
Dialogue Systems in a Low-resource Scenario
PhD. Thesis Proposal

Vojtěch Hudeček
Faculty of Mathematics and Physics, Charles University,

Malostranské Náměstí 25
118 00 Prague, Czech Republic

Abstract

Dialogue system research is a very active topic
nowadays. However, deployed systems are
usually very specifically focused and are not
able to hold a complex conversation. One of
the reasons is that there aren’t a lot of meth-
ods that would allow us to extend a trained
system in a simple way. Moreover, training
a system usually requires a large amount of
well-annotated training data. Data annotation
is especially problematic for dialogue systems
due to its relatively high abstraction and com-
plexity. Therefore, we propose to invent new
learning methods for dialogue systems which
would lead to quality improvement and widen
dialogue systems use cases. We plan to use
unsupervised methods that bring us the possi-
bility of usingmuch larger unannotated corpora
and hence more effective training of statistical
models. We further focus on exploiting weekly
annotated data using methods such as transfer
learning or meta-learning (learning from simi-
lar tasks). These techniques would enable us-
age of partially annotated data for dialogue sys-
tem training. These methods are still severely
underexplored in the area of dialogue systems.

1 Introduction

Human language is a convenient and the most
natural means of communication for human beings.
It is therefore desirable to implement an interface
that mimics natural language and allows humans
to interact with computers in the same way as they
would with other human individuals.

To achieve this goal, we need to be able to trans-
fer the information between human users and the
computer. Humans most often use speech or writ-
ten text to encode and transfer the information and
there are techniques that deal with this kind of
encoding such as Automatic Speech Recognition
(ASR), Optical Character Recognition (OCR) and
Text-to-speech Synthesis (TTS). However, to per-

Figure 1: Overall architecture of task-oriented dialogue
system pipeline. The data flow is outlined with arrows.
ASR and TTS modules (depicted in gray) are not dis-
cussed in this work but are often included with the rest
of the components.

form a meaningful dialogue, we need more than
just to mimic the interface. The computer should
be able to understand the meaning of utterances
in the context and provide relevant responses. In
this work, we focus on this part of the problem,
i.e. we do not care about the process of encoding
or decoding natural language in a signal such as
speech. Rather we assume textual interfaces for
both input and output. Put simply, the task of a
Dialogue System (DS) is to generate the correct
natural language response r given the natural lan-
guage user utterance u and context c. The dialogue
is a turn-taking conversation, i.e. participants (user
and system) communicate in alternating turns.

The ultimate goal is to construct a dialogue agent
that provides meaningful responses to all kinds
of questions taking the conversation history into
account. Such agent would effectively pass the
Turing test, the holy grail of sort for the field of
Artificial Intelligence. This goal is most likely far
from being achieved, nevertheless, in many real life
cases we don’t need such complexity.
Dialogue systems promise a convenient means

of communication between human and computers.
They allow voice interaction, making it especially
well suited for applications that should not disrupt
attention such as car control. Systems capable of
human-like conversation and accomplishing given
task have huge potential to automate tech support

processes, call centers or serve as personal assis-
tants.

Despite some successful dialogue system deploy-
ments, dialogue systems still suffer from a number
of drawbacks. Usually, the DSs are tailored to
specific applications and it is hard to apply them
in other domains. This results in bad scalability
and inflexible applications. Another problem is
that they require a lot of annotation for the training
data, especially in the task-oriented setting. Last
but not least, there seems to be a trade-off between
interpretability and performance or scalability of
the systems in the case of neural network based
models.

In this thesis, we aim to propose solutions to some
of these problems, especially in the task-oriented
setting. We now outline the main goals we want to
achieve:

• Make the task-oriented dialogue systems more
scalable and easier to extend.

• Utilize transfer learning so that domain adap-
tation is easier.

• Enable the dialogue systems to leverage large
unannotated data sets and consequently train
more robust models.

Scalability and domain adaptation goes hand in
hand. We focus on reduction of the amount of
annotation needed to train a system and on knowl-
edge abstraction in order to make transfer learning
possible. To be able to leverage larger data sets,
we explore unsupervised techniques which do not
require annotation and therefore make the data
collection process substantially easier.
In the following section, we introduce the cur-

rent state of task-oriented dialogue system research.
Section 3 discusses the subject of dialogue system
evaluation. Next, we introduce our research con-
ducted so far and outline the future work in Sections
4 and 5 respectively. We conclude in Section 6.

2 Dialogue Systems Implementations

Because of varying use cases of DS, the architec-
tures may vary a lot. We thus introduce a classifica-
tion of dialogue systems that reflects the expected
capabilities. There are multiple approaches to de-
fine a dialogue system taxonomy in the literature.
Here we introduce the widely used classification
scheme (Jurafsky, 2000).

1. Question Answering (QA) - Although some-
times not mentioned in the context of dialogue
systems, QA task can be seen as an instance
of a simple conversation. The main task of a
QA system is to provide answers to the user’s
questions. The topics may vary a lot and good
understanding is essential for this task as well
as knowledge representation. The dialogues
are usually quite simple and often consist of
just one question and the respective answer.

2. Task-oriented DS - In this setting, the sys-
tem’s goal is to complete a task based on the
user’s instructions. The successful completion
may depend on several attributes that the sys-
tem has to learn from the user utterances. The
system is also allowed to ask for additional
information if needed and typically works with
some external source of information such as
database. Here the dialogues are usually much
more complex than in the QA setting and
dialogue context has to be taken into account.

3. Chit-chat - In some cases, we might be in-
terested in a system that is able to talk to the
user casually and provide entertainment. Such
systems might be used in combination with
task-oriented systems to serve as human-like
virtual assistants or possibly use the dialogue
to advertise for products etc. The context
and knowledge base are also important, but in
most cases there is no well-defined task to be
completed, so the evaluation is subjective.

Another way of classifying the dialogues con-
siders their domain of operation. Single-domain
systems are able to work only in one topic area, e.g.
public transport or restaurant information, whereas
multi-domain systems are able to handle multiple
domains. These types of systems aren’t able to give
meaningful answers outside of the domains that
they’re trained on. A dialogue system is considered
open-domain if it’s able to have a conversation not
limited to a predefined set of domains. In practice,
this is achievable only to some extent since the
knowledge base of the program is always limited.
However, with internet access and smart informa-
tion retrieval methods, the systems are able to cover
tens of different domains.
Here we focus on the task-oriented DS and dis-

cuss it in more depth. From the domain perspective,
task-oriented DS are usually either single or multi
domain systems, open-domain is not often the case.

We can see a task-oriented dialogue as a slot fill-
ing task. That means we have a predefined set of
semantic slots that need to be filled with the right
values. Each utterance in the task-oriented dialogue
is considered an action that potentially changes the
state of the conversation. Such actions can be
represented using Dialogue Acts (DA)(Core and
Allen, 1997). DA is a tuple consisting of user intent
(overall meaning of the sentence) and optionally
also slot and the corresponding value. In case that
multiple slot values are present, all are considered
to have the same intent. An example dialogue with
respective DA representation is depicted in Table 1.
Most dialogue system modules for limited domains
can be implemented by designing a set of rules and
templates. Such systems can yield satisfying results
in some use cases, nevertheless, they are inflexible
and generally not considered promising from the
research point of view. Therefore, we focus on
data-driven approaches based on machine learning
models. In the following we introduce various
approaches to dialogue system implementations.
Section 2.1 overviews the traditional approaches to
implement dialogue system as a modular pipeline.
Next, Section 2.2 discusses the end-to-end models
and Section 2.3 introduces unsupervised methods.

2.1 Modular architectures
The traditional dialogue system implementation,
especially for task-oriented dialogues, is based on
modular architecture. The modular system con-
sists of several components connected to form a
pipeline. A typical pipeline is depicted in the Fig-
ure 1. First, the Natural Language Understanding
(NLU) module parses the utterance and creates
structured representation. Based on NLU outputs,
the dialogue management module determines the
next action. DialogueManagement usually consists
of the state tracker that updates state based on NLU
outputs and the policy module that chooses the
action. Finaly, the language generation module is
used to verbalize the chosen action.

2.1.1 Natural Language Understanding
(NLU)

The purpose of NLU is to extract the meaning of
input utterances in natural language and transform
it to a structured representation, i.e. dialogue acts.
Basically, the NLU module has three subtasks. It
has to determine the domain of the utterance, detect
the user intent and capture any slot values, if present.
From the machine learning point of view, the intent

and domain detection can be seen as a classifica-
tion task and sentence-level classification can be
utilized (Yaman et al., 2008; Schapire and Singer,
2000). The slot-value filling can be approached
as a sequence tagging problem. Many approaches
have been proposed to tackle this issue, ranging
from SVM (Shi et al., 2016) and HMM (Surendran
and Levow, 2006) based taggers to various neural
models (Adel et al., 2016; Zhang et al., 2017; Mes-
nil et al., 2014). Because of the similar nature of
these three sub-tasks, it is reasonable to model them
jointly. Especially modeling the intent detection
together with slot filling proved to be beneficial for
the model performance (Zhang et al., 2017; Liu and
Lane, 2016; Xu and Sarikaya, 2013).

2.1.2 Dialogue State Tracking (DST)
Dialogue state is used to keep track of the dialogue
history, effectively providing the necessary con-
text. Dialogue State Trackers are used to update
the state with correct values after each turn. The
most straightforward solution to this problem is a
rule-based system that simply tracks the current
slot values based on NLU. However, the situation
is usually more complicated. We need to take into
account a distribution of slot value probabilities
and the update rules can be rather complex. Žilka
et al. (2013) provides a comparison of different data
driven models for dialogue state tracking. Neural
networks have also been used to model the distribu-
tions (Mrkšić et al., 2016; Zhong et al., 2018) and
deal with multiple domain handling (Rastogi et al.,
2017).

2.1.3 Dialogue Policy
The core component of the DS is the dialogue pol-
icy. Its responsibility is to make the decision which
action should the system take in each turn. The pol-
icy decision can thus be framed as a classification
task (Gašić and Young, 2013). Learning the policy
just from the offline data might not produce robust
policy due to low variability in the data. There-
fore, many works model the dialogue as a partially
observable Markov decision process (Gašić et al.,
2010; Thomson and Young, 2010). Reinforcement
learning techniques are then applied to learn the
policy and incorporate human feedback (Peng et al.,
2017; Su et al., 2016).

2.1.4 Natural Language Generation (NLG)
When the decision on a system action is made,
the system needs to verbalize the action. In other

USER: I would like a cheap restaurant. inform (price = cheap)
SYSTEM: Golden plate is cheap. inform (name = Golden plate)
USER: What is the cuisine? request (cuisine)

SYSTEM: They serve chinese food. inform (cuisine = chinese)
USER: Sounds good. Bye! goodbye ()

SYSTEM: Have a great day. goodbye ()

Table 1: Example of task-oriented dialogue in the restaurant reservation domain. Utterance representations as
dialogue acts are depicted on the right. Intents are highlighted in orange, slot names in blue and respective values
in green. Note that not all dialogue acts include slots and values

words, we need to create an utterance in natural
language that expresses the information given in the
system’s underlying representation. NLG is often
realized with a set of handcrafted templates which
are selected heuristically (Rudnicky et al., 1999).
Variability of the generated utterances is limited
and the scalability is poor. Therefore corpus-based
methods have been proposed (Oh and Rudnicky,
2000; Mairesse and Young, 2014). Lately, neural
network based systems were proposed as well (Wen
et al., 2015, 2016)

2.2 End-to-end architectures

The module-based approach is advantageous thanks
to its good level of explainability. In case of low
performance, we can track the respective modules’
outputs and find the source of problems. On the
other hand, error accumulation makes it difficult to
recover from errors that were made by the modules
early on in the pipeline. Another disadvantage
is the way how these systems are trained. Each
component requires specific data annotation, thus
it can be difficult and costly to obtain a dataset
suitable for training all of the components. Also,
the system design itself is more complicated since
it requires implementation of multiple models.

Various end-to-end solutions have been proposed
to address the drawbacks of modular system train-
ing. This was made possible largely thanks to the
growing popularity of Neural Networks (NN) and
the backpropagation algorithm over the last decade.
NN form a family of models that naturally allow
us to combine multiple models and train them us-
ing single training algorithm. Therefore several
solutions were proposed that implement the respec-
tive modules using neural network based models,
interconnect them to form the pipeline and train
them jointly (Li et al., 2017; Wen et al., 2017b). Al-
though the end-to-end training improves scalability
of the models, the proposed architectures still re-
quire multiple levels of data annotation for training.

To mitigate this problem, Serban et al. (2016) pro-
posed a hierarchical end-to-end model that uses two
levels of encoder-decoder Recurrent Neural Net-
works (RNN), one operating on dialogue turn level
for keeping long-term context and one operating on
word level for analyzing the current user input. It
does not follow the traditional pipeline scheme and
thus does not require expert annotations. However,
it is not suitable for practical use in task-oriented
DS in its raw form due to overall low performance
and insufficient robustness. The idea was further
extended by Williams et al. (2017) who introduced
the Hybrid Code Networks, an architecture that
uses multiple utterance representations which are
customizable by the developer. Despite good per-
formance and flexibility, the proposed model again
required a non-trivial amount of data annotation.
Lei et al. (2018) came with a novel idea to model the
dialogue with an extended sequence-to-sequence
model. They use an encoder-decoder architecture
based on RNN that generates a dialogue state prior
to response generation. They summarize the dia-
logue history in the RNN hidden state and use a
system of copy mechanisms to be able to track the
dialogue state. The proposed dialogue state repre-
sentation is greatly simplified and doesn’t require
explicit NLU input, thus the annotation process is
significantly easier.

In recent years, the NLP word has witnessed
a great success of attention based models (Trans-
formers) (Vaswani et al., 2017) and their usage as
pre-trained language models (Devlin et al., 2019).
In the area of dialogue systems, these models also
show prominent results in the open-domain setting
(Wolf et al., 2019) or for dialogue state tracking
(Chao and Lane, 2019). The pretrained models
are naturally utilizable for transfer learning, which
proved to be useful in dialogue domain adaptation
task (Shalyminov et al., 2019). Recently, attention-
based architecture was proposed that models latent
dialogue actions (Bao et al., 2019).

2.3 Unsupervised and transfer learning
methods

The research of methods that reduce the amount
of supervision needed can be divided into two
paradigms. One direction of research tries to con-
struct a method of unsupervised or weakly super-
vised data analysis, focusing on a certain part of
the dialogue pipeline. Such a method can provide
artificial supervision for the supervised models in-
troduced earlier. The other option is to design a
model that inherently doesn’t need supervision or
requires less annotation.

2.3.1 Unsupervised analysis and labeling

Various methods have been proposed to deal with
NLU without explicit supervision. Chen et al.
(2016) first proposed a model for zero-shot user
intent embedding prediction by training convolu-
tional neural network that is trained to score the
sentence-intent similarities. Recently, Shi et al.
(2018) proposed an intent detection model with
the use of sentence clustering based on sentence-
level features. They have applied their method
successfully for the task of intent detection.
The idea of using semantic relations to perform

language understanding in the unsupervised setting
was proposed by Heck and Hakkani-Tür (2012).
Here the authors use the Semantic Web (Berners-
Lee et al., 2001) which is a triple-based database of
entity relations. Their approach relies heavily on
structured web pages for the target domain. They
exploit the structure to obtain semantic annotations
in an unsupervised setting.

Chen et al. (2014) combine the paradigms of se-
mantic frame parsing with distributional semantics
to perform unsupervised semantic slot induction.
The authors further improve their model in Chen
et al. (2015) where they select the most prominent
slot candidates using lexical knowledge graphs.
Brychcín and Král (2016) focused on model-

ing the dialogue as Markov decision process using
HMMs. By fitting the HMMs to the data, they
explore the dialogue dynamics and assign Dialogue
Acts to the HMM states. Shi et al. (2019) took this
approach one step further by using more complex
model based on RNNs and Variational Autoen-
coders (Section 4.2.1). After fitting the model, they
analyse the hidden state transitions and infer the
dialogue structure from it.

2.3.2 Modeling dialogues with less
supervision

Work regarding the usage of semi-supervised or
unsupervised methods for the dialogue response
generation task as a whole in the task-oriented
setting has been limited so far. One of the main
challenges is to model the dialogue state with no
supervision since it is by definition structured and
might be quite complex.

The method proposed by Jin et al. (2018) builds
on Lei et al. (2018)’s sequence-to-sequence dia-
logue model (see Section 2.2) by introducing a
posterior regularization term in the loss function.
The model has two modules, a teacher and a stu-
dent, to track the dialogue state and works in a
semi-supervised way. For supervised data, both
tracker modules are trained with supervised classifi-
cation loss. For unsupervised data, teacher modeule
can look at system responses, therefore it operates
with more input information and makes more accu-
rate predictions. The student module is then trained
to minimize the KL divergence loss. The teacher
module is conditioned on the system response, so
it can’t be used when the model is deployed, but it
helps to train the student even with unlabeled data.

Wen et al. (2017a) introduced a model that learns
latent intentions, bypassing the explicit dialogue
state modeling. Zhao and Eskenazi (2018) ap-
proached the problem differently. They designed
a novel dialogue system model based on VAEs
(Section 4.2.1). Their model uses supervised data
from one domain to learn latent action representa-
tions. Their recognition module is learned to map
utterance representations to the same feature space
as the action representations. When transfering
to another domain, the model needs only a small
number of so-called seed responses to adapt. Based
on this idea, other works followed (Shalyminov
et al., 2019; Huang et al., 2019).

3 Dialogue system evaluation

There are multiple different criteria for dialogue
systems evaluation. In case of modular systems,
the individual modules can be evaluated separately.
For NLU, we usually use F1-score for slot tagging
and classification accuracy for intent detection and
domain classification. For dialogue state tracking,
similar metrics can be used. It is common to
measure Joint Goal Accuracy, which calculates
the proportion of dialogue turns where all the user
constraints (i.e., dialogue state summarizing slot

Figure 2: The process of obtaining labels for slot tagger training data. The utterances are first tagged with a semantic
frame parser and frame features such as frequency and coherence are computed (1). Frame similarities are analyzed
so similar frames can be merged to form one slot candidate (2). Utterances are then clustered according to their
verbs and frame content (3). Within each cluster, frames are scored and lowest-ranking frames are discarded (4).
Steps (2-4) are repeated until no more candidates are eliminated. Finally, we obtain a corpus labeled by the slot
candidates and use it to train the slot tagger (5).

values) are captured correctly (Mrkšić et al., 2016).
It is considerably harder to measure a system’s

overall performance. The policy module’s decision
is difficult to evaluate unless we have turn-level
action annotations. Many use BLEU (Papineni
et al., 2002) score, well-known from the area of
machine translation. However, BLEU usage is
controversial for dialogue systems, since it often
fails to capture the semantics of the utterance, which
is perhaps more critical than in the translation
task (Lowe et al., 2017). It is also common to
measure Dialogue success rate, however, again it
is not straightforward how to define the dialogue
success. Many systems use user simulators to allow
employment of reinforcement learning techniques.
In such scenarios, the user behavior is model based
and can be nondeterministic, therefore defining
success is challenging. Usually, it is based on
evaluation of user and system dialogue acts, which
relies on good and extensive data annotation.
Due to the mentioned challenges, human eval-

uation remains the best way to evaluate the DS.
In our work, we use the above mentioned intrin-
sic evaluation measures (F1, joint goal accuracy).
Although BLEU has its drawbacks, it’s useful to
compare different model variants, especially in
combination with the other metrics. Due to the
nature of our task, it will be necessary to employ
human evaluators, possibly in combination with
trained automated evaluation models (Lowe et al.,
2017; Sarikaya et al., 2018).

4 Proposed approach and experiments

We focus on both artificial labeling and dialogue
modeling, because the tasks are complementary in
some aspects and can mutually benefit from each
other. Our ultimate goal is to reduce the amount of

supervision needed to train and deploy both mod-
ular and end-to-end dialogue systems. To tackle
the issue of unsupervised annotation, we proposed
a weakly-supervised technique for language under-
standing introduced in Section 4.1. This technique
performs both slot induction and intent detection
based on corpus analysis. We further focus on the
dialogue end-to-end response generation task and
introduce a novel modeling approach in Section 4.2.
One of the key desired properties of the proposed
model is its interpretability, which we discuss in
Section 4.2.3.

4.1 Distant supervision for Language
Understanding

We propose an iterative method which uses generic
frame-semantic and semantic role parsers, a clus-
tering algorithm, and a ranking model to perform
intent detection and slot induction. The frame-
semantic parser outputs are filtered and the slot
structure is inferred, only the relevant concepts are
captured. This method outputs artificial slot labels
which we subsequently use to train a standalone
slot tagger. Labels obtained with our method are
shown in Table 2.

4.1.1 Method
The data are first labeled with FrameNet (Baker
et al., 1998) semantic parser. FrameNet semantic
frames are usually of much finer resolution than
needed for a dialogue system, i.e. more than one
frame usually refers to the same concept as a single
dialogue slot. On the other hand, some of the
frames recognized by FrameNet are completely
irrelevant to the DS in the given dialogue domain.
Therefore, we need to merge frames that map to the
same slot and eliminate those which are irrelevant.
In the following procedure, we attempt to identify

user input 1: I would like an expensive restaurant that serves Afghan food
frame parser: {Locale: restaurant, Expensiveness: expensive}

our slot tagger: {slot-0: Afghan, slot-1: expensive}
user input 2: How about Asian oriental food?
frame parser: {Origin: Asian, Food: food}

our slot tagger: {slot-0: Asian}
...

Table 2: A sample section of a dialogue from CamRest676 data, with labels provided by the frame-semantic parser
and our slot tagger (bottom). Note that although “Afghan” food is not in the frame parser output, our model was
able to recognize it. In the second utterance, the slot value for slot-0 (corresponding to food type) changes and the
change is successfully captured. This demonstrates the ability of our model to categorize entities (both “Afghan”
and “Asian” relate to the same slot).

slots and slot-related intents (i. e. dialogue acts).
It is reasonable to address these tasks jointly since
slot frequencies generally differ across intents. The
iterative process is captured in Figure 2. In each
iteration, it (1) merges similar frames, (2) clusters
frame occurrences in the data to detect different
intents, (3) ranks frames’ relevance for each detected
intent, and (4) eliminates irrelevant frames. Once
no more frames are eliminated, the procedure is
terminated and we obtain slot candidates, which
are used to train a slot tagger.

4.1.2 Frame representation and merging
During the merging process, frames are represented
as mean word embeddings of frame fillers; we de-
note the embedded frame 51 as 4(51). We measure
similarity of frames 51 and 52 as:

B8<(51, 52) = B8<4 (4(51), 4(52)) + B8<2C G (51, 52) (1)

where B8<4 (51, 52) is a cosine similarity of frames’
embeddings and B8<2C G (51, 52) is a normalized
number of occurrences of 51 and 52 with the same
dependency relation. If the similarity exceeds a
preset threshold)B8<, the frames are merged.
For a verb-frame pair (E, 5), we compute its

feature representation 5 40CE, 5 as a sum of embed-
dings:

5 40CE, 5 = 4(E) + 4(5) (2)

We assume that the verb-frame pairs (e.g. “like-
expensive”) correspond to individual intents in
the corpus (i.e., intents here are slot-dependent).
Therefore, we can cluster the verb-frame pairs to
find similarities. We can regard this clustering as
unsupervised intent detection. Following Shi et al.
(2018), we use hierarchical clustering of verb-frame
pair feature vectors. This clustering also helps the
frame relevancy ranking process, because some
frames might only occur very few times in the data
and therefore they wouldn’t be ranked high if the

frame ranking was run globally. Because we run
the ranking locally for each intent cluster, we solve
the issue of different frame occurrence frequencies.
To remove frames irrelevant for the dialogue

domain, we rank the frames and remove the lowest-
ranking ones. To rank the frames, we use frame
frequency, mean pairwise similarity of fillers and
TextRank algorithm (Mihalcea and Tarau, 2004).
The final frame score is a simple sum of rankings
with respect to all four features. We then choose
the # top ranked candidates.

4.1.3 Slot Tagger Model Training
Our method can yield a good set of dialogue slots
to be tracked. However, using the clustered and
filtered frame parser annotation directly can result
in low recall since the frame parsers are generic and
not adaptable to our specific domain. Therefore,
we use the noisy labels obtained by the parser and
use it to train a new, domain-specific slot tagging
model to improve performance. The model has no
access to better labels than those derived from the
frame parser; however, it has a simpler task, as the
set of target labels is now much smaller and the
domain is much narrower then when the original
frame parser was trained.
We model the slot tagging task as B-I-O-coded

sequence tagging, using a convolutional neural
network that takes word- and character-based em-
beddings of the sequence tokens as the input, and
it outputs a sequence of respective tags (Lample
et al., 2016).1 The output layer of the tagger net-
work gives softmax probability distributions over
possible tags. To further increase recall, we add a
simple inference-time rule – if the most probable
predicted tag is ‘O’ (i.e., no slot) and the second
most probable tag has a probability higher than a
preset threshold)C06, the second tag is chosen as a
prediction instead.

1https://github.com/deepmipt/ner

https://github.com/deepmipt/ner

method CamRest676 CarSLU WOZ-hotel
Chen et al. 0.535 ± .002 0.590 ± .001 0.382 ± .001
Ours-nocl 0.301 ± .006 0.372 ± .011 0.121 ± .001
Ours-pars 0.541 ± .008 0.665 ± .007 0.384 ± .002
Ours-full 0.6630.6630.663 ± .012 0.6870.6870.687 ± .009 0.5430.5430.543 ± .004

Table 3: F1 score values with 95% confidence intervals
for unsupervised slot filling performance comparison
among different methods). The measures are evaluated
using a manually designed slot mapping to the datasets’
annotation.

4.1.4 Results and discussion

We conducted a series of experiments to evaluate
the candidate selection process and frame merging.
Although the method is unsupervised, it is needed
to construct handcrafted mapping of slot candidates
to ground-truth slots.
We compare the intent detection accuracy to

two baselines: (1) a method that trivially labels all
utterances with the most common label (majority)
and (2) a method that clusters the utterances based
on average embedding vectors. We present the
intent detection results in Table 4. For some of the
datasets, majority is a strong baseline (WOZ-hotel),
but the embedding clustering does not perform very
well. Our experiments showed that the clustering
yielded by our method is reasonable and mostly
outperforms the majority baseline.
Perhaps more importantly, we evaluate the slot

tagging results using F1 score. In Table 3, we
provide the overview of slot tagging results on
multiple selected datasets. Ours-full refers to our
full method, while Ours-nocl and Ours-pars refer
tomodifications inwhichwe don’t use the clustering
process or the neural tagger, respectively. We
compare the results to amethod previously proposed
by Chen et al. (2015, see Section 2.3.1). Slot
induction consists of two subtasks – we need to
(1) determine the slots (i.e. what are the concepts
we are interested in) and (2) tag them correctly.
Therefore, it is rather complicated. We propose a
method that can find reasonable slot candidates and
yields a standalone tagger that is applicable without
any additional dependencies. The slot induction
performance is promising, the trained tagger proved
to improve recall over the original parser. However,
the drawback is that some types of concepts might
not be captured by the frame-semantic tagger at all,
therefore the method is not able to take them into
account, not even with generalization provided by
the trained tagger.

method CamRest676 CarSLU WOZ-hotel
Majority 0.592 0.530 0.883
Embeddings 0.535 0.551 0.873
Ours 0.705 0.613 0.882

Table 4: Intent detection accuracy of our methods if we
interpret the clustering results as user intent detection.
Majority is a majority baseline and Embedding refers to
an average sentence embedding clustering approach.

Figure 3: Variational autoencoder latent space. The
encoder distributions are distinguished by colors and
different classes by shapes. It can be seen, the interpo-
lation between two sampled points is meaningful

4.2 Modeling the dialogue

Weattempt to generate dialogue responses in an end-
to-end fashion (see Section 2.2), using no dialogue
state supervision, but attempting at interpretable
internal dialogue states. Here, Shi et al. (2019)
propose a novel usage of the VRNN model which
we introduce in Section 4.2.1. They use the model
to analyze the dialogue data and uncover the un-
derlying structure. To achieve this, they use the
concatenation of the user and system utterances
as an input. Because of the system utterance us-
age, their approach is not suitable for dialogue
generation. However, the VRNN model has great
capabilities for dialogue modeling.

4.2.1 Background
Variational autoencoders Neural network train-
ing is a process during which the network learns to
create internal representations of data in order to
accomplish a given task. In case of autoencoders,
the task is to encode an input x in a way that allows
for its reconstruction into the original form. The
autoencoder model consists of an encoder function

i4=2, which encodes an input x into a latent rep-
resentation z, and a decoder i342, which models
the conditional re-generation probability ?(x|z). In
case of sequence autoencoders, both the encoder
and decoder can be realized with an RNN. How-
ever, vanilla autoencoders often fail to extract global
semantic features of natural language sequences
(Bowman et al., 2015); therefore, adjustments need
to be made in order to obtain better representations.
The technique proposed by Kingma and Welling
(2013) uses the Variational Autoencoder (VAE)
framework to tackle this issue. The architecture
is modified so that i4=2 represents a recognition
model @(z|x) which parameterizes an approximate
posterior distribution over z. VAEs impose prior
distribution on the latent variable z, which acts as a
regularization during training and makes it possible
to draw samples from @. Consequently, the VAE
latent space is regular in a sense that it is possi-
ble to interpolate between two points. The latent
space structure is depicted schematically in Figure 3.
Typically, the modeled distributions are Gaussian
and the prior is the standard normal distribution
(0, 1).
We can realize the function modules in VAE us-

ing neural networks, however, there is a drawback
regarding the implementation of sampling. The
sampling operation is not differentiable and there-
fore cannot be trained using standard approaches.
A solution to this problem is to use the reparame-
terization trick (Kingma and Welling, 2013). The
reparameterization trick uses the fact that a random
variable under certain conditional distribution can
be expressed as a deterministic transformation of
some other variable with independent marginal dis-
tribution. Distributions that allow us to do such a
transformation include Gaussian, Logistic or Gum-
bel.

VAE latent space discretization Although VAE
training yields robust representations that are also
more interpretable thanks to the regularized latent
space, in some cases, we require the latent repre-
sentations to be discrete. The motivation is mainly
to improve interpretability and possibly uncover
underlying processes in sequential tasks. It is prob-
lematic to incorporate discrete variables into neural
network models, because the widely used backprop-
agation algorithm requires smooth differentiable
functions in order to propagate the gradients cor-
rectly. van den Oord et al. (2017) propose a vector
quantization technique to discretize the latent vari-

ables in VAEs. Another approach is to use the
the Gumbel-softmax distribution (Jang et al., 2016)
that enables us together with the reparameteriza-
tion trick (Section 4.2.1) to work with categorical
variables while not breaking the gradient flow in
the network.

Variational Recurrent Neural Networks Varia-
tional Recurrent Neural Networks (VRNN) (Chung
et al., 2015) explicitly model the dependencies be-
tween latent random variables across subsequent
timesteps, similarly to dynamic Bayesian networks
such as Hidden Markov Models (HMMs). Unlike
HMMs, the transitions between latent states are de-
pendent not only on the state in the current time step,
but also on the RNN hidden state which allows to
modelmore complex dynamics. Therefore, VRNNs
are well suited for modeling sequential processes.
Basically, the VRNN is a recurrent network with a
VAE in every time step. The difference with respect
to a basic VAE is that both prior and posterior dis-
tributions as well as the decoder are dependent on
the RNN hidden state. Formally, let hC be the RNN
hidden state in time step C. The prior is realized with
function i?A8>A (hC−1), the posterior distribution @
is modeled with i4=2 (xC , hC−1) and the generation
decoder distribution is i342 (zC , hC−1).

4.2.2 Dialogue response generation with
VRNN

End-to-end Dialogue generation task (see Sec-
tion 2.2) can be described as finding the generation
distribution of system utterances s given user ut-
terance u and summary context c. We propose to
use the VRNN (Section 4.2.1) to model this task.
The VRNN as we described it models a sequence
of observations with one latent variable. To adjust
the model for dialogue response generation, we
use two VAEs in every time step, so we model
the user and the system parts of the dialogue. We
can regard the posterior module (network) of the
VRNN as a teacher and the prior module as a stu-
dent. During training, the student module learns to
mimic the teacher distribution. When generating,
the student distribution is used. The hidden state
of the turn-level RNN then represents the context
summarization, i.e. dialogue state. Both user and
system VAEs depends on the hidden state, i.e. they
share the same context representation. The system
VAE is discrete and its prior module has additional
dependency on the user latent variable zD. The
generation story goes as follows: (1) The user pos-

Figure 4: The simplified schema of our proposed VRRN model generation. The dependencies are depicted with
arrows. LSTM module on the left corresponds to the turn-level RNN. The module is captured in generation time,
therefore the posterior module is depicted in gray since it is not used. The user decoder is omitted for clarity.

terior module reads the input utterance and hidden
state h and yields zD . (2) The system prior module
yields zB conditioned on zD and h. (3) The system
decoder generates the response based on zB. (4)
h is updated. The system VAE can be regarded
as a policy module that operates with categorical
variables – actions. The pipeline is schematically
depicted in Figure 4.
There are different possibilities how to get ut-

terance representations. The use of variational
autoencoders is motivated by robustness of the
representations and the possibility to work with
categorical variables, as discussed in Section 4.2.1.
The loss function is the timestep-wise variational
lower bound. Let ?(zDC |hC−1) and @(zDC |uC , hC−1) be
the user prior and posterior latent variable distri-
butions in time step C and ?(uC |zDC , hC−1) the user
utterance generation distribution in time step C. For
the system part, we denote the respective distribu-
tions analogically. Then the loss can be expressed
as:2

L =

)∑
C=1
(− ! (@(zDC |uC) | |?(zDC)) + log ?(uC |zDC))

+ (− ! (@(zBC |sC) | |?(zBC)) + log ?(sC |zBC)

At inference time, we cannot condition on the future
system response, therefore only the prior module
is used.

4.2.3 Interpreting the latent variable
Because the model is forced to encode the system
utterance using categorical variable, it might be

2We omit the RNN hidden states for readability.

Figure 5: An example of decision tree that was built to
help interpret the latent system action. Expert-defined
actions are distinguished by different colors and we can
see that the learned representations are meaningful and
interpretable.

seen as an encoded action. However, the actions
will not likely be in a one-to-one correspondence
to expert annotated actions. Therefore, a mapping
needs to be introduced that helps to assign latent
actions to their expert-defined counterparts. We
propose to fit a decision tree that predicts the expert
action from the latent vector (Figure 5). We can
then extract a set of rules and construct the desired
mapping, if required. The decision tree usage
might seem too complicated for one-hot variables,
nevertheless, it’s justified in case more complex
representations are used, e.g. multiple random
variables.

5 Future Work

In Section 4.2, we describe a novel usage of the
VRNN model that incorporates discrete actions to

achieve greater interpretability. Our main motiva-
tion is to design a system that can be used in the
task-oriented setting. To achieve this, it is essen-
tial to track the dialogue state since it allows to
communicate with databases or external APIs.

5.1 Immediate plans
We can extend the proposed VRNN architecture
and make the latent variable representations more
complex. Zhao et al. (2018) uses multiple latent
vectors in VAEs. We plan to adopt this and add
a new term to the loss function to make the au-
toencoder to save NLU or DST information in the
latent vectors. The first step shall be teaching the
model to recognize a domain in the latent variable.
This approach allows for the use of semi-supervised
learning, because we potentially need just a fraction
of data annotated with NLU to help the system to
extract the right information in a particular latent
vector.

We also incorporate copy mechanism (Gu et al.,
2016) to our model so it can track the slot values.
However, preliminary experiments showed that the
copy mechanism can be too strong and prevents the
model from learning meaningful representations,
similarly to vanishing latent variable problem (Bow-
man et al., 2015). Therefore we need to change
the way the copy mechanism is integrated to mit-
igate this issue. If the model captures the NLU
information successfully, we could also analyse the
latent space and extract the knowledge. Hence, the
trained model could be used as an annotation tool.
We plan to employ the artificial labels obtained by
our NLU tagger (Section 4.1) to help bootstrap the
system.

5.2 Long term goals
Despite being trained from data in an unsupervised
fashion, dialogue systems still need to be able to
communicate with external knowledge sources, e.g.
database or an external policy. Some minimal
level of annotation will likely always be needed
to model the task-oriented dialogue. Therefore,
domain adaptation techniques are important to be
able to reuse the knowledge obtained by the system
in another domain. Our proposed VRNN-based
model uses multiple discrete vectors to encode ac-
tions. Assuming the set of possible actions is much
smaller than the number of possible representa-
tions, the model is redundant because it utilizes
only a portion of the available vector space. We
can use this property to our advantage since the

model is effectively prepared to handle new ac-
tions. Also, some of the actions might be generic,
e.g. goodbye(), therefore they can be reused in
the multi-domain scenario without additional ef-
fort (Keizer et al., 2019). If trained correctly, the
model could encode the actions using hierarchi-
cal semantics (one vector determines the action
type, other determines the arguments) which fur-
ther increases the transfer learning potential. Con-
sider the actions ‘0B:_C8<4(CA08=_;40E4B)’ and
‘0B:_C8<4(10A_>?4=B)’. If represented hierarchi-
cally, only the action argument has to be learned
when switching the domain from trains to restau-
rants.
Following the recent trend, we want to exploit

great modeling power of pretrained attention-based
models. Some solutions have already been pro-
posed to work with discrete variables using Trans-
former models (Bao et al., 2019). The ideas pro-
posed in the previous paragraphs can be extended
to work with these types of models and possibly im-
prove the performance, mainly in terms of language
generation.
Our weakly supervised slot induction method

is currently in the review process and we aim to
publish our VRNN model this year as well. After
publishing, we focus on the hierarchical modelling
of the actions and corresponding transfer learning
capabilities. We assume one or two publications
about this topic. Afterwards, the goal is to ex-
plore the usability of our method with Transformer
models.

6 Conclusion

Dialogue modeling is an active topic with many
subtasks. Despite well functioning applications, a
lot of data-driven systems are dependent onmultiple
level of annotations which limit their scalability
and flexibility. We address these issues in several
ways:

1. We make the annotation process easier by
proposing weakly supervised techniques for
automatic annotation.

2. We propose a novel way of dialogue modeling
that doesn’t require an extensive amount of an-
notation and allows for better interpretability.

3. We focus on semantics of the proposedmodel’s
representations and utilize them for domain
adaptation task.

The main expected contribution of our work is
designing a task-oriented dialogue system that sig-
nificantly reduces the amount of required data an-
notation. Moreover, such a system should be easy
to adapt to multiple domains and could be used also
as a data analysis tool that uncovers latent dialogue
actions.

References
Heike Adel, Benjamin Roth, and Hinrich Schütze.

2016. Comparing convolutional neural networks to
traditional models for slot filling. arXiv preprint
arXiv:1603.05157.

Collin F Baker, Charles J Fillmore, and John B Lowe.
1998. The berkeley framenet project. In Proc. COL-
ING, pages 86–90.

Siqi Bao, Huang He, Fan Wang, and Hua Wu.
2019. Plato: Pre-trained dialogue generation
model with discrete latent variable. arXiv preprint
arXiv:1910.07931.

Tim Berners-Lee, James Hendler, Ora Lassila, et al.
2001. The semantic web. Scientific American,
284(5):28–37.

Samuel R Bowman, Luke Vilnis, Oriol Vinyals, An-
drew M Dai, Rafal Jozefowicz, and Samy Bengio.
2015. Generating sentences from a continuous space.
arXiv preprint arXiv:1511.06349.

TomášBrychcín and Pavel Král. 2016. Unsupervised di-
alogue act induction using gaussian mixtures. arXiv
preprint arXiv:1612.06572.

Guan-Lin Chao and Ian Lane. 2019. Bert-dst: Scal-
able end-to-end dialogue state tracking with bidi-
rectional encoder representations from transformer.
arXiv preprint arXiv:1910.07931.

Yun-Nung Chen, Dilek Hakkani-Tür, and Xiaodong He.
2016. Zero-shot learning of intent embeddings for
expansion by convolutional deep structured semantic
models. In Proc. IEEE ICASSP, pages 6045–6049.

Yun-Nung Chen, William Yang Wang, and Alexander
Rudnicky. 2015. Jointly modeling inter-slot rela-
tions by random walk on knowledge graphs for un-
supervised spoken language understanding. In Proc.
NAACL, pages 619–629.

Yun-Nung Chen, William Yang Wang, and Alexander I
Rudnicky. 2014. Leveraging frame semantics and
distributional semantics for unsupervised semantic
slot induction in spoken dialogue systems. In Proc.
IEEE SLT, pages 584–589.

Junyoung Chung, Kyle Kastner, Laurent Dinh, Kratarth
Goel, Aaron C Courville, and Yoshua Bengio. 2015.
A recurrent latent variable model for sequential data.
In Advances in neural information processing sys-
tems, pages 2980–2988.

Mark G Core and James Allen. 1997. Coding dialogs
with the damsl annotation scheme.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Milica Gašić, Filip Jurčíček, Simon Keizer, François
Mairesse, Blaise Thomson, Kai Yu, and Steve Young.
2010. Gaussian processes for fast policy optimisa-
tion of pomdp-based dialoguemanagers. InProceed-
ings of the 11th Annual Meeting of the Special Inter-
est Group on Discourse and Dialogue, pages 201–
204. Association for Computational Linguistics.

Milica Gašić and Steve Young. 2013. Gaussian pro-
cesses for pomdp-based dialogue manager optimiza-
tion. IEEE/ACMTransactions on Audio, Speech, and
Language Processing, 22(1):28–40.

Jiatao Gu, Zhengdong Lu, Hang Li, and Victor OK
Li. 2016. Incorporating copying mechanism in
sequence-to-sequence learning. arXiv preprint
arXiv:1603.06393.

Larry Heck and Dilek Hakkani-Tür. 2012. Exploiting
the semantic web for unsupervised spoken language
understanding. In Proc. IEEE SLT, pages 228–233.

Xinting Huang, Jianzhong Qi, Yu Sun, and Rui Zhang.
2019. Mala: Cross-domain dialogue generation with
action learning. arXiv preprint arXiv:1912.08442.

Eric Jang, Shixiang Gu, and Ben Poole. 2016. Categor-
ical reparameterization with gumbel-softmax. arXiv
preprint arXiv:1611.01144.

Xisen Jin, Wenqiang Lei, Zhaochun Ren, Hongshen
Chen, Shangsong Liang, Yihong Zhao, and Dawei
Yin. 2018. Explicit state tracking with semi-
supervision for neural dialogue generation. In Pro-
ceedings of the 27th ACM International Conference
on Information and Knowledge Management, pages
1403–1412. ACM.

Dan Jurafsky. 2000. Speech & language processing.
Pearson Education India.

Simon Keizer, Ondřej Dušek, Xingkun Liu, and Verena
Rieser. 2019. User evaluation of amulti-dimensional
statistical dialogue system. In Proceedings of the
20th Annual SIGdial Meeting on Discourse and Dia-
logue, pages 392–398, Stockholm, Sweden. Associ-
ation for Computational Linguistics.

Diederik P Kingma and Max Welling. 2013. Auto-
encoding variational bayes. arXiv preprint
arXiv:1312.6114.

https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/W19-5945
https://doi.org/10.18653/v1/W19-5945

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition. In
Proc. NAACL.

Wenqiang Lei, Xisen Jin, Min-Yen Kan, Zhaochun Ren,
Xiangnan He, and Dawei Yin. 2018. Sequicity: Sim-
plifying task-oriented dialogue systems with single
sequence-to-sequence architectures. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 1437–1447.

Xiujun Li, Yun-Nung Chen, Lihong Li, Jianfeng
Gao, and Asli Celikyilmaz. 2017. End-to-end task-
completion neural dialogue systems. In Proceedings
of the Eighth International Joint Conference on Nat-
ural Language Processing (Volume 1: Long Papers),
pages 733–743, Taipei, Taiwan. Asian Federation of
Natural Language Processing.

Bing Liu and Ian Lane. 2016. Attention-based recurrent
neural network models for joint intent detection and
slot filling. arXiv preprint arXiv:1609.01454.

Ryan Lowe, Michael Noseworthy, Iulian Vlad Ser-
ban, Nicolas Angelard-Gontier, Yoshua Bengio, and
Joelle Pineau. 2017. Towards an automatic turing
test: Learning to evaluate dialogue responses. In
Proceedings of the 55th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1116–1126.

François Mairesse and Steve Young. 2014. Stochas-
tic language generation in dialogue using fac-
tored language models. Computational Linguistics,
40(4):763–799.

GrégoireMesnil, YannDauphin, KaishengYao, Yoshua
Bengio, Li Deng, Dilek Hakkani-Tur, Xiaodong He,
Larry Heck, Gokhan Tur, Dong Yu, et al. 2014. Us-
ing recurrent neural networks for slot filling in spo-
ken language understanding. IEEE/ACM Transac-
tions on Audio, Speech, and Language Processing,
23(3):530–539.

Rada Mihalcea and Paul Tarau. 2004. Textrank: Bring-
ing order into text. In Proc. EMNLP.

Nikola Mrkšić, Diarmuid O Séaghdha, Tsung-Hsien
Wen, Blaise Thomson, and Steve Young. 2016. Neu-
ral belief tracker: Data-driven dialogue state tracking.
arXiv preprint arXiv:1606.03777.

Alice Oh and Alexander Rudnicky. 2000. Stochastic
language generation for spoken dialogue systems. In
ANLP-NAACL 2000 Workshop: Conversational Sys-
tems.

Aaron van den Oord, Oriol Vinyals, et al. 2017. Neu-
ral discrete representation learning. In Advances in
Neural Information Processing Systems, pages 6306–
6315.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th Annual Meeting of the Association for Com-
putational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Baolin Peng, Xiujun Li, Lihong Li, Jianfeng Gao, Asli
Celikyilmaz, Sungjin Lee, and Kam-FaiWong. 2017.
Composite task-completion dialogue policy learning
via hierarchical deep reinforcement learning. arXiv
preprint arXiv:1704.03084.

Abhinav Rastogi, Dilek Hakkani-Tür, and Larry Heck.
2017. Scalable multi-domain dialogue state tracking.
In 2017 IEEE Automatic Speech Recognition and
Understanding Workshop (ASRU), pages 561–568.
IEEE.

Alexander I. Rudnicky, Eric H. Thayer, Paul C. Constan-
tinides, Chris Tchou, R. Shern, Kevin A. Lenzo, Wei
Xu, and Alice Oh. 1999. Creating natural dialogs in
the Carnegie Mellon Communicator system. In Pro-
ceedings of the 6th European Conference on Speech
Communication and Technology, pages 1531–1534.

Ruhi Sarikaya, Daniel Boies, Paul A Crook, and Jean-
Philippe Robichaud. 2018. Dialogue evaluation via
multiple hypothesis ranking. US Patent 10,162,813.

Robert E Schapire and Yoram Singer. 2000. Boostex-
ter: A boosting-based system for text categorization.
Machine learning, 39(2-3):135–168.

Iulian V Serban, Alessandro Sordoni, Yoshua Bengio,
Aaron Courville, and Joelle Pineau. 2016. Building
end-to-end dialogue systems using generative hier-
archical neural network models. In Thirtieth AAAI
Conference on Artificial Intelligence.

Igor Shalyminov, Sungjin Lee, Arash Eshghi, and
Oliver Lemon. 2019. Few-shot dialogue generation
without annotated data: A transfer learning approach.
In Proceedings of the 20th Annual SIGdial Meet-
ing on Discourse and Dialogue, pages 32–39, Stock-
holm, Sweden. Association for Computational Lin-
guistics.

ChenShi, QiChen, Lei Sha, SujianLi, XuSun, Houfeng
Wang, and Lintao Zhang. 2018. Auto-Dialabel: La-
beling dialogue data with unsupervised learning. In
Proc. EMNLP, pages 684–689.

Weiyan Shi, Tiancheng Zhao, and Zhou Yu. 2019. Un-
supervised dialog structure learning. arXiv preprint
arXiv:1904.03736.

Yangyang Shi, Kaisheng Yao, Hu Chen, Dong Yu, Yi-
Cheng Pan, and Mei-Yuh Hwang. 2016. Recurrent
support vector machines for slot tagging in spoken
language understanding. In Proceedings of the 2016
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 393–399.

https://www.aclweb.org/anthology/I17-1074
https://www.aclweb.org/anthology/I17-1074
https://doi.org/10.1162/COLI_a_00199
https://doi.org/10.1162/COLI_a_00199
https://doi.org/10.1162/COLI_a_00199
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
http://www.speech.cs.cmu.edu/Communicator/papers/Natural%20Dialogs2.pdf
http://www.speech.cs.cmu.edu/Communicator/papers/Natural%20Dialogs2.pdf
https://doi.org/10.18653/v1/W19-5904
https://doi.org/10.18653/v1/W19-5904

Pei-Hao Su, Milica Gasic, Nikola Mrksic, Lina Rojas-
Barahona, Stefan Ultes, David Vandyke, Tsung-
Hsien Wen, and Steve Young. 2016. On-line active
reward learning for policy optimisation in spoken
dialogue systems. arXiv preprint arXiv:1605.07669.

Dinoj Surendran and Gina-Anne Levow. 2006. Dialog
act tagging with support vector machines and hidden
markov models. In Ninth International Conference
on Spoken Language Processing.

Blaise Thomson and Steve Young. 2010. Bayesian
update of dialogue state: A pomdp framework for
spoken dialogue systems. Computer Speech & Lan-
guage, 24(4):562–588.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Tsung-Hsien Wen, Milica Gašić, Nikola Mrkšić,
Lina M. Rojas-Barahona, Pei-Hao Su, David
Vandyke, and SteveYoung. 2016. Multi-domain neu-
ral network language generation for spoken dialogue
systems. In Proceedings of the 2016 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 120–129, San Diego, California. As-
sociation for Computational Linguistics.

Tsung-Hsien Wen, Milica Gašić, Nikola Mrkšić, Pei-
Hao Su, David Vandyke, and Steve Young. 2015.
Semantically conditioned LSTM-based natural lan-
guage generation for spoken dialogue systems. In
Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, pages
1711–1721, Lisbon, Portugal. Association for Com-
putational Linguistics.

Tsung-Hsien Wen, Yishu Miao, Phil Blunsom, and
Steve Young. 2017a. Latent intention dialogue mod-
els. In Proceedings of the 34th International Confer-
ence on Machine Learning-Volume 70, pages 3732–
3741. JMLR. org.

Tsung-HsienWen, David Vandyke, NikolaMrkšić, Mil-
ica Gašić, Lina M. Rojas-Barahona, Pei-Hao Su, Ste-
fan Ultes, and Steve Young. 2017b. A network-based
end-to-end trainable task-oriented dialogue system.
In Proceedings of the 15th Conference of the Euro-
pean Chapter of the Association for Computational
Linguistics: Volume 1, Long Papers, pages 438–449,
Valencia, Spain. Association for Computational Lin-
guistics.

Jason D Williams, Kavosh Asadi, and Geoffrey
Zweig. 2017. Hybrid code networks: practical
and efficient end-to-end dialog control with super-
vised and reinforcement learning. arXiv preprint
arXiv:1702.03274.

Thomas Wolf, Victor Sanh, Julien Chaumond, and
Clement Delangue. 2019. Transfertransfo: A trans-
fer learning approach for neural network based con-
versational agents. CoRR, abs/1901.08149.

Puyang Xu and Ruhi Sarikaya. 2013. Convolutional
neural network based triangular crf for joint intent
detection and slot filling. In 2013 ieee workshop
on automatic speech recognition and understanding,
pages 78–83. IEEE.

Sibel Yaman, Li Deng, Dong Yu, Ye-Yi Wang, and
Alex Acero. 2008. An integrative and discriminative
technique for spoken utterance classification. IEEE
Transactions on Audio, Speech, and Language Pro-
cessing, 16(6):1207–1214.

Yuhao Zhang, Victor Zhong, Danqi Chen, Gabor An-
geli, and Christopher D Manning. 2017. Position-
aware attention and supervised data improve slot
filling. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing,
pages 35–45.

Tiancheng Zhao andMaxine Eskenazi. 2018. Zero-shot
dialog generation with cross-domain latent actions.
In Proceedings of the 19th Annual SIGdial Meeting
on Discourse and Dialogue, pages 1–10, Melbourne,
Australia. Association for Computational Linguis-
tics.

Tiancheng Zhao, Kyusong Lee, and Maxine Eskenazi.
2018. Unsupervised discrete sentence representation
learning for interpretable neural dialog generation.
arXiv preprint arXiv:1804.08069.

Victor Zhong, Caiming Xiong, and Richard Socher.
2018. Global-locally self-attentive dialogue state
tracker. arXiv preprint arXiv:1805.09655.

Lukáš Žilka, David Marek, Matěj Korvas, and Filip Jur-
cicek. 2013. Comparison of bayesian discriminative
and generative models for dialogue state tracking. In
Proceedings of the SIGDIAL 2013Conference, pages
452–456.

https://doi.org/10.18653/v1/N16-1015
https://doi.org/10.18653/v1/N16-1015
https://doi.org/10.18653/v1/N16-1015
https://doi.org/10.18653/v1/D15-1199
https://doi.org/10.18653/v1/D15-1199
https://www.aclweb.org/anthology/E17-1042
https://www.aclweb.org/anthology/E17-1042
http://arxiv.org/abs/1901.08149
http://arxiv.org/abs/1901.08149
http://arxiv.org/abs/1901.08149
https://doi.org/10.18653/v1/W18-5001
https://doi.org/10.18653/v1/W18-5001

