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Abstract

Neural networks are the state-of-the-art method of machine learning for many problems in natural language

processing (NLP). Their success in machine translation and other NLP tasks is phenomenal, but their interpretability

is challenging. Inspired by the semantic properties of the word2vec vector representations of words, we want to

find out how neural networks represent meaning. In order to do this, we propose to examine neural networks
in NLP, research methods for their interpretation, concept of meaning in the philosophy of language and find a

methodology that would enable us to connect these areas in a principled manner.

1 Artificial
Language

Intelligence and

Language was one of the central topics of artificial
intelligence (AI) research ever since Turing [1950]
considered the question “Can machines think?” and
proposed to replace it with the “imitation game”,
based purely on textual communication.

There has been a tremendous development in re-
cent years in NLP, even though language is still
one of the hardest problems in AI. Machine transla-
tion systems achieve super-human performance (at
least in a competition setting) [Barrault et al., 2019].
Voice assistants are getting better and better. Some
text generation models are so powerful that their
authors consider them to pose a danger to society
[Radford et al., 2019a)].

Artificial neural networks are behind a lot of these
achievements. Being machine learning (ML) models
with up to billions of parameters and very little

structure related to the task that they are learning,
neural networks are often regarded as black boxes,
and interpretation of the trained models presents a
major scientific challenge [Belinkov et al., 2019].
Some questions are relatively easy to answer.
These include inquiry into to what extent neural
networks represent linguistic information, for which
there are annotated datasets. Other problems are
harder than that. How do neural machine transla-
tion (NMT) systems achieve the level of translation
quality comparable to humans? How do neural
networks represent meaning? Not only is there a
shortage of annotated data, but the problem is also
much more complicated on the theoretical side. The
nature of meaning is itself a subject of debate in the
philosophy of language. Together with asking the
questions mentioned above, we, therefore, need to
pick a suitable theory of meaning to specify them.
The philosophical aspects of these questions and
the artificial essence of the objects of our research
pose two methodological problems. We need to



specify what are we searching for along with the
search. And the objects of our research are not
independent of the tools that we are using for our
experiments and of the community that develops
both the NLP systems and the tools of research.
It is essential to keep this in mind and reflect on
the research from the position of the philosophy of
science as well.

This proposal is organised as follows: in Section 2,
we introduce the word2vec model and its seman-
tic properties as a motivational example for our
research. In Section 3, we describe representations
of language in neural networks and the various tasks
for which they are used. In Section 4, we review the
methods of examining neural networks. We present
results obtained with these methods in Section 5.
We conclude that an intuitive concept of meaning
is not sufficient to interpret the results. We dis-
cuss possible theoretical approaches to meaning in
Section 6. In Section 7, we sketch a possible method-
ology for combining the research in the theory of
meaning and interpretation of neural networks in
NLP in a unified framework that will enable us to
learn more about language itself. In Section 8, we
summarize related work, our prior work and plans
for further research. Full-page figures are given as
supplementary material after the bibliography.

2 Semantic Spaces in Neural
Networks

Vector word representations sometimes have inter-
esting semantic properties. The most well-known
example was found by Mikolov et al. [2013a], who
created the word2vec model. Representations from
this model obey the vector arithmetic of meanings
illustrated by Figure 1 and the following equation:

Vking — Uman + Vwoman ~ Vqueen

meaning that if we start with the word “king”, by
subtracting the vector for the word “man” and
adding the vector for the word “woman” we ar-
rive at a vector that is nearest in the vector space
to the one that corresponds to the word “queen”.
This means that queen is to woman as king is to
man.

Mikolov et al. [2013b] also trained the word2vec
model with phrases, resulting in even simpler and

WOMAN QUEENS
MAN AUNT KINGS
UNCLE
QUEEN QUEEN
KING KING

Figure 1: Examples of semantic vector arithmetic ac-
cording to Mikolov et al. [2013a].

more elegant equations, such as

VGermany T Vcapital = UBerlin-

Why does the model learn these analogies? The
authors also find this question interesting:

The model itself has no knowledge of syn-
tax or morphology or semantics. Remark-
ably, training such a purely lexical model
to maximize likelihood will induce word
representations with striking syntactic and
semantic properties. [Mikolov et al., 2013c]

Unfortunately, neither they nor anybody else (as
far as we know) has published an answer. Goldberg
and Levy [2014] ask:

Why does this produce good word repre-
sentations?

Good question. We don’t really know.

The distributional hypothesis states that
words in similar contexts have similar
meanings. The objective [of the model]
clearly tries to increase the [dot product
of the representations of the context and
the word] for good word-context pairs, and
decrease it for bad ones. Intuitively, this
means that words that share many con-
texts will be similar to each other (note
also that contexts sharing many words will
also be similar to each other). This is, how-
ever, very hand-wavy. Can we make this
intuition more precise? We’d really like to
see something more formal.

Why does the word2vec model produce word repre-
sentations with remarkable semantic properties? To
answer the question, we need to understand both
how the model works and what meaning is. The
first part is the task of NLP and ML in general; the
second is the task of the philosophy of language.



3 Representations of Lan-

guage

Before we present our account of what the answers
to the questions about neural networks and seman-
tics should look like and how we propose to get
closer to it, we need to introduce the representa-
tions of language that we are going to study and
the tasks for which they are used.

In neural networks, language is represented by
vectors of weights or activations. The vector repre-
sentations of language units (documents, sentences,
words, parts of words, characters), usually called
embeddings, are mappings from a discrete and sparse
space of individual units to a continuous and dense
vector space.

Word embeddings are used in various applica-
tions. In this section, we describe tasks that are
important for our research. Other tasks that we
are interested in include text generation, question
answering, sentiment analysis, summarization, and
image captioning.

3.1 Language Models

One of the first applications that used word embed-
dings was a neural language model [Bengio et al.,
2003]. It was a simple feed-forward neural network
that predicted the next word given the k preceding
words.

Today, the state-of-the-art language models (e.g.
GPT-2, Radford et al. [2019b]) use the Transformer
architecture [Vaswani et al., 2017] with billions of
parameters.

3.2 Pretrained Representations

Some unsupervised models are used specifically for
obtaining vector representations of words. These
representations are then used in other tasks where
data scarcity prevents training the embeddings from
scratch. The embeddings may be adapted to the
task together with the rest of the network (this
process is called fine-tuning).

One such model is the word2vec mentioned above;
others include Glove [Pennington et al., 2014] and
fastText Bojanowski et al. [2017]. Also interesting
are the language models with the so-called context
embeddings, e.g. eLMo [Peters et al., 2018] and
BERT [Devlin et al., 2019]. These models can also

be trained on a corpus consisting of text in many
languages, creating one multilingual model that is
able to produce representations independent on the
input language.

3.3 Neural Machine Translation

Translation can be taken as a direct application
of semantics if we assume there is a procedure for
comparing the meaning of expressions in different
languages. There are also other possibilities, such
as defining meaning through a process of translation
of symbols [Peirce, 1935], or describing meaning as
that what is invariant in the empirical process of
translation [Toury, 1980]. In any case, translation
and meaning are closely related.

NMT started as a general sequence to sequence
learning algorithm with a simple recurrent neural
network (RNN) architecture [Sutskever et al., 2014].
Later, the attention mechanism [Bahdanau et al.,
2014] was added to help the translation model with
alignment. In recent years, the attention mechanism
is being used without recurrent network cells in the
Transformer model [Vaswani et al., 2017].

Unsupervised NMT [Lample et al., 2018] is a re-
cent technique that makes it possible to train trans-
lation models without parallel corpora. It starts
with mapping the word embedding spaces of the
languages from the translation pair on each other.
Then it creates a simple word-for-word translation
model for each translation direction and creates
a training corpus by translating monolingual data
with these models. It iteratively makes the models
and the corpus better, by training one of the sys-
tems on the data produced as translations by the
other system. Each system is learning to translate
from the synthetic data (translations) to the nat-
ural data (original monolingual corpus). As it is
getting better, it produces better translations and
therefore better training data for the other model,
which translates in the opposite direction.

The first step of the unsupervised NMT, the map-
ping of the embedding spaces can be done in an
unsupervised manner, based on the fact that em-
bedding spaces have similar shape even for different
languages. This leads us to believe that the embed-
ding space is structured in a meaningful way.

Machine translation is also interesting for transla-
tion theory and philosophy of language. The previ-
ous machine translation (MT) paradigm, statistical



machine translation, was explicitly based upon the
idea of the noisy channel model [Weaver, 1955]. Neu-
ral machine translation is still implicitly based on
the probabilistic interpretation of neural networks.
It is the task for translation theory and philosophy
of language to determine to what extent is the prob-
abilistic paradigm applicable to translation or find
another one if need be.

4 Examining Representations
of Language

In this section, we present two groups of methods
for investigating language representations in neural
networks: probing and unsupervised methods.

Bakarov [2018] presents an overview of the meth-
ods of examining vector representations in NLP. Fur-
ther information can also be found in the overview
of methods for analysing deep learning models for
NLP [Belinkov and Glass, 2019].

4.1 Probing

According to Belinkov and Glass [2019], the most
common approach for examining linguistic proper-
ties in neural network components is using a clas-
sifier to predict such properties from activations of
the neural network. We refer to this approach as
“probing”.

Probing is a supervised method, so using it re-
quires data annotated for the studied property. This
means that with the help of probing, we can only
reveal in representations the kind of information
that we have previously decided to look for in them
and we have an annotated dataset for them.

This introduces a systemic bias into the research.
It is easier to probe for properties that are already
described in formal frameworks with large annotated
datasets. The results that find these properties in
the representations then retroactively affirm the
correctness of the formal frameworks.

4.2 Unsupervised Methods

The goal of unsupervised methods is first to find
what plays an important role and only then label
it. One example would be clustering, where we first
find the clusters in the space and then try to assign
labels to them. Unsupervised methods avoid the

bias inherent in the choice of the information to
classify in probing. The cost is that the results are
usually harder to quantify.

To illustrate this with an example: it is possible
to show that we can partition the Czech embedding
space from NMT encoder into parts that correspond
to part of speech (POS) [Musil, 2019]. Does this
mean that information about POS is important for
the NMT system? Maybe it merely shows that we
can divide the high dimensional space by criteria
that are mostly arbitrary? We can make stronger
claims with the unsupervised approach, by show-
ing that in the first few dimensions of principal
component analysis, the embeddings naturally form
clusters that correspond to POS.

paragraphClustering is an unsupervised method
that serves to separate the data into classes. Al-
though hierarchical clustering can give us more in-
formation than just the classes themselves, it may
be too coarse — words have multiple features and
assigning them to just one class or one place in the
hierarchy is often too much of a simplification.

Principal component analysis (PCA) is a
process commonly used to decorrelate data or trans-
form data into a lower-dimension space, for example,
to visualize it. In the context of word representa-
tions, PCA was used, for example, to identify a
subspace containing gender information and then
modify representations to remove gender bias (debi-
asing, Bolukbasi et al. [2016]).

Independent component analysis (ICA)
[Jutten and Herault, 1991, Comon, 1994, Hyvérinen
and Oja, 2000] is a similar method that looks for
components that have as little Gaussian data dis-
tribution as possible. It was used, for example, to
extract features from distribution representations
of the words [Honkela et al., 2010].

5 Properties of Word Embed-
dings

Because we are interested in representations of mean-
ing, we will restrict this section to embeddings of
words. The space of sentences is too large and sparse
for effective computations. Many applications use



smaller units than words, but a substantial por-
tion of them only has meaning in composition with
others.

The rest of this Section is arranged as follows: Sec-
tion 5.1 is a survey of related work; Sections 5.2-5.5
presents our contributions.

5.1 Related Work

Most of the research of interpretation of word em-
beddings consists of probing for morphology and
syntax:

Chen et al. [2013] have designed several classifier
tasks to help us better understand the information
encoded in the word embeddings, one of which is
sentiment polarity.

Kohn [2015] shows for several languages that from
the representation of a word, we can predict its
syntactic properties, such as POS, gender, case, or
number.

Qian et al. [2016] examined the properties (in-
cluding POS and sentiment) of embeddings from 3
different architectures of language models for more
than 20 languages, including Czech. They use a
multi-layer perceptron classifier trained on parts
of the dictionary and evaluated on the rest of the
dictionary.

Belinkov et al. [2017a,b] have found out what
NMT models learn about morphology and seman-
tics by training POS, morphological and semantic
taggers on representations from various models.

Saphra and Lopez [2018] showed that language
models learn POS first. The role of the language
model is to predict the next word, so the represen-
tation of the POS is a side effect, but it becomes
apparent as the learning progresses, even before the
model can successfully estimate the probabilities
of the next word. The authors use the SVCCA
(Singular Vector Canonical Correlation Analysis)
method to demonstrate that different aspects of the
language structure are learned at different rates,
with information on POS acquired at the beginning
of learning.

Hewitt and Manning [2019] probed that represen-
tations in machine translation encode syntactical
properties.

Vylomova et al. [2017] have shown that if rep-
resentations from the neural machine translation
encoder are similar to each other, then the words
they represent are semantically and morphologically

similar. What distinguishes this procedure from
classical probing is that it does not train the classi-
fier, which is replaced by an external annotation of
semantic (or morphological) similarity.

There is less work about representation of mean-
ing in word embeddings:

Gupta et al. [2015] show that representations ob-
tained by the Mikolov et al. [2013a] method contain
information about the reference properties of words,
for example, it is possible to predict the country in
which a city is located from the embedding of the
city’s name.

Hollis and Westbury [2016] have shown that prin-
cipal components of word2vec embeddings correlate
with various psycholinguistic properties.

Word embeddings are clustered according to
meaning [Liu et al., 2018] in t-SNE [Maaten and
Hinton, 2008].

5.2 Examining Word Embeddings
with PCA

Our research Musil [2019] shows that with the help
of PCA, we can show that a neural translation model
divides Czech words into POS classes. It also distin-
guishes between proper names and general nouns.
The structure of representation varies between the
encoder and the decoder of the NMT system.

The structure of the representation of the same
data in the word2vec model is different, for example,
in that it distinguishes infinitive forms of verbs or
modal verbs. A completely different structure is
found in the space of representations of words in the
neural model for sentiment analysis. All of these
facts can be shown without annotated data and thus
without deciding beforehand what we will look for
in the space of representations. For this reason, we
find our results more convincing than if they had
been obtained through probing.

Inspired by Hollis and Westbury [2016], we com-
pare the structure of Czech word embeddings for
English-Czech NMT, word2vec and sentiment anal-
ysis. We show [Musil, 2019] that although it is
possible to successfully predict POS tags from word
embeddings of word2vec and various translation
models, not all of the embedding spaces show the
same structure. The information about POS is
present in word2vec embeddings, but the high de-
gree of organization by POS in the NMT decoder
suggests that this information is more important for



machine translation and therefore the NMT model
represents it more directly. Our method is based
on correlation of PCA dimensions with categorical
linguistic data. Figure S.1 (on page 17) shows corre-
lations of POS information with PCA components
for NMT encoder, NMT decoder and word2vec em-
beddings. We also show that further examining
histograms of classes along the principal compo-
nent is important to understand the structure of
representation of information in embeddings (see
Figure S.3).

5.3 Sentiment Analysis

We have found [Musil, 2019] that the shape of the
space of word embeddings for a model trained for
sentiment analysis is triangular. In Figure S.2 (on
page 18), we see a sample of the words plotted
along the first two principal components. The first
component represents the polarity of the words
(good/bad); the second component represents in-
tensity (strong/neutral). The triangular shape may
be explained by the fact that words that are far
from the centre on the polarity axis are never of low
intensity.

5.4 Clustering Word Derivations

Derivation is a type of a word-formation process
which creates new words from existing ones by
adding, changing or deleting affixes.

To examine derivational relations in word embed-
dings, we used DeriNet [Kyjdnek, 2018], a Czech
lexical network, which organizes almost one mil-
lion Czech lemmata into derivational trees. For
each such pair, we compute the difference of the
embeddings of the two words and perform unsu-
pervised clustering of the resulting vectors. Our
results [Musil et al., 2019] show that these clusters
mostly match manually annotated semantic cate-
gories of the derivational relations (e.g. the relation
"'bake—baker’ belongs to the category ’actor’, and a
correct clustering puts it into the same cluster as
‘govern—governor’). See Figure S.4.

5.5 Preliminary ICA Results

We have used NMT and word2vec embeddings from
models trained on fiction part of the Czech side of
the Czeng corpus Bojar et al. [2016].

We look at the words that are strongest in each
ICA component. We have found that the compo-
nents represent various types of categories. We list
a few of them with examples here:

Semantic category: words with similar seman-
tic content (e.g. law and justice) from various
syntactic categories: zdkona Unie clenskijch zdkon
stanovi Komise zdkony soud zdkonu zdkonem Evrop-
ské prava prdv ustanoveni narizeni poruseni soudu
tj souladu podminek

Semantic and syntactic category: words that
are defined both semantically and syntactically, in
this case, verbs associated with going somewhere
in the past tense and masculine gender: sel zasel
zagit jit spéchal $la zavedl vesel dopravit nesel vrdtil
poslal vydal sli poslat prisel odjel prijel jel dorazil

Syntactic subcategory: words with specific syn-
tactic features, but semanticaly diverse (in this case,
adjectives in feminine singular form): Velkd moudrd
obcanskd dlouhd slabd cestnd Zeleznd prekrdasnd
hladkd urcitd marnd tmavd hrubd prijemnd bezpecnd
mekkd svatd nutnd volnd zajimavd

Feature across POS categories: e.g. fem-
inine plural form for adjectives, pronouns and
verbs: tyto tyhle nemély byly mohly zacaly vynofily
zmizely mély objevily vsechny vypadaly nebyly
zdéaly zménily staly takové podobné jiné tytéz

Stylistic: in this case non-standard forms: mds
bys ty nemds ses ses vis Hele kterej sis jses bejt vo
svyho celej delds chcees teda kaZdej velkej

We are finding that many ICA components repre-
sent various features of words. It seems to classify
not only morphology and syntax, but also semantics,
so it is a promising research direction for inquiries
about representations of meaning.

6 NLP and Philosophy of Lan-
guage

Towards the end of Sections 5.1 and 5.5, we talked
about meaning. What is meant by meaning is part
of the problem that we aim to solve. There is
no agreed-upon general definition of ‘meaning’ (or



‘sense’, ‘semantics’,
[2013] explains:

..), as, for example, Stokhof

Usually, [the theoretical and conceptual
diversity in formal semantics] is not re-
garded as particularly problematic, and
is often explained by pointing out that
they are merely different ways of address-
ing the phenomena that semanticists are
interested in. Be that as it may, what
does seem puzzling to us is that there is
no firm consensus on what constitutes a
proper conceptualisation of the core phe-
nomena. Thus we find meaning described
in terms of truth-conditions (intensionally
or extensionally conceived), as constituted
by assertability conditions, characterised
in terms of update conditions or context-
change potentials, analysed in terms of
inference potential, and so on. And then
there is the added dimension of speaker’s
meaning and conversational implicature,
and the concomitant discussions about the
dependence between such notions and lit-
eral meaning (if such is acknowledged as a
bona fide entity to begin with).

To be able to talk about representations of mean-
ing, we will have to review different conceptualiza-
tions of meaning and find one that is useful for
describing the phenomena we encounter when we
examine how neural networks work in NLP.

There is almost no related work that would con-
nect NLP with the philosophy of language. Honkela
[2007] links neural language models, self-organizing
maps and Quine’s semantic holism.

6.1 The Distributional Hypothesis

If neural language models or pretrained embeddings
represent meaning at all, it must be derived from the
training corpus. The language model does not have
access to any information besides the corpus, which
is only seen through a sliding window of tokens.
This may be the reason behind the popularity of
the distributional hypothesis in neural language
model literature. The famous saying by Firth Firth
[1957], “You shall know a word by the company it
keeps!”, is quoted in almost every paper concerned
with vector space models of language.

The general distributional hypothesis states that
the meaning of a word is given by the contexts
in which it occurs. It is, however, worth noticing
that in Firth’s theory, collocation is just one among
multiple levels of meaning, and his text does not
support the idea of meaning based on context alone.

6.2 The Use Theory of Meaning

The use theory of meaning can be summed up as
“the meaning of a word is its use in the language’
[Wittgenstein, 1953, §43]. It is associated with
late Wittgenstein’s concept of language game. In
Philosophical Investigations [1953, §§ 499-500], he

writes:

)

To say “This combination of words makes
no sense” excludes it from the sphere of
language and thereby bounds the domain
of language. [..] When a sentence is called
senseless, it is not as it were its sense that
is senseless. But a combination of words
is being excluded from the language, with-
drawn from circulation.

This “bounding of the domain of language” is pre-
cisely what language model does; therefore, the
use theory may be one way to connect language
modelling and semantics.

That “knowledge of language emerges from lan-
guage use” is also one of the main hypotheses of
cognitive linguistics [Croft and Cruse, 2004].

6.3 Structuralism

In structuralism, the meaning of a word is given
by its relation to the other words of the language
[de Saussure, 1916]. This holds for word represen-
tations in artificial neural networks as well. The
vectors representing the words do not have any other
meaning than their position among the rest of the
vectors, and a single vector does not have any signif-
icance outside the model. This is also demonstrated
by the vectors being different every time the model
is trained because of random initialization.

6.4 Semantic Holism and Atomism

Word representations obtained from the word2vec
model exhibit interesting semantic properties. This



is usually explained by referring to the general dis-
tributional hypothesis. We propose [Musil, 2020]
a more specific approach based on Frege’s holistic
and functional approach to meaning.

CBOW

Skip-gram
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Figure 2: CBOW and Skip-gram language models ac-
cording to Mikolov et al. [2013a].

There are two variants of the word2vec model
[Mikolov et al., 2013a]. The CBOW variant predicts
a missing word based on the context; the Skip-
gram variant predicts context words based on a
single word (see Figure 2). The Skip-gram variant
performs better in analogy tasks [Mikolov et al.,
2013c]. We show that the training process the Skip-
gram variant of word2vec is analogous to a holistic
definition of meaning.

Semantic holism (or meaning holism) is “the the-
sis that what a linguistic expression means depends
on its relations to many or all other expressions
within the same totality. [..] The totality in ques-
tion may be the language to which the expressions
belong or a theory formulation in that language.”
[Fodor and Lepore, 1992] The opposing view is called
semantic atomism, and it claims that there are ex-
pressions (typically words), whose meaning does not
depend on the meaning of other expressions. The
meaning of these expressions is given by something
outside language (e.g. their relation to physical or
mental objects).

Taking Tugendhat’s formal reinterpretation of
Frege’s work [Tugendhat, 1970] as a starting point,
we demonstrate that it is analogical to the process of
training the Skip-gram model and it offers a possible
explanation of its semantic properties. Tugendhat’s
definition of meaning as truth-value potential is:

[T]wo expressions ¢ and v have the same
truth-value potential if and only if, when-
ever each is completed by the same expres-
sion to form a sentence, the two sentences

have the same truth-value.

This definition has one crucial aspect in common
with the Skip-gram version of the word2vec model:
while we examine the meaning of an expression, the
expression is fixed, and the context is changing for
comparison. Therefore, it presupposes the context
as the source of meaning, in the same way, that
Skip-gram learns the representation of a word from
the representation of the context. The fact that the
holistic Skip-gram version of word2vec works better
in analogy tasks than the complementary atomistic
CBOW version supports the holistic approach to
meaning [Musil, 2020].

6.5 Objectivism, Subjectivism and
Experientialism

Study of metaphor and its connection to experience
led Lakoff and Johnson [1980] to criticise both the
objectivist and subjectivist approaches to language.
Melby [1994] applies this critique to MT and says
that “most work in machine translation is explicitly
or implicitly based on [the objectivist framework].”
He lists the following beliefs as characteristic for
objectivism:

1. Words and expressions are mapped to senses.

2. Each sense exists independently and has the
properties of mathematical sets.

3. The meaning of a sentence can be obtained by
combining the word senses from the bottom
up.

Although this may seem similar to semantic atom-
ism, the “myth of objectivism” is a broader view. In
the original formulation Lakoff and Johnson [1980],
it talks about epistemology and ontology in a way
that is not necessarily implied by semantic atomism.
To overcome the myth, we need to accept experience
as the source of knowledge.

Melby [1994] claimed that contemporary tech-
niques of machine translation will never be extended
to handle general language texts and that entirely
new techniques that avoid the assumptions of ob-
jectivism will be needed; the systems need to un-
derstand dynamic metaphor and exhibit flexibility
in handling new situations. If Lakoff and Johnson’s
theory of metaphor holds, this is a trivial conse-
quence: since understanding metaphor is based on
experience and contemporary translation systems



do not experience anything, they cannot understand
and translate metaphors.

More than 25 years later, NMT is based on princi-
ples that can hardly be construed as an extension of
the old techniques. They are much more flexible and
in general, produce significantly better translations.
Do neural networks somehow evade the pitfalls of
objectivism? Maybe going repeatedly through the
enormous quantity of textual data constitutes a
kind of experience; perhaps it is possible to extract
the experience of others from the data? May that
be one of the reasons for their sudden success in
MT and other NLP applications?

7 Al and Philosophy of Sci-
ence

In the previous sections, we examined NLP appli-
cations and came to the conclusion that we should
interpret the principles of their operation from the
point of view of the philosophy of language. What
kind of scientific methodology should we apply in
this case?

When we investigate NLP (and artificial intel-
ligence in general), we are not dealing with ob-
jects that are independent of the community of
researchers as does biology or physics. Furthermore,
we are using machine learning methods to run ex-
periments on the results of other machine learning
methods.

The question of how to incorporate results of ma-
chine learning into the scientific workflow is starting
to come up in other sciences as well, e.g. biology
[Smyc¢ka, 2020].

In this section, we sketch one possible approach to
this problem. Because we are talking about artificial
intelligence (in a broad sense), we will start by
distinguishing between natural and artificial. This
distinction is going to be useful in Section 7.2, where
we discuss current NLP practice from the point of
view of the philosophy of science.

7.1 Natural and Artificial

According to Romportl [2015], natural is “that
which defies being captured by language”. It is asso-
ciated with organic growth and the Greek concept
of pvaic (physis). Artificial is “that whose essence is
fully determined by language”. It is associated with

human reason, rationality, (interpretable) structure
and the Greek concept of Adyoc (logos).

Most things have both of these aspects. For ex-
ample:

Let’s imagine an old rustic wooden table.
What is artificial about it? That which we
can grasp with words: shape and size of its
geometrical idealisation, its weight, colour
tone, purpose, or perhaps a description of
the way it was made by a carpenter with
an axe, a saw and a jack plane. However,
we cannot describe how exactly it looks,
how it feels when being touched, the exact
look of its texture and wood structure, its
smell. [Romportl, 2015]

The undescribable remainder is the natural.

In this sense, emergent strong Al would be partly
natural because we would not control every partic-
ular aspect of its creation. There are two strong ar-
guments for the naturalness of NLP applications as
well: solving tasks like natural language understand-
ing may be equivalent to creating general strong Al
Also, language itself lies between the natural and
the artificial:

Language in general is a long bridge be-
tween physis and logos, with deixis and
protolanguages close to the bank of physis,
formal languages, mathematics, geometry
etc. close to the bank of logos, and natu-
ral language somewhere in between, where
human minds operate. [Romportl, 2015]

Can we say that contemporary artificial neural
network models applied to NLP are already natural
in this sense? We think that we can. The fact
that there are workshops such as BlackBox NLP
dedicated to interpreting neural networks in NLP
proves that there are aspects of their behaviour that
we do not yet understand. The general conclusion
was also stated by Romportl [2015]: “[W]e should
seriously start to think how to live with the natural
machine intelligence that has already started to
emerge on top of our technological artefacts.”

7.2 Science and NLP

We can use the distinction between natural and arti-
ficial to categorise various scientific methods. Some



scientific disciplines study objects that are clearly
artificial (e.g. literary studies), others are dedicated
to clearly natural fields (physics as a classic example
of a science, biology, chemistry, ...). A different situa-
tion arises in mathematics because mathematicians
are not working with something given by nature
or created by other people. They are creating and
developing a rational (and therefore artificial) struc-
ture of objects that are purely conceptual (whatever
that means—even the most stubborn supporter of
mathematical platonism would concede that num-
bers exist in a different way than rocks, plants and
animals). This self-referential process makes its
artificialness even more apparent.

NLP (at least in its current, machine-learning-
driven form) is based on mathematics. However,
as we have demonstrated in Section 7.1, it is also
becoming natural.

The natural is examined by natural (or empirical)
sciences. We can illustrate the process of research
in natural sciences by the diagram in Figure S.5 on
page 21. The goal of science is to develop a theory
about reality. We observe reality through the phe-
nomena that we experience. Based on our current
theories, we design instruments and experiments
to measure the observed phenomena. The results
of these measurements and experiments inform the
development of our theories, completing the circle.
One concrete example of this scientific approach
would be cosmology, illustrated by the diagram in
Figure S.5.

The situation in (contemporary) NLP is different
because the instruments that we are developing are
not just a mean to understanding an independent
reality; they are the goal itself. The theory of NLP
is about the instruments of NLP. We illustrate this
by the diagram in Figure S.6.

The architectures of neural networks are often
developed independently of the tasks for which they
will eventually be used. Examples of this include
the same neural network architecture being used
for all text-related tasks, including MT, and even
applications unrelated to their original purpose such
as game playing [Upadhyay et al., 2019]. This uni-
versality of the instruments is one of the factors
enabling the theory to focus on the instruments
themselves and ignore what was in the previous
figure labelled as “reality”.

To examine the natural quality that emerges in
using deep neural networks in NLP, we need to take

a step back and look at the NLP research as a whole,
concentrating on the relation between language itself
and the neural networks (Figure S.7).

What should the theory be in this new picture?
We believe that linguistics, with its descriptivist
mode (and its objectivist syntax/semantics/prag-
matics divide Melby [1994]) is not the best candidate.
It should be the philosophy of language, asking ques-
tions such as “What is meaning?”. Asking this kind
of questions is vital to understand the relationship
between language and current technology.

We propose to attack the problem from two sides:

e from the perspective of the natural, we will
examine the structure of data, representations
and the algorithms that produce them,

o from the perspective of the artificial, we will
find a theory of language that would lead to
the same structures.

Examples of the first part of our research are
given in Section 5, examples of the second type are
given in Section 6.

8 Conclusion and Future

Work

Interpretability is an important challenge for neu-
ral networks in NLP. There is a limited amount of
findings about linguistic phenomena that we are
able to predict from embeddings. Much less is
known about the general properties of the embed-
ding space and about its semantic properties. As
NLP technologies—such as MT—are becoming com-
petitive with humans, we should be able to learn
something about language itself by studying the
way these technologies work. Finding a plausible
explanation of state-of-the-art technology from the
point of view of the philosophy of language would
contribute to the theory of meaning.

We have contributed to the knowledge in this field
by examining and comparing embeddings from sen-
timent analysis, NMT and word2vec [Musil, 2019].
We have demonstrated that word embeddings cap-
ture information about semantic classes of word
derivations [Musil et al., 2019]. We examined the
relationship between the word2vec model and se-
mantic holism [Musil, 2020].

10



Future work includes more examining of the em-
bedding space with component analysis, notably
ICA, extending the research of word derivations to
more languages and completing the methodological
reflections sketched in Section 7.
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Figure S.1: Correlations of POS and PCA dimensions from the encoder of the Czech-English RNN NMT model
(top left), the decoder of the English-Czech RNN NMT model (top right) and the word2vec model (bottom). The
direction of the PCA dimensions is arbitrary, so the sign of the correlation is not important in itself, only if there
are values with opposite signs in the same row we know that they are negatively correlated.
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Figure S.2: A random sample of words from the distribution of the embeddings from the sentiment analysis CNN model along the first (horizontal) and

second (vertical) PCA dimension. The top right subplot shows the complete distribution.
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e.g. kompenzovat — kompenzace (compensate — compensation)
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Figure S.4: Clusters of the derivation types.
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