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Abstract

Deep Neural Networks have rapidly become
the most dominant approach to solve many
complicated learning problems in recent times.
Although initially inspired by biological neu-
ral networks, the current deep learning systems
are much more motivated by practical engineer-
ing needs and performance requirements. And
yet, some of these networks exhibit a lot of
similarities with human brains. This thesis pro-
posal focuses on highlighting the differences in
the learning mechanisms of humans and deep
learning systems and explores yet how recent
work has established similarities between repre-
sentations learnt by deep learning systems and
cognitive data collected from the human brain.
Furthermore, we look into the benefits of using
brain-inspired techniques and experiments to
help build better systems for natural language
processing applications and the results of the
experiments done so far. Lastly, we outline the
proposal to direct our future work towards the
completion of the thesis.

1 Introduction

The AI renaissance (Tan and Lim, 2018) in the
last few decades has been a chronicle of fantastic
developments. Growing out of the idea of artificial
neural networks organized in layers (McClelland
et al., 1987), Deep Learning (Schmidhuber, 2015)
is the most successful and profitable (Chui et al.,
2018) AI technology at the present.

The incredible growth in Deep Learning based
architectures right from the AlexNet (Krizhevsky
et al., 2012) era to the revolution in Natural Lan-
guage Processing with the Transformer (Vaswani
et al., 2017) architecture, the last decade in AI has
been a witness to many interesting developments.
An interesting synthesis of such developments has
manifested itself in the form of the state-of-the-art
generalist models like GATO (Reed et al., 2022).
The impact is such that sophisticated dialog models
like LaMDA (Thoppilan et al., 2022) have made

it to the news headlines with claims of it being
‘sentient’. Hence, a pertinent question naturally
emerges: is scaling existing architectures (Kaplan
et al., 2020) the only way to solve all the problems
in Artificial Intelligence? Recent work (Hoffmann
et al., 2022; Chowdhery et al., 2022; Rae et al.,
2021; Yu et al., 2022; Brown et al., 2020; Zhang
et al., 2022) surely suggests that scaling helps. And
also, more and more works using these huge mod-
els are demonstrating systems that beat expert hu-
man performance on an array of tasks that have
been traditionally considered challenging. Popel
et al. (2020) for instance demonstrated a system
that matches (and in some situations surpass) the
quality of human translation. The efficiency of re-
cent diffusion models (Ho et al., 2020) like Imagen
(Saharia et al., 2022) and DALL.E 2 (Ramesh et al.,
2022) demonstrates the capability of AI systems to
understand the nuances of language and combine
that with the capability to understand images and
generate realistic synthetic images1. On the ques-
tion of models being proficient across tasks, the
authors of GATO (Reed et al., 2022) report that in
450 out of 604 tasks that the model was trained on,
the system performed at over 50% expert threshold.
Here expert threshold refers to the performance
of expert humans on the task. In other words, in
around 75% of the tasks, GATO performed half as
well as expert humans. Hence, the latest models do
not aim to just be good at specific tasks in one do-
main, they also aim to be proficient in a multitude
of different diverse tasks across domains. However,
it should be pointed out that most of the systems
that are trained to do multiple tasks while using a
common underlying architecture are trained on the
tasks in parallel. Most neural systems suffer from
catastrophic forgetting (Parisi et al., 2019) when
they are trained on tasks sequentially. The strive

1An implementation of the DALL.E system is avail-
able for demonstration at https://huggingface.co/spaces/dalle-
mini/dalle-mini



to match or exceed human performance across a
broad class of cognitive tasks is ultimately one of
the hallmarks of the yet to be realized artificial
general intelligence systems (AGI).

Concentrating specifically on domains such as
Computer Vision and Natural Language Process-
ing, many systems have surpassed human expert
performance on tasks like image classification (He
et al., 2015) and on benchmarks like SuperGLUE
(He et al., 2020). However, there are criticisms
at this practice of comparing human performance
with machines. There is a risk that directly compar-
ing performance accuracy between humans and ma-
chines may just “overstate machine performance”
(Shankar et al., 2020). But still, it is widely ac-
cepted that humans are way better than the cur-
rent AI systems at generalization. For instance,
as several studies (Geirhos et al. (2018); Huber
et al. (2021) show, the amazing performance of
the Convolutional Neural Networks (CNN) based
computer vision systems is heavily affected by out-
of-distribution data. Similarly, Transformers too
struggle with Out-Of-Distribution robustness. Al-
beit they fare better than CNNs (Bai et al., 2021).

While current AI systems may lack sufficient
generalization capabilities and face problems with
continual learning, studies show that their mech-
anisms work in a very similar way to actual hu-
man neural systems. And this is given the fact
that modern neural systems are designed keeping
engineering needs in mind and not the aspect of
biological plausibility. It has been seen that CNN
models show greater similarity to human and pri-
mate visual responses (Kalfas et al., 2018). They
are in fact being considered as a model for the vi-
sual system (Lindsay, 2021). Recent evidence also
suggests that Transformer based computer vision
systems (such as Vision Transformers), employ-
ing self-attention do not just outperform CNNs on
certain vision tasks, the errors they make are con-
sistent with the errors that humans make (Tuli et al.,
2021). However even though Transformers outper-
form LSTM based systems on NLP tasks, in a de-
tailed study by Abnar et al. (2019), it was seen that
LSTM based language models achieved a higher
similarity score than the Transformer based models
with human fMRI data on the same task. So, there
is a streak of recent work showing that some neu-
ral systems do indeed have a lot of similarity with
the human brains. In other words, some networks
are more biologically plausible than others (Diehl

et al., 2016; Bengio et al., 2015). However, it is
also clear that models that are indeed performing
better than others may not have greater similarity
with humans. In other words, better neural models
are not always biologically plausible 2.

In the real world, humans and all other animals,
are continuously exposed to a stream of multi-
modal signals (via the different sensory organs)
(Pollack, 2001). Cognitive scientists believe that
this complex input space, in order to be reason-
ably processed by the brain, is converted into a
manageable form (Kiebel et al., 2008). It is hy-
pothesized that this transformation is achieved by
exploiting the statistical regularities of the stimulus
space (Chandrasekaran et al., 2009). Now, modern
Deep Learning systems are also very effective at ex-
ploring the statistical regularities in the data fed to
them (Sejnowski, 2020). Hence, if it is indeed just
the capability to exploit statistical regularity in the
multimodal data that enables humans to act ‘intelli-
gently’ (measured by the performance on language
tasks), an interesting question emerges. Apart from
the performance, would neural networks exhibit
similar cognitive biases(Goyal and Bengio, 2020)
as humans? Multimodality is a relatively new field
for artificial intelligence in particular and other dis-
ciplines in general. The overall trend in the context
of studying multimodality in humans has been to
study the modes in isolation rather than studying
the synergy between them (Jewitt et al., 2016).

In the most fundamental sense, multimodality
refers to the existence of more than one ‘modality’
within a given context. However, the definition
of multimodality changes across disciplines. In
a semiotic sense (Gibbons et al., 2012), the dif-
ferent modalities are considered as different semi-
otic modes (Siefkes, 2015). Under this framework,
multimodal processes refers to the combination of
various sign-systems such that the production and
reception of such systems require interrelation of
all the constituent sign-systems (Bateman, 2012).
From a more cognitive and neuroscientific perspec-
tive, the idea of ‘mode’ is much more related to
sensory organs (Forceville, 2021; Miralles, 2022).
From this perspective, multimodal mental imagery
is a crucial element for perception (Nanay, 2018).

In terms of multimodal literature, the definition
of multimodality is similar to the notion of cog-
nitive and neuroscientific literature (Parcalabescu

2The notion of biological plausibility here adapts the de-
scription of biological plausibility in Marblestone et al. (2016)



et al., 2021). However, the definitions of multi-
modality proposed in the machine learning liter-
ature is often task-relative and does not consider
any general behavior as a whole. This has a couple
of limitations. Natural Language Understanding
is often considered to be the “Holy Grail” of NLP
(Kiseleva et al., 2022) while human-like perfor-
mance is considered to be the “Holy Grail” for
most AI-applications (Ovchinnikova, 2012). So
multimodal systems that are proficient in natural
language understanding and exhibiting human-like
performance is an important milestone in AI re-
search. In this proposal, we consider a general defi-
nition of multimodality for machine learning that
allows for the inclusion of any number of modali-
ties and is task-independent.

So, current state of the art systems indeed ex-
hibit traits that are similar to human brains while
not being ‘human-like’ by design. At the same
time, humans are good at generalization and learn-
ing new tasks while not completely forgetting the
old tasks. This is something that modern neural
systems struggle with.

And so, given these facts, this proposal concen-
trates on three major questions:

1. If humans and current AI systems were given
the same multimodal tasks, how would their
performance be compared.

2. How do we use multimodal deep learning sys-
tems to make predictions about observable
human brain behaviour when handling multi-
modal tasks.

3. Does biological plausibility help in designing
systems that exhibit human learning abilities.

This proposal is structured as follows. In Sec-
tion 2, we review the existing literature looking
into the different similarities and differences in
the mechanisms of human learning. We follow
that with reviewing how current techniques allow
comparison between the representations learnt by
neural models on specific tasks and human cog-
nitive data (fMRI, EEG and so on) on the same
task. We then explore catastrophic forgetting and
multimodal learning in deep neural networks. In
Section 4, we present the results of the experiments
done so far. We first discuss about a novel dataset
that we created by collecting the eye gaze, EEG
and audio data from participants performing some
language tasks as part of a psycholinguistic experi-
ment. We then discuss about our experiments with

using pretrained language models to predict human
cognitive data. Then we go on to describe our ex-
periments with exploring how different pretrained
models encode different linguistic information in
their layers. Finally, we describe a psycholinguis-
tic experiment where we used a pretrained GPT-2
model to compare multimodal reading behaviour
with human participants. Lastly, we describe our
plan for future work in Section 5.

2 Related Work

Detailed exploration into the processes of human
learning have been conducted with much depth
and breadth from a perspective of neuroscience,
cognitive science and psycholinguistics. The recent
advances in deep learning have also contributed to
an understanding about the mechanisms of learning
in deep neural nets. In this section we take a closer
look at both of those mechanisms to identify the
points of similarity and differences between them.

2.1 Mechanisms of human and machine
learning

Shuell (1986), in an early and influential descrip-
tion of learning from cognitive psychology perspec-
tive outlines human learning to be an “active and
constructive” process that is mediated by higher-
order processes in the brain. The hierarchical na-
ture of psychological processes (Posner and Pe-
tersen, 1989) responsible for learning is hypothe-
sized to be guided by selective encoding, selective
combination and selective comparison. In other
words, the process of learning involves the selec-
tion of relevant information from the stimuli (se-
lective encoding) (Colegatef et al., 1973; Schotter
et al., 2010), combining the selected information
(selective combination) (Bartolomeo et al., 2012;
Fernandez et al., 2019) and finally using the new
encoded information by combining it with prior
knowledge (selective comparison) (Heekeren et al.,
2004). This general idea of hierarchical representa-
tion of knowledge is one of the core concepts driv-
ing representation learning (Bengio et al., 2013)
with deep neural networks. Another concept that is
at the heart of representation learning and thus deep
learning is the back-propagation algorithm (Rumel-
hart et al., 1986). Ever since it’s introduction, neu-
roscientists pondered on the biological plausibility
of back-propagation (Stork, 1989). And recent ev-
idence (Song et al., 2020; Lillicrap et al., 2020;
Millidge et al., 2021) points to the fact that back-



propagation might be possible in brain-learning
mechanisms. However Bartunov et al. (2018) claim
that back-propagation in its current form is impos-
sible to implement in a real brain. The fact remains
that we do not know exactly know how learning
occurs in human brains.

In humans, it is the attention mechanism that se-
lectively extracts information from the environment
and relays it for further processing by the brain
(Lindsay, 2020). Interestingly, the introduction
of the “neural attention” (Bahdanau et al., 2014)
and eventually “transformer attention” (Vaswani
et al., 2017) was followed by major improvements
in NLP applications. And although at a high-level
both mechanisms of attention seem similar, they
are not always correlated (Lai et al., 2020). In fact,
there is a lack of research exploring the connection
between human and artificial attention.

Also, current networks are data-hungry and lack
in generalization performance in comparison to
humans (Linzen, 2020). Training these models
require tuning millions if not billions of parame-
ters through multiple iterations on huge corpora.
And current methods require operations on all the
parameters of a neural model while learning (as
well well as inference). In contrast, studies in neu-
roscience using multi-task fMRI data (Ramezani
et al., 2014) shows that only a few regions in the
brain are activated at the same time. In humans,
it has been observed that single neurons respond
selectively to the representations of the same con-
cept across different sensory modalities (Quiroga
et al., 2009). The same study also shows that the
neurons grow less modality specific in the depths
of certain brain areas. In other words, in certain
deeper areas of the brain, concepts are represented
in a way that neurons corresponding to those con-
cepts exhibit activity whenever such concepts are
referenced by any modality. To give an example,
according to the study, the concept of “ice-cream”
is represented in those brain areas in such a way
that neurons corresponding to the ‘concept’ of ice-
cream show activity whenever there is a reference
to ice-cream by any modality (i.e. someone talking
about ice-cream or a picture of an ice-cream). Goh
et al. (2021) showed that the same phenomenon
was observed in CLIP (Radford et al., 2021) based
neural models.

Perconti and Plebe (2020) remarks, “Although
deep learning models are grounded in the connec-
tionist paradigm, their recent advances were basi-

Figure 1: An example of first- and second-order analyses, where N = # of experimental conditions, M = # of
models, and H = # of activity patterns observed for a given model (i.e. dimensionality). The right-most side of
the figure depicts a representational similairty matrix (RSM) of correlations between RDMs.

tional methods. Intuitively, this can be expressed
through the notion of distance between distances,
and is thus related to Earth Mover’s Distance
(Rubner et al., 2000).1 Figure 1 shows an illus-
tration of the first and second order analyses for
pretrained language encoders.

Note that RSA is meaningfully different from,
and complementary to, methods that employ sat-
urating functions of representation distances (e.g.
decoding accuracy, mutual information), which
suffer from (a) a ceiling effect: being able to
distinguish experimental phenomenon A from B
with with an accuracy of 100% and experimental
phenomenon C from D with an accuracy of 100%
does not mean that the distance between A and B
is the same as that between C and D; and (b) dis-
cretization (Nili et al., 2014).

We follow Kriegeskorte et al. (2008) in us-
ing the correlation distance of experimental con-
dition pairs ni, nj ∈ N as a dissimilarity mea-
sure, where n̄i is the mean of ni’s elements, · is
the dot product, and ‖ is the l2 norm: corr(x) =

1 − (ni−n̄i)·(nj−n̄j)
‖(ni−n̄i‖2‖(nj−n̄j‖2

. Compared to other mea-
sures, correlation distance is preferable as it nor-
malizes both the mean and variance of activity pat-
terns over experimental conditions. Other popular
measures include the Euclidean distance and the
Malahanobis distance (Kriegeskorte et al., 2006).

3 Fixation Duration and Encoder
Disagreement

Gaze fixation patterns have been shown to strongly
reflect the online cognitive processing demands of

1More precisely, our measure of dissimilarity between ex-
perimental conditions is analogous to ground distance and
dissimilarity between RDMs to earth mover’s distance.

human readers (Raney et al., 2014; Ashby et al.,
2005) and to be dependent upon a number of lin-
guistic factors (Van Gompel, 2007). Specifically,
it has been demonstrated that word frequency, syn-
tactic complexity, and lexical ambiguity play a
strong part in determining which sentences are dif-
ficult for humans to process (Rayner and Duffy,
1986; Duffy et al., 1988; Levy, 2008).

Using the RSA framework, we aim to explore
how gaze fixation patterns and the linguistic fac-
tors associated with sentence processing difficulty
relate to the representational spaces of popular lan-
guage encoders. Namely, we hypothesize that, for
a given sentence, disagreement between hidden
layers corresponds to processing difficulty. Be-
cause layer disagreement for a sentence measures
the extent to which two layers (e.g. within BERT)
disagree with each other about the pairwise simi-
larity of the sentence (with other sentences in the
corpus), a sentence with high layer disagreement
will have unstable similarity relationships to other
sentences in the corpus. This indicates that it has
a degraded encoder representation. Going further,
we also hypothesize that models’ representations
of said sentences may be confounded, in part, by
factors that are known to influence humans.

Eye-tracking data For our experiments, we
make use of the Dundee eye-tracking corpus
(Kennedy et al., 2003), the English part of which
consists of eye-movement data recorded as 10
native participants read 2,368 sentences from 20
newspaper articles. We consider the following fix-
ation features: TOTAL FIXATION DURATION and
FIRST PASS DURATION. For each of the features,
we first take the average of the measurements
recorded for all 10 participants per word, then ob-

Figure 1: Using Representational Similarity Analysis
(Kriegeskorte et al., 2008) to compare the representa-
tions of neural models and humans. Image taken from
(Abdou et al., 2019)

cally developed with engineering goals in mind”.
The current focus of deep learning research is more
applied and tailored to solve mostly practical in-
dustrial problems. However, as modern systems
grow better at performing “complex cognitive tasks”
(Knauff and Wolf, 2010), it makes it more inter-
esting to compare not only their performance with
respect to humans, but also to study the similari-
ties and differences exhibited by their internal be-
haviour.

2.2 Comparison of human and machine
representations

In neuroscience and psycholinguistics, neural rep-
resentation refers to the activity pattern in neurons
associated with a particular experimental condi-
tion (Vilarroya, 2017). In the context of neural
networks, representations of a model refer to the
features that are extracted from the underlying data
fed to the model. And given the fact that artificial
neural networks were invented by keeping the bio-
logical neurons in mind (Sejnowski, 2020), there is
now a growing attempt to compare the representa-
tions of both (Yang and Wang, 2020).

There are two main lines of research in this di-
rection.

1. Comparing the representations of different
models and their layers, trained on the same
tasks, to get an understanding of the com-
mon features that the networks learn (Li et al.,
2015; Kornblith et al., 2019; Nguyen et al.,
2020; Kornblith et al., 2021).

2. Comparing the representations of trained ar-
tificial neural models with human brain data
on the same task to determine their similarity
with each other (Barrett et al., 2019).

Work on comparing representations between dif-
ferent convolution based neural models trained



on different image datasets show that the layers
closer to the input learn similar features (Wang
et al., 2018). In contrast, Raghu et al. (2021) show
that transformer based image models learn almost
uniform representations across most their layers
and that the representations diverge significantly
in the last few layers (Grigg et al., 2021). From a
more NLP standpoint, there is very limited work in
this particular area. While geometrical features of
the representations learnt by different models have
been explored to some extent (Ethayarajh, 2019),
the investigation of linguistic features captured by
different models and their layers (Van Aken et al.,
2019; Tenney et al., 2019; Mamou et al., 2020;
Klafka and Ettinger, 2020; Maudslay and Cotterell,
2021), is an active field of research.

Work on comparing representations of neural
models and human neurons is also a developing
area of research. While major focus on this front
has been to compare CNN based models with hu-
man cognitive data (Lindsay, 2020; Schrimpf et al.,
2020; Xu and Vaziri-Pashkam, 2021), recent work
has tried to extend the analysis for NLP models too.
Banking on the success of large language models
in various NLP tasks, there are now attempts to
determine the ability of these models to ‘capture’
brain data (Schrimpf et al., 2021; Pasquiou et al.,
2022). Apart from this, Abnar et al. (2019); Ab-
dou et al. (2019, 2020, 2021) and (Eberle et al.,
2022) have directly compared the representations
from Transformer models with human cognitive
data in the form of fMRI and gaze data. Figure 1
shows one way in which neural representations are
compared with humans.

In a slightly different research direction, some
recent works have explored the use of human cogni-
tive data to augment deep learning models (Barrett
and Hollenstein, 2020; Hollenstein et al., 2020) for
diverse tasks like measuring text complexity, part-
of-speech detection, named entity recognition and
so on. Muttenthaler et al. (2020) demonstrate how
to extract human language signals from EEG sig-
nals and inject that information into neural models.
Futrell et al. (2019) demonstrated an interesting ex-
perimental paradigm of subjecting LSTM (Hochre-
iter and Schmidhuber, 1997) models through a con-
trolled psycholinguistic experimental paradigm to
shed light on the working of the models.

2.3 Catastrophic forgetting
Humans learn how to perform multiple tasks in
succession over their lifespan. This capability of
continual learning is difficult for current state of
the art deep learning systems. However, it remains
that learning to solve multiple tasks in a sequen-
tial manner is a key requirement for general AI
(Legg and Hutter, 2007). In other words, it has
been observed that when training a network on
some task T1 is followed by training on some
other task T2, the network optimizes its weights
in a way that cater to solving T2 and thus forget-
ting the weights that it learnt to solve T1. This
phenomenon has been called catastrophic forget-
ting. Catastrophic forgetting is a problem that was
recognized way back when the first connectionist
models appeared (McCloskey and Cohen, 1989;
Ratcliff, 1990). As McCloskey and Cohen (1989)
reason: the learning of new facts (interference) in-
volves the building of new propositional structure3

in the network. And since the new representations
are separate from the other representations, the
new adjustment of weights to encode the new in-
put alters the network’s response to other older
inputs. French (1999) made a distinction between
catastrophic interference and gradual interference.
Gradual interference, i.e. forgetting the acquired
knowledge gradually is something that occurs in
humans too (McClelland et al., 1995). However
what makes it truly catastrophic in artificial neu-
ral networks is that the new knowledge effectively
wipes out the previous learning completely. In hu-
mans, the neocortical neurons are especially prone
to catastrophic forgetting. But the neocortical learn-
ing system is complimented by the ‘replay mech-
anism’ of memories (experiences) from the hip-
pocampus that, helps to perform tasks that have not
been recently performed. Recent work in neuro-
science later showed that animal brains may avoid
catastrophic forgetting by storing the previously
acquired knowledge in special neocortical circuits
(Yang et al., 2009).

In the more relatively recent deep learning era,
in one of the first works on catastrophic forgetting,
Srivastava et al. (2013) argued that the choice of
activation function has a significant effect on catas-
trophic forgetting. It was also found that when
trained with dropout (Srivastava et al., 2014), net-

3Anderson and Bower (1974) defines a proposition as an
associative configuration of elements which is abstract, struc-
tured according to certain rules of formation and has a ‘truth
value’(represents a particular concept/object)



Results
EWC. In brains, synaptic consolidation might enable continual
learning by reducing the plasticity of synapses that are vital to
previously learned tasks. We implement an algorithm that per-
forms a similar operation in artificial neural networks by con-
straining important parameters to stay close to their old values.
In this section, we explain why we expect to find a solution to a
new task in the neighborhood of an older one, how we implement
the constraint, and finally how we determine which parameters
are important.

A deep neural network consists of multiple layers of lin-
ear projection followed by element-wise nonlinearities. Learn-
ing a task consists of adjusting the set of weights and biases θ
of the linear projections, to optimize performance. Many con-
figurations of θ will result in the same performance (17, 18);
this overparameterization makes it likely that there is a solu-
tion for task B, θ∗B , that is close to the previously found solu-
tion for task A, θ∗A. While learning task B, EWC therefore
protects the performance in task A by constraining the param-
eters to stay in a region of low error for task A centered around
θ∗A, as shown schematically in Fig. 1. This constraint is imple-
mented as a quadratic penalty and can therefore be imagined
as a spring anchoring the parameters to the previous solution,
hence having the name elastic. Importantly, the stiffness of this
spring should not be the same for all parameters; rather, it
should be greater for parameters that most affect performance in
task A.

To justify this choice of constraint and to define which weights
are most important for a task, it is useful to consider neural net-
work training from a probabilistic perspective. From this point
of view, optimizing the parameters is tantamount to finding their
most probable values given some data D. We can compute this
conditional probability p(θ|D) from the prior probability of the
parameters p(θ) and the probability of the data p(D|θ) by using
Bayes’ rule:

log p(θ|D) = log p(D|θ) + log p(θ)− log p(D). [1]

Note that the log probability of the data given the parame-
ters log p(D|θ) is simply the negative of the loss function for the
problem at hand −L(θ). Assume that the data are split into two

Fig. 1. EWC ensures task A is remembered while training on task B. Train-
ing trajectories are illustrated in a schematic parameter space, with param-
eter regions leading to good performance on task A (gray) and on task B
(cream color). After learning the first task, the parameters are at θ∗A . If we
take gradient steps according to task B alone (blue arrow), we will minimize
the loss of task B but destroy what we have learned for task A. On the other
hand, if we constrain each weight with the same coefficient (green arrow),
the restriction imposed is too severe and we can remember task A only at
the expense of not learning task B. EWC, conversely, finds a solution for
task B without incurring a significant loss on task A (red arrow) by explicitly
computing how important weights are for task A.

independent parts, one defining task A (DA) and the other defin-
ing task B (DB ). Then, we can rearrange Eq. 1:

log p(θ|D) = log p(DB |θ) + log p(θ|DA)− log p(DB ). [2]

Note that the left-hand side is still describing the posterior
probability of the parameters given the entire dataset, whereas
the right-hand side depends only on the loss function for task
B, log p(DB |θ). All of the information about task A must there-
fore have been absorbed into the posterior distribution p(θ|DA).
This posterior probability must contain information about which
parameters were important to task A and is therefore the key to
implementing EWC. The true posterior probability is intractable,
so, following the work on the Laplace approximation by Mackay
(19), we approximate the posterior as a Gaussian distribution
with mean given by the parameters θ∗A and a diagonal precision
given by the diagonal of the Fisher information matrix F . F has
three key properties (20): (i) It is equivalent to the second deriva-
tive of the loss near a minimum, (ii) it can be computed from
first-order derivatives alone and is thus easy to calculate even for
large models, and (iii) it is guaranteed to be positive semidefi-
nite. Note that this approach is similar to expectation propaga-
tion where each subtask is seen as a factor of the posterior (21).
Given this approximation, the function L that we minimize in
EWC is

L(θ) = LB (θ) +
∑
i

λ

2
Fi(θi − θ∗A,i)

2
, [3]

where LB (θ) is the loss for task B only, λ sets how important
the old task is compared with the new one, and i labels each
parameter.

When moving to a third task, task C, EWC will try to keep
the network parameters close to the learned parameters of both
tasks A and B. This can be enforced either with two separate
penalties or as one by noting that the sum of two quadratic penal-
ties is itself a quadratic penalty.

EWC Extends Memory Lifetime for Random Patterns. As an initial
demonstration, we trained a linear network to associate random
(i.e., uncorrelated) binary patterns to binary outcomes. Whereas
this problem differs in important ways from more realistic set-
tings that we examine later, this scenario admits analytical solu-
tions and thus provides insights into key differences between
EWC and plain gradient descent. In this case, the diagonal of
the total Fisher information matrix is proportional to the num-
ber of patterns observed; thus in the case of EWC the learning
rate lowers as more patterns are observed. Following ref. 15, we
define a memory as retained if its signal-to-noise ratio (SNR)
exceeds a certain threshold. Fig. 2, Top shows the SNR obtained
using gradient descent (blue lines) and EWC (red lines) for the
first pattern observed. At first, the SNR in the two cases is very
similar, following a power-law decay with a slope of −0.5. As
the number of patterns observed approaches the capacity of the
network, the SNR for gradient descent starts decaying exponen-
tially, whereas EWC maintains a power-law decay. The exponen-
tial decay observed with gradient descent is due to new patterns
interfering with old ones; EWC protects from such interference
and increases the fraction of memories retained (Fig. 2, Bottom).
In the next sections we show that in more realistic cases, where
input patterns have more complex statistics, interference occurs
more easily with consequently more striking benefits for EWC
over gradient descent.

EWC Allows Continual Learning in a Supervised Learning Context.
We next addressed the problem of whether EWC could allow
deep neural networks to learn a set of more complex tasks with-
out catastrophic forgetting. In particular, we trained a fully con-
nected multilayer neural network on several supervised learning
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Figure 2: EWC regularizes the weight in such a way that
the weights from task A is remembered while training
on Task B. The image has been taken from (Kirkpatrick
et al., 2017)

works learning similar tasks in a sequence suffer
from lesser catastrophic forgetting than learning
dissimilar tasks (Goodfellow et al., 2013). Luong
et al. (2015) showed that training on two tasks si-
multaneously, the models optimize their weights
to perform well on both tasks. A major develop-
ment in the direction of reducing catastrophic for-
getting has been the use of biologically inspired
methods like elastic weight consolidation (EWC)
(Kirkpatrick et al., 2017) and Aljundi et al. (2018),
both of which rely on the Fisher Information Ma-
trix (MacKay, 1992). EWC attempts to reduce
catastrophic forgetting by penalizing the difference
between the original and updated weights, with
each weight scaled with respect to their importance
to the original task. The general idea behind EWC
rests on the hypothesis that there is a likely solution
of some new task T2 in the vicinity of the weight
space learnt while learning to solve an earlier task
T1. EWC makes use of the fact that current models
are overparameterized and multiple solutions to a
particular task can be found in the huge parame-
ter space. As a result of such regularization, the
parameters are forced to stay in the vicinity of the
weights learnt to solve the previous tasks. This
effect is shown in Figure 2. Recent work in Auto-
matic Speech Recognition (Eeckt et al., 2022) has
shown that using EWC to protect adapter (Houlsby
et al., 2019) weights from catastrophic forgetting
leads to impressive gains in alleviating the prob-
lem of catastrophic forgetting in ASR systems in
multi-task learning settings.

In terms of comparing catastrophic forgetting
across model architecture families, Arora et al.
(2019) found that LSTMs are more prone to catas-

trophic forgetting than CNNs and that increasing
model capacity does not really help with reducing
catastrophic forgetting. However the claim that
increasing model capacity does not help with re-
ducing catastrophic forgetting has been challenged
by (Ramasesh et al., 2021) where they hsow that
larger models suffer less from forgetting.

2.4 Multimodal Learning

Given the definition of multimodality in machines
(as presented in Section 1), a major challenge in
building efficient multimodal systems is to address
the heterogeneity gap (Guo et al., 2019). In other
words, since different model parts are trained on
data of different modalities or different tasks, the
features learnt by the individual parts reside on
separate sub-spaces. And hence, the vector repre-
sentations associated with similar semantics would
be very different in different modalities.

Addressing this heterogeneity gap has led to
the introduction of the concept of joint represen-
tation learning by projecting the representations
from individual modalities into a common shared
subspace. This idea of fusion (Gao et al., 2020)
has been applied across multiple model architec-
tures for a diverse set of problems. Recent work
has extended the idea of multimodal fusion to the
Transformer (Vaswani et al., 2017). Tsai et al.
(2019) on the other hand propose a cross-modal
architecture where the attention block of the Trans-
former (Vaswani et al., 2017) is modified to fuse
data from two different modalities. This idea of
cross-attention is further extended by Nagrani et al.
(2021) by introducing a set of fusion ‘bottlenecks’
and achieving state of the art results on a number
of benchmarks. (Zellers et al., 2022) on the other
hand concatenate the representations obtained from
modality specific encoders and process them via a
vanilla transformer encoder.

Another technique that is widely used to allevi-
ate the heterogeneity gap is by aligning the repre-
sentations from different modalities to identify the
relations between them (Baltrušaitis et al., 2018).
Recently, models like CLIP (Radford et al., 2021),
VATT (Akbari et al., 2021) and ALIGN (Jia et al.,
2021) , all use a contrastive loss (Wang and Liu,
2021) to align the modality specific data and learn
useful relations between them.

Recently however, there is a trend (Reed et al.,
2022; Kaiser et al., 2017) to encode data from dif-
ferent modalities together and pass them through



a common self attention mechanism. Although
this methodology is still pretty new and relatively
unexplored.

3 Methodology

In this section, we describe in details the tasks that
we focus on with respect to the three questions
posed in the Introduction (Section 1). Our focus
lies primarily on three kinds of tasks:

• Comparison of machine representations:
Different model architectures with different
training objectives, often converge at compara-
ble performance metrics. Our objective, using
techniques like probing(Belinkov, 2022), is to
investigate the learnt representations of such
models and determine how different linguistic
features are encoded in their layers.

• Assessing the capability neural models
to predict human multimodal behavior:
Merkx and Frank (2020) demonstrated how
a “cognitively implausible model” such as the
Transformer performs better at predicting cog-
itive data. Our goal is to extend this line of
research by evaluating the performance of var-
ious models on prediction of cognitive data
across a diverse range of tasks. Our princi-
pal concern is to identify if, for multimodal
tasks, biological plausibility (banking on ex-
isting work in neuroscience) indeed translates
to better performance for machines.

• Compare humans and neural model per-
formance on the same task: The recent ad-
vances in deep learning has led to claims of
neural models performing at par with humans
on the same tasks. But as Borowski et al.
(2019) and Funke et al. (2021) show, there are
a couple of problems in the way that current
research pits human performance against ma-
chine performance. Our goal is to address this
problem by carefully designing a framework
to test human performance against machines
on multimodal tasks.

Our investigation into comparing human multi-
modal behavior with neural networks constitutes of
studying language modelling and translation mech-
anisms under multimodal settings. To this end, we
create a carefully designed psycholinguistic exper-
iment to collect the behavioural data of humans.
The experiment design is done to ensure that it can

be replicated by a trained neural network. In the
next few lines, we give a brief description of the
tasks examined by the experiment.

3.0.1 Language Modelling
We frame the task of human reading as a language
modelling task. Given a sentence s with N tokens
such that s = {s0, S1, ..., sN − 1} in a corpus of
sentences S, a language model M with parameters
θ attempts to learn a distribution pθ, such that pθ is
close to the real distribution pdata. In other words,
the parameters of the model M , when optimized
against a suitable loss function L (cross-entropy)
learns to approximate how the words are distributed
in the different sentences of S.

L(pθ, pdata) =
∑
s∈S

pθ(s)pdata(s) (1)

And hence when looked at the level of individual
words in a sentence, pθ can be written as:

pθ =

N−1∏
i=0

pθ(yi|yi−1...y0) (2)

Our hypothesis is, given the same text to humans
and neural models, word predictability statistics of
humans are correlated with the probability associ-
ated by the models with the tokens in the text. Thus,
effectively a language model learns to predict the
occurrence of a token si in a sentence s given the
occurrence of the tokens {yi−1, ...y0} previously
in the sentence.

We frame human reading as a language mod-
elling task, where we posit that the probability as-
sociated with the prediction of the next token in a
sentence translates to word predictability (Smith
and Levy, 2013) in reading.

3.0.2 Machine Translation
Just as we train language models to predict the next
token given a sentence context, in machine transla-
tion the goal is to predict the next token in a target
language given the sentence context and a source
language sentence. In other words, given a sen-
tence s = {s0, S1, ..., sN − 1} in source-language
(L1) and its translation t = {t0, t1, ..., tM − 1}
in the target language, the model is tasked with
learning the distribution:

pθ =
N−1∏
i=0

pθ(ti|ti−1...t0, s) (3)



Figure 3: Multimodal machine translation model. The
source sentence (Bengali in this example) and multi-
modal context are fed into an encoder that creates a joint
representation of the both. This joint representation is
then fed to the decoder that generates the translation of
the source sentence (English in this example).

Similar to the approach outlined in the previous
section, we test human and machine performance
on a translation task (English to Czech).

3.0.3 Multimodal Language Modelling
To assess the role of additional multimodal infor-
mation on the performance of language modelling,
we modify the task of language modelling with an
additional multimodal context such that the task
translates to learning the distribution:

pθ =
N−1∏
i=0

pθ(yi|yi−1...y0,C) (4)

Here every token yi is modelled as being condi-
tioned on both the sentence context and the multi-
modal context (C) (shown in Figure 3.

3.0.4 Multimodal Machine Translation
Similar to multimodal language modelling, we ex-
tend the machine translation task with a multimodal
context C to learning of the following distribution:

pθ =
N−1∏
i=0

pθ(ti|ti−1...t0, s,C) (5)

3.1 Evaluation

To compare the performance of machines on the
machine translation task and the multimodal ma-
chine translation task, we use commonly used met-
rics in machine translation literature like BLEU
(Papineni et al., 2002) or METEOR (Lavie and
Denkowski, 2009). However, since we ensure that
both machine translation models are fed the same
set of sentences, we then compare the outputs from

Figure 4: EMMT: Experiment setup with eyetracker
(EEG and audio recorder not shown).

both using both automatic metrics and human an-
notators to evaluate the change in output quality.
We use the same methodology for comparison of
human outputs from translating with and without
multimodal context. This gives us a framework for
comparison. To compare the human and machine
performance on the ‘reading’ tasks, we use the
scores from the final softmax scores of the models
to compare with metrics like surprisal (Monsalve
et al., 2012).

4 Experiments

So far our experiments have concentrated on creat-
ing experimental frameworks to compare humans
and neural models on the same tasks. We have
also explored the nature of representation of dif-
ferent NLP models and their capabilities to predict
cognitive data.

4.1 EMMT: A simultaneous eye-tracking,
4-electrode EEG and audio corpus for
multi-modal reading and translation
scenarios

In this section we describe our experiments with
EMMT (Bhattacharya et al., 2022a), a dataset
we created, containing monocular eye movement
recordings, audio and 4-electrode electroencephalo-
gram (EEG) data of 43 participants. The aim of
the experiment was to collect cognitive data as re-
sponses of participants engaged in a number of
language intensive tasks involving different text-
image stimuli settings when translating from En-
glish to Czech. The experiment was designed in a
way that it could be replicated by a neural system
later (described in Section 5).

Each participant was exposed to 32 text-image



stimuli pairs and asked to (1) read the English sen-
tence, (2) translate it into Czech, (3) consult the
image, (4) translate again, either updating or re-
peating the previous translation. Figure 5 shows
how the four different stages were shown to the
participants.

READ

Text

Image

TextText

TRANSLATE

Text

Image

UPDATESEE

Screen:

Time

Participant:

Figure 5: Visualization of the four experiment stages.

For the experiment, we used two sentence types
(unambiguous and ambiguous) with three image
stimuli types (related, unrelated and no image) in
a within-subjects design, i.e., every participant is
exposed to all conditions (but never on the same
stimulus). This resulted in the following six config-
urations:

• UR (unambiguous sentence + related image)
• UU (unambiguous sentence + unrelated im-

age)
• UN (unambiguous sentence + no image)
• AR (ambiguous sentence + related image)
• AU (ambiguous sentence + unrelated image)
• AN (ambiguous sentence + no image)

The related images (congruent stimuli) match
the content of the text. The unrelated images (in-
congruent stimuli) are not relevant to the text. The
“no image” condition refers to a control condition
that is comprised of an image with white back-
ground and a text saying No visual clue for this
case. Apart for these configurations, there was a
pair of contrastive sentences (in each probe labelled
as:

1. AR (ambiguous sentence + related image): A
person in a blue ski suit is racing two girls on
skis.

2. UR (unambiguous sentence + related image)):
A person in her blue ski suit is racing two girls
on skis.

The recordings were collected over a two week
period and all the participants included in the study
were Czech natives with strong English skills.

Data were recorded from each participant in
a single session. Each experiment started with

Figure 6: READ (Stage 1) and TRANSLATE (Stage 2)

Figure 7: SEE (stage 3) and UPDATE (Stage 4).

the calibration and validation of the equipment
involved (eye-tracker and EEG recorder). Each
participant was then led through a practice round
with four dummy stimuli, to get them acquainted
with the procedures of the experiment. Being a
self-paced experiment design, the participants were
given an option to temporarily pause the experi-
ment after completing the four stages of a stimulus
to take a small break. If the participants opted to
pause, the experiment would resume again with cal-
ibration and validation before starting from where
it was stopped.

The average response times for each stage are
shown in Table 1. In Stage 3 (See), when the
image was first presented, the difference across
conditions is very prominent, especially for unre-
lated and “no image” cases. The highest time is
expended for the related images, followed by the



unrelated images and finally the “no image” case.
The same trend, with lower distinction, is repeated
in Stage 4.

Condition Stage 1 Stage 2 Stage 3 Stage 4

AR 11.41 8.89 8.46 7.47
AU 11.29 9.22 7.52 7.09
AN 11.44 8.98 5.95 6.98
UR 10.63 8.80 8.25 7.37
UU 11.20 8.81 6.92 6.73
UN 10.73 8.01 5.29 6.36

Table 1: Average duration of all stages ( READ,
TRANSLATE, SEE, UPDATE ) and conditions.

The three image stimuli conditions can be
thought of as a variant of the classic Stroop task
(Stroop, 1935) involving the naming of coloured
words (MacLeod, 1992). In this experiment, the
stimuli in categories Condition 1 (AR, UR), Condi-
tion 2 (AU, UU) and Condition 3 (AN, UN) corre-
spond to congruent, incongruent and neutral stimuli
respectively. Table 2 shows t-test results for com-
parison of various pairs of stimuli conditions. The
image and the textual stimuli, therefore, correspond
to a variation of the classical visual-verbal stimuli
condition of the original Stroop task.

Condition t p

AR-AU 1.441 0.150
AR-AN 4.085 <0.001
AU-AN 3.318 0.001
UR-UU 2.725 0.007
UR-UN 7.046 <0.001
UU-UN 4.618 <0.001

Table 2: T-Test results of case-wise comparisons in
times in Stage 3.

We also found that participants spent a longer
time translating the sentences with related images
for both classes of sentences as there was signifi-
cant cognitive effort required to integrate the visual
information into the translation that they already
had in their memory. For the incongruent stimuli,
participants chose to disregard the visual informa-
tion.

4.2 Eye-Tracking prediction using pretrained
language models

This section describes our submission (Bhat-
tacharya et al., 2022b) to the cognitive data pre-
diction task at CMCL 2022 (Hollenstein et al.,
2022). The task constituted of predicting eye-gaze

attributes associated with reading sentences as a
regression task. The data for the task was com-
prised of eye movements corresponding to reading
sentences in six languages (Chinese, Dutch, En-
glish, German, Hindi, Russian). The training data
for the task contained 1703 sentences while the
development set and test set contained 104 and 324
sentences respectively. The data was presented in
a way such that for each word in a sentence there
were four associated eye-tracking features in the
form of the mean and standard deviation scores
of the Total Reading Time (TRT) and First Fixa-
tion Duration (FFD). The features in the data were
scaled in the range between 0 and 100 to facilitate
evaluation via the mean absolute average (MAE).

A total of 48 models of different configurations
were trained with the data provided for the shared
task. Thee models were primarily categorized as
System-1 and System-2 models. For some word
corresponding to a sentence in the dataset, System-
1 models provided no additional context informa-
tion. System-2 models on the other hand, contained
the information of all the words in the sentence that
preceded the current word, providing additional
context. All systems under the System-1/2 labels
were further trained as a BERT based system or a
XLM based system. 1.

Corresponding to each such language models,
the impact of different fine-tuning strategies on
system performance was studied. Hence, for one
setting, only the contextualized word representa-
tion was utilized by freezing the model weights and
putting a learnable regression layer on top of the
model output layer (classifier). Alternatively, the
models were fine-tuned with the regression layer
on top of them. Additionally, we also performed
experiments with pooling strategies for the layer
representations by either using the final hidden rep-
resentation of the first sub-word encoding of the
input or aggregating the representations of all sub-
words using mean-pooling or sum-pooling. The
rationale behind using different pooling strategies
was to have a sentence-level representation of the
input tokens.

Our experiments demonstrated that the inclu-
sion of context (previous words occurring in the
sentence) helps the models to predict eye-tracking
attributes better. We also found that XLM based
models perform relatively better than the BERT
based models. Our submissions achieved an aver-
age MAE of 5.72 and ranked 5th in the shared task.



The average MAE showed further reduction to 5.25
in post task evaluation.

4.3 Other experiments

Our recent work involved probing pretrained lan-
guage models (BERT(Devlin et al., 2019) and GPT-
2(Radford et al., 2019)) to assess their ability to
capture subtle linguistic traits like ambiguity, gram-
maticality and sentence complexity. We found that
large pre-trained language models represent sen-
tence ambiguity in a much less extractable way.
We also documented that template-based datasets,
such as BLiMP (Warstadt et al., 2020) used for
sentence acceptability, are not good for probing
because of surface-level artefacts. The experiment
also showed that features relevant to the detection
of ambiguity, complexity and grammaticality are
more concentrated on the middle layers of the pre-
trained models.

Another recent work of ours explored an exten-
sion to the well known Shannon’s game (Shannon,
1951) by including an optional extra modality in
the form of images and running it on human partic-
ipants. We also replicated a version of this experi-
ment on the GPT-2 family and compared the results
with human counterparts. We observe that the GPT-
2 model is able to make use of the extra modality
to improve its prediction. We also observe that the
GPT-2 model also exhibits some similar patterns to
human annotators.

5 Future Plans

So far we have compiled the multimodal dataset
recording human behavior on language modelling
and machine translation tasks. We have also per-
formed the initial experiments on comparing hu-
mans and pretrained language models like GPT-2
on a multimodal reading task. In addition, we have
done some preliminary investigations into explor-
ing how different pretrained models encode linguis-
tic data across their layers and how suitable they
are predict human cognitive data like eye-tracking
statistics.

We plan to continue with the exploration of the
similarities of human and machine behavior on
multimodal tasks by first formulating a detailed
account of multimodal processing in humans using
the data collected in the form of the EMMT corpus.
The investigation will also involve using recent
state-of-the-art multimodal models on the stimulus
from EMMT to gather data about machine perfor-

mance on the data. We will then finally compare
the accounts of the human behaviour and machine
behavior across the models to understand how they
fare against each other.

On the other front, we will continue with our ex-
periments with investigating the layers of different
pretrained models (including multimodal models)
to gain an understanding of how different models
encode linguistic information in their layers. We
hope to combine the knowledge gained from this
endeavour with the results from the results of com-
parison of human and machine behavior to identify
the factors (architecture, optimizer, pre-training ob-
jective etc) that make some neural systems better
at multimodal tasks. We also envisage to use this
knowledge to determine if biological plausibility of
neural models also translate to them being better at
multimodal tasks. We would additionally attempt
to determine if biologically inspired methods in
neural architectures impact catastrophic forgetting
in a multi-task learning scenario.

We would try to use the results from the experi-
ments described above to pick the best performing
models. Having already done some exploratory
experiments in this direction, we would use the
models to predict human cognitive data and thus
extend the line of research in this area as described
in (Laverghetta et al., 2022).

Finally, apart from using the state-of-the-art sys-
tems, we would also attempt to test some modifica-
tions to current models and new architectures for
multimodal learning.

6 Conclusion

This proposal highlights three questions that
emerge as deep neural networks get more powerful,
sophisticated and perform more ’complex cogni-
tive’ tasks. We ask if human participants and state-
of-the art neural systems trained on multimodal
tasks were asked to perform the same multimodal
language tasks, how would they fare against each
other. We also ask how capable ‘cognitively im-
plausible’ models are to predict observable human
behavior. And these questions lead us to ask if bio-
logical plausibility in anyway impacts the perfor-
mance of neural models. We highlight the relevant
literature pertaining to these questions and the gap
in there. Finally, we describe the experiments that
we have performed so far in the attempts to find
answers to the questions posed above.
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