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Abstract. We use the machine learning approach of decision tree induction
to automate the transition from analytic tree structures to tectogrammatical
tree structures within the Prague Dependency Treebank. Rules are learned for
assigning functors to autosemantic nodes given information about the dependent
node and its governing node. We compare our approach to that of using hand-
crafted rules and dictionaries and consider integrating the two approaches. Using
the rules produced by machine learning in addition to hand-crafted rules and
dictionaries increases cover and recall, while retaining the same precision.

1 Introduction

The Prague Dependency Treebank (PDT) is a research project at the Institute of Formal
and Applied Linguistics (http://ufal.mff.cuni.cz), Faculty of Mathematics and
Physics, Charles University, Prague. It is aimed at a complex annotation of a part
of the Czech National Corpus, built at the Institute of the Czech National Corpus,
Faculty of Philosophy, Charles University, Prague. The annotation scheme comprises
three levels: morphological, analytical, and tectogrammatical.

At the morphological level, a morphological tag and a lemma is assigned to each
word form in the input text; the annotation contains no syntactic structure. At the
analytical level, the corresponding linear sequence of words and punctuation marks
is enriched with a dependency structure representing the given sentence. Each node
is assigned an analytical function (such as Subject, Object, Adverbial, Attribute...).
The resulting structure is called an analytic tree structure (ATS).

During the transition from ATSs to tectogrammatical tree structures (TGTSs), the
topology of the tree is slightly changed. Synsemantic words (functional words, nodes
“without their own lexical meaning”), e.g., prepositions, auxiliaries, subordinating con-
junctions, as well as punctuation marks, do not have their own nodes in TGTS, but are
captured in the attributes of the remaining nodes representing the autosemantic words.
At the tectogrammatical level, each autosemantic word of a sentence is annotated with
its tectogrammatical function (functor) that represents its syntactic position within the
sentence, e.g., Actor, Patient, Addressee, Effect, Origin, various types of spatial and
temporal circumstantials, Means, Manner, Extent, Consequence, Condition. There are



approximately 60 functors. Functors provide a more detailed information about the
relation to the governing node than that covered by the analytical function. Figure 1
shows an example of a simplified TGTS, where each node in the figure is labeled with
its lemma and functor.
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Fig. 1. TGTS of the sentence Zastavme se vSak na okamzik w rozhodugicich ustanoveni nové
prdvni normy. (Let’s however stop for a moment at the most important paragraphs of the
new legal norm.)

At present, most of the functors have to be assigned manually, which is very time-
consuming. The desire to save expert annotators’ time and accelerate the growth of the
PDT has motivated the development of a system for Automatic Functor Assignment
(AFA) (i-e., a system which could automatically assign at least some of the functors).
The AFA system (Zabokrtsky, 2000) uses rule-based and dictionary-based methods,
where the rules are hand-crafted and the dictionaries are extracted from a training set
of manually annotated sentences.

In this paper, we consider applying machine learning (ML) to a training set of
manually annotated sentences in order to derive rules for automatic functor assignment.
This would provide an alternative to the hand-crafted rules of the AFA system and
might even outperform them. Better still, combining the two approaches might yield
better performance than each of them individually.

The remainder of this paper is organized as follows. Section 2 describes the AFA
system. Section 3 briefly describes the decision tree learning system used in our exper-
iments as well as the setup in which learning was taking place. Section 4 compares the
performance of the machine learning approach and the original AFA system, as well as
the performance of several different integrations of the two. Section 5 concludes with
a discussion and an outline of directions for further work.

2 The System AFA for Automatic Functor Assignment

In this section, we describe the features of the AFA system (Zabokrtsky, 2000) which
are important for the comparison to and integration with our ML-based approach.
We focus on the data-preprocessing procedure, on the training and testing set, on the
classification of assigners, and on the rules that enable the symbiosis of the assigners.

Data preprocessing. If a program is to decide what the correct functor of a node is, it
must be provided with sufficient information for such a decision. Naturally, from the



implementation point of view it is desirable to minimize the amount of the required
information. It is assumed that it is sufficient to take into account only the following
set of attributes: word form, lemma, full morphological tag, analytical function of both
the governing and dependent node, and the preposition or conjunction which connects
the governing and the dependent node. In order to make the subsequent processing
easier, three additional simple attributes (the parts of speech of both nodes and the
morphological case of the dependent node) were extracted from these 10 attributes.
A TGTS is transformed into a list of symbolic vectors, each vector corresponding to
a dependent node. The task of AFA can be formulated as the classification of these
vectors into functor classes, i.e., assigning a dependent node its functor, given the
features listed above.

Available data. For the development of the AFA system, 18 files with TGTSs with
manually assigned functors were available, each file containing up to 50 TGTSs. The
available data were split into a training set and a testing set. The testing set consists
of three randomly chosen files yielding 1089 testing vectors. The training set contains
15 files of TGTSs yielding 6049 training vectors. The training set was used to derive
dictionaries for AFA, as described below. The testing set was used to assess the quality
of the AFA system.

Families of assigners. Three families of assigners are used in AFA: rule-based methods,
dictionary-based methods, and a method based on the notion of the nearest vector in
the feature space.

The rule-based methods (RBMs) consist of simple hand-crafted rules, similar to
decision trees. They do not use lexical attributes (word form, lemma) and they were
either derived from observations of regularities in the training set (Zabokrtsky, 2000), or
from the instructions for annotators in the “Manual for tectogrammatical annotation”
(Hajicova et al., 1999). For example, the rules of the method verbs_active look as
follows:

— verbs_active: if the governing node is a verb in an active form then
e if the analytical function (afun) is subject, then the node is assigned the functor
ACT (abbr. —» ACT)
o if the afun is object and the case is dative then - ADDR
o if the afun is object and the case is accusative then — PAT

The rules for the remaining RBMs (verbs_passive, adjectives, pronounpos,
numerals, pnom, and pred) are formulated in a similar way.

Unlike RBMs, dictionary-based methods (DBMs) profit from the value of the lexical
attribute of the given node. If it is found in a dictionary, the corresponding functor is
used. Two types of dictionaries are employed:

— adverbs, subconj: The couples adverb—functor (resp. subordinating conjunction—
functor) were automatically extracted from the training set, and added to the list
of adverbs (resp. sub. conjunctions, SC) from the manual; from the combined list,
the unambiguous (accompanied always with the same functor) adverbs (resp. SC)
were extracted.



— prepnoun: All the preposition—noun pairs (a preposition followed by a noun) were
extracted from the training set. The unambiguous couples which occured at least
twice were inserted into the dictionary. Examples: v roce (in year) TWHEN, pro
podnikatele (for businessman) BEN, v zemich (in countries) LOC.

The method sim (similarity) is based on a function which defines the distance
between two vectors in the symbolic feature space. When a node is to be assigned, the
most similar (i.e., the nearest) vector from the training set is found and its functor is
used.

How is it glued together? Each method has its own assigner (a script written in Perl).
The unassigned data go serially through a sequence (pipeline) of assigners. No assigner
can change a functor already assigned by a previous assigner. The overall performance
can be “tuned” by reordering (or removing some) assigners. RBMs are applied in the
order pred, verbs_active, verbs_passive, pnom, adjectives,numerals, pronounpos,
and DBMs in the order adverbs, subconj, prepnoun.

3 Learning an assigner with C4.5

Decision tree induction is one of the most popular machine learning approaches. It
takes as input a set of examples (represented as vectors of feature values and their
classifications) and produces a tree-like structure (called decision tree) that can be
used for classifying new examples. Internal nodes in the tree correspond to features
(also called attributes), branches correspond to feature values, and leaves of the tree
correspond to classifications (predicting specific class values).

In our case, the features (attributes) were gov_morph, gov_pos, gov_afun, dep_morph,
dep_pos, dep_case, conj_prep, and dep_afun. These include the morphological tags
(or rather their prefixes, e.g., VP for a verb in indicative mood and present tense),
the corresponding parts-of-speech, and the analytical functions of the governing and
dependent node. In addition, the case of the dependent node is considered, as well
as the conjunction/preposition connecting the two nodes. The class variable is the
tectogrammatical function (functor) of the dependent node.

An excerpt from the file with training examples is given below: each row corresponds
to an example; feature values are listed first; the class value is the last entry in each
row.

n, n, adv, a, a, 0, null, atr, rstr.
vs, v, obj, n, n, 2, do, adv, dir3.
vp, v, pred, vs, v, 0, z_e, obj, pat.
znum, z, sb, dg, d, 0, null, auxz, ext.
n, n, atr, znum, z, 0, null, sb, rstr.

C4.5 (Quinlan, 1993) is probably the most widely used program for inducing deci-
sion trees. It implements the TDIDT (Top Down Induction of Decision Trees) approach,
where a feature is first selected that discriminates best among the class values of the
given training examples. Once this feature is selected, it is assigned to the root of the
tree; the examples are partitioned according to the values of this feature and tree con-
struction is repeated recursively; the resulting subtrees are attached to the branches
of the root node. If the set of examples contains examples of only one class or if no



dep_afun = sb:

| gov_pos = a: rstr (1.0/0.8)

| gov_pos = j: pat (1.0/0.8)

| gov_pos = n: rstr (21.0/8.0)

| gov_pos = null: act (1.0/0.8)

|  gov_pos = z: act (19.0/5.9)

| gov_pos = Vv:

| |  gov_morph = vp: act (463.0/25.9)
| | gov_morph = vr: act (133.0/12.9)
| | gov_morph = vs: pat (28.0/8.2) *
| | gov_morph = vf:

| | | dep_case = 0: pat (2.0/1.0)
| | | dep_case = 1: act (6.0/3.3)
| | | dep_case = 4: pat (1.0/0.8)

Fig. 2. An excerpt from a simplified decision tree (text output from C4.5).

good attribute can be found to split on, a leaf is created which predicts a specific class
value. This is the criterion for terminating the recursion. C4.5 also performs pruning
(simplification) of the induced decision trees. The subtrees that are built on too small
number of examples to be statistically reliable are removed and replaced with leaves
(in other words, they are pruned). Several parameters control the construction of a de-
cision tree with C4.5 (e.g., by setting the degree of pruning): we left these parameters
at their default values.

An excerpt from the text representation of the simplified tree produced by C4.5 from
the training examples is given in Figure 2. A graphical representation of this excerpt is
given in Figure 3. In the text representation, the indentation of a node represents the
length of the path from the root of the tree (dep_afun) to that node. A leaf contains
a class value, e.g., pat, as well as the number of examples that fall within the leaf:
28 examples fall within the leaf marked with an asterisk in Figure 2, of which 8.2 are
classified incorrectly. Fractional numbers of examples can result if unknown feature
values are present in the training examples.

The simplified tree generated by C4.5 on the training set is referred to as the assigner
ml. Given that many of the leaves in this tree still cover only few examples and are
not very accurate, we postprocessed the tree by removing the leaves the accuracy of
which is less than 80%. For example, the leaf marked with an asterisk in Figure 2 was
removed, as its accuracy is (1-8.2/28)*100%="70.7%. The remaining decision tree was
semi-automatically translated into Perl code - this assigner is named m180. The Perl
code resulting from the part of the decision tree in Figure 2 is given below.

if ($dep_afun eq "sb") {
if ($gov_pos eq "v") {
if ($gov_morph eq "vp") {$functor="act"};
if ($gov_morph eq "vr") {$functor="act"};
}};

This code can be read as follows: if the analytical function of a node is Subject
and its governing node is a verb in the active voice, then assign the functor ACT
(Actor) to the dependent node. This is exactly the same as the first rule in the RBMs
verbs_active and is in agreement with common sense.



‘ pat ‘ act ‘ ‘ pat ‘

Fig. 3. A graphical representation of the decision tree excerpt from Figure 2

Some rules which are part of the Manual for tectogrammatical annotation have also
been “rediscovered” by C4.5. For instance, the leaf marked with an asterisk in Figure
2 corresponds to the following rule from the manual: “if a subject is dependent on a
verb in the passive voice, then its functor is PAT (Patient)”. Note, however, that this
rule has not been included in the assigner m180 because of its insufficient accuracy on
the training set.

This demonstrates that C4.5 can find rules that are valid on the training set, agree
with common sense and may have already been formulated by humans. As evidenced
by the performance of the assigners that include the C4.5 rules (cf. Section 4), it can
also discover “new” regularities that are not to be found in the annotation manual or
the RBMs.

The assigners m1 and m180 can be inserted into different positions within the se-
quence of assigners in the AFA system. Figure 4 depicts the data flow diagram of the
ML-AFA system where m180 is executed first, followed by all the assigners from the
AFA system.

4 Performance Evaluation

In this section, we evaluate the performance of the assigners ml1 and m180 in comparison
with different subsets of the AFA assigners. We also consider several different ways
of integrating the assigner m180 with the AFA assigners. In particular, we consider
different subsets of the AFA assigners plus m180, as well as different orderings thereof.

We evaluate the performance of the assigners and their combinations in terms of
the following metrics:

Cover (C) = number of all nodes assigned by the given method (C = E + H)

Relative cover (C’) = cover divided by the number of all functors to be assigned
(1089 in the testing set). It also reflects the frequency of phenomenona (e.g., the
occurrence of possessive pronouns).

Errors (E) = number of incorrectly assigned functors
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Fig. 4. Data flow diagram of the ML-AFA system containing the assigner m180.

Hits (H) = number of correctly assigned functors

Recall (R) = percentage of correct functor assignments by the given method among
all the functors to be assigned (R = 100% - H / 1089)

Precision (P) = percentage of correct functor assignments by the given method
among all functors assigned by this method (P = 100% - H / cover)

Table 1. Performance of single assigners.

C C H R E P
RBMs 558 51.2% 524 481 % 34 93.9%
DBMs 46 42% 41 38% 5 89.1%
sim 1089 100 % 796 73.0 % 293 73.0 %
ml 1089 100 % 819 75.2 % 268 75.2 %
ml180 406 373 % 384 353% 22 946 %

The performance of the individual assigners is listed in Table 1. The performance of
the combinations of classifiers is given in Table 2. AFA refers to the sequence of assigners
RBMs, DBMs, sim, while ML-AFA refers to the sequence m180, RBMs, DBMs, sim.
The results that do not involve m1 or m180 have been taken from (Zabokrtsky, 2000).

Considering the performance of the individual assigners, we note that ml and sim
assign functors to all nodes in the testing set (C’=100 %). The recall and precision
for each are equal in this case. m1 performs slightly better. However, the precisions of
both m1 and sim are below 80 %, making these assigners unacceptable for automated
annotation if used by themselves. A precision of at least 90 % is expected from an
automated assigner.



Table 2. Performance of assigner sequences.

C ¢ H R E P
R+D 604 55.5 % 565 51.9 % 39 93.6 %
R+D+ml180 686 63.0 % 641 589 % 45 93.4 %
ml180+R+D 686 63.0 % 641 589 % 45 934 %
AFA 1089 100 % 852 78.2 % 237 78.2 %
ML-AFA 1089 100 % 856 78.6 % 233 78.6 %

The remaining three assigners have good precision, with m180 being slightly more
precise than the hand-crafted RBMs. The quality of the learned decision tree is thus
similar to that of the hand-crafted rules. However, the RBMs have much larger coverage
than m180 (51.2 % vs. 37.3 %). Details on the RBMs performance are given in Table 3
(taken from Zabokrtsky, 2000).

Adding m180 to the sequence of assigners RBMs+DBMs increases the relative cover
by 7.5 %, while retaining practically the same precision (R+D vs. R+D+m180 entries
in Table 2). This indicates that m180 contains some rules that are essentially different
from those present in the hand-crafted RBMs, but overlaps with them for the most
part. The overlap between m180, RBMs and DBMs is illustrated in Figure 5. The
intersection of the domains of (the sets of nodes annotated by) m180 and RBMs is
more than one half of the domain of hand-crafted rules.

Overall, the performance of the sequence m180+RBMs+DBMs is the same as that of
the sequence RBMs+DBMs+m180 (the details of the performance are in Tables 4 and 5).
This fact indicates that the quality of the learned decision tree is similar to that of
hand-crafted rules. It also suggests (but does not prove) that the two methods are
mostly consistent (they assign the same functors to the same nodes) in the overlapping
part.

assigned by RBMs

assigned by DBMs

unassigned

Fig. 5. The relationships among the covers of the assigners m180, RBMs, and DBMs. The
outermost rectangle depicts the set of all functors to be assigned.

As was already mentioned, it is possible to select and apply only a subset of the
available methods and thus to control the characteristics of the AFA system. In general,
the higher the recall achieved, the lower the precision. The optimal compromise between
precision and recall is reached for the sequences containing m180, RBMs, and DBMs.



Table 3. Evaluation of the performance of the rule-based methods.

Method Cover Rel. cover Hits Recall Errors Precision
pred 104 9.6 % 104 9.6 % 0 100 %
verbs_active 199 183 % 184 169 % 15 925 %
verbs_passive 7 0.6 % 6 0.6 % 1 8.7%

pnom 34 31 % 32 29 % 2 94.1%
adjectives 177 162 % 170 15.6 % 7 96.0%
numerals 21 1.9% 15 14 % 6 71.4%
pronounpos 16 1.5 % 13 1.2 % 3 813%
Total X558 X512 % X524 X481 % X34 93.9%

Table 4. Evaluation of the performance of the sequence RBMs, DBMs, and m180.

Method Cover Rel. cover Hits Recall Errors Precision
RBMs 558 51.2 % 524 48.1 % 34 939%
DBMs 46 4.2 % 41 3.8 % 5 89.1%
ml80 82 75 % 76 7.0 % 6 927 %
Total X 686 X 63.0% X 641 X 589 % X 45X 93.4 %

Table 5. Evaluation of the performance of the sequence m180, RBMs, and DBMs.

Method Cover Rel. cover Hits Recall Errors Precision
ml80 406 37.3% 384 353 % 22 94.6 %
RBMs 242 222 % 224 205 % 18 925 %
DBMs 38 35 % 33 3.0% 5 86.7%
Total X 686 X 63.0% X 641 X 589 % X 45 934 %

5 Conclusions and further work

We have used the machine learning approach of decision tree induction to generate rules
that assign the tectogrammatical functions to dependent nodes. The rules generated
in this fashion, cover more than one half of the domain of hand-crafted rules when
applied as a standalone system. If they are applied together with the hand-coded rule-
based methods and dictionary methods, an overall improvement of the relative cover
of 7.5 % is achieved, while maintaining the precision level of 93.4 %. While this may
not seem to be a dramatic change of performance, in the context of the whole PDT it
corresponds to automatically annotating about additional 20 000 nodes, which would
save a significant amount of annotators’ time. Since that the precision is not 100 %,
annotators still have to verify the functors assigned by the ML-AFA system, i.e., they
cannot be completely replaced. However, given the precision level of 93.4 %, verification
is easier and less time consuming than annotating from scratch.

The performance of rules generated by machine learning can be improved in several
ways. A larger training set could be used. Also, machine learning approaches other than
decision tree induction (such as rule induction in propositional and first-order logic)
might be more suitable. These avenues will be explored in further work.
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