improvement compared to McD), which is the best e-test result reported
in this paper.7

Weighted Equivalence Classes (WEC). The second approach is based on
the idea of partitioning the set of parsers into equivalence classes. At any node,
the pairwise agreement among the parsers can be understood as an equivalence
relation and thus implies partitioning on the set of parsers. Given 8 parsers,
there are theoretically 4133 possible partitionings (in fact, there are only 3,719
of them present in the d-test data), and thus it is computationally tractable.

In the training phase, each class in each partitioning obtains a weight which
represents the conditional probability that the class corresponds to the correct
result, conditioned by the given partitioning. Technically, the weight is estimated
as the number of nodes where the given class corresponds to the correct answer
divided by the number of nodes where the given partitioning appeared.

In the evaluation phase, at any node the agreement of results of the individual
parsers implies the partitioning. Each of the edges suggested by the parsers
then corresponds to one equivalence class in this partitioning, and thus the
edge obtains the weight of the class. Similarly to the former approach to parser
combination, the Maximum Spanning Tree algorithm is applied on the resulting
graph in order to obtain a tree structure.

Again, we performed 10-fold cross validation using the d-test data. The re-
sulting average accuracy is 85.41 %, which is 1.17 percentage point improvement
compared to McD. If the whole d-test is used for weight extraction and the re-
sulting parser is evaluated on the whole e-test, the accuracy is 85.14 %.

The interesting property of this approach to parser combination is that if we
use the same set of data both for the training and evaluation phase, the resulting
accuracy is the upper bound for of all similar parser combinations based only on
the information about local agreement/disagreement among the parsers. If this
experiment is performed on the whole d-test data, the obtained upper bound is
87.15 %.

7 Of course, in all our experiments we respect the rule that the e-test data should not
be touched until the developed parsers (or parser combinations) are ‘frozen’.
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Fig. 2. Accuracy of the SWP parser combination compared to the best single McD
parser in 10-fold evaluation on the d-test data.

5 Conclusion

In our opinion, the contribution of this paper is threefold. First, the paper in-
troduces two (types of) Czech dependency parsers, the detailed description of
which has not been published yet. Second, we present two different approaches to
combining the results of different dependency parsers; when choosing the depen-
dency edges suggested by the individual parsers, we use the Maximum Spanning
Tree algorithm to assure that the output structures are still trees. Third, using
the PDT 2.0 data, we show that both parser combinations outperform the best
existing single parser. The best reported result 85.84 % corresponds to 11.6 %
relative error reduction, compared to 83.98 % of the single McDonald’s parser.
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