
Simultaneous and Long-form Speech Translation∗

Thesis Proposal

Peter Polák
Charles University

Faculty of Mathematics and Physics
Institute of Formal and Applied Linguistics

polak@ufal.mff.cuni.cz

Abstract

The goal of the simultaneous speech transla-
tion (SST) is to provide real-time translation
before the speaker completes the sentence. Tra-
ditionally, SST has been addressed primarily by
cascaded systems that decompose the task into
subtasks, including speech recognition, speech
segmentation, and machine translation. How-
ever, the advent of deep learning has sparked
significant interest in end-to-end (E2E) systems.
Nevertheless, a major limitation of most ap-
proaches to E2E SST reported in the current
literature is that they assume that the source
speech is pre-segmented into sentences, which
is a significant obstacle for practical real-world
applications. This thesis proposal focuses on
end-to-end simultaneous speech translation, es-
pecially in the long-form setting, i.e., not pre-
segmented. We provide an overview of recent
developments in the field of E2E SST, exam-
ine the main challenges associated with SST
and its applicability in long-form scenarios, and
propose methods to address these challenges.

1 Introduction

In today’s highly globalized world, communication
among individuals speaking different languages
is gaining importance. International conferences
and multinational organizations, such as the Euro-
pean Parliament, often rely on human interpreters.
However, in many scenarios, employing human in-
terpreters can be impractical and costly. In such
cases, simultaneous speech translation (SST) offers
a viable solution by enabling real-time translation
before the speaker completes their sentence.

∗ The literature on simultaneous speech translation often
uses the word “streaming” as an equivalent of “simultaneous”
to refer to the translation of an unfinished utterance. In other
literature, however, the term “streaming” is used to refer to
input that spans several sentences. To avoid confusion, we
have chosen the word “simultaneous” to refer to the translation
of an unfinished utterance, and “long-form” to refer to input
that spans several sentences.

Traditionally, both offline speech translation
(ST) and simultaneous speech translation (SST)
have relied predominantly on cascaded systems that
decompose the task into multiple subtasks, includ-
ing speech recognition, speech segmentation, and
machine translation (Osterholtz et al., 1992; Fügen
et al., 2007; Müller et al., 2016; Bojar et al., 2021).
However, recent advancements in deep learning
and the availability of abundant data (Tan and Lim,
2018; Sperber and Paulik, 2020) have lead to a sig-
nificant paradigm shift towards end-to-end (E2E)
models. While the cascaded approach continues to
dominate in offline ST, the opposite is true for SST
(Anastasopoulos et al., 2022; Agarwal et al., 2023).

Despite the recent popularity of end-to-end SST
within the research community, the vast majority
of research focuses on the “short-form” setting,
which assumes that the speech input is already pre-
segmented into sentences. Critically, this assump-
tion poses an obstacle to deployment in the wild.

In this thesis proposal, we present the goal
of our research — simultaneous and long-form
speech translation. Our plan starts with the above-
mentioned “short-form” assumption, which allows
us to revisit some modeling and algorithmic ap-
proaches. We then gradually introduce the long-
form regime into our experiments by focusing on
leveraging models from the “short-form” SST and
on-the-fly segmentation. Finally, our ultimate goal
is a direct end-to-end long-form speech translation.

This thesis proposal is structured as follows: we
begin with a gentle description of simultaneous
speech translation in Section 2. This is followed
by an overview of the most important architectures
for speech processing in Section 3. In Section 4,
we introduce the long-form regime. We highlight
the difficulties and review the literature on related
long-form tasks. In Section 5, we outline the goals
of our research. In Section 6, we present our previ-
ous work, and in Section 7, we present our future
plans.



2 Simultaneous Speech Translation

The ultimate goal of SST is to enable real-time
communication between people speaking differ-
ent languages. To achieve this goal, SST systems
must to meet two important criteria. First, they
must be computationally efficient to ensure timely
translation during ongoing speech. To address this
intricate problem, the deep learning community
has proposed various techniques, including model
pruning (Reed, 1993), model quantization (Gong
et al., 2014), and knowledge distillation (Hinton
et al., 2015). Second, SST systems must be ca-
pable of handling unfinished sentences. Working
with unfinished sentences allows for more timely
translations, particularly in scenarios where waiting
for sentences to be completed is impractical, such
as matching slides or presenters’ gestures. How-
ever, translating unfinished sentences increases the
risk of translation errors, since translation usually
requires reordering that benefits from a more com-
plete sentence context. Thus, there exists a quality-
latency tradeoff. This means, that given a certain
latency constraint, we want the model to produce as
good translations as possible. Ideally, we want the
model to “predict” the future context, but without
the risk of an incorrect translation.

The quality-latency tradeoff in SST is one of the
main topics of our research. We review the key
aspects of this topic in the following section.

2.1 Human Translation and Interpreting vs.
SST

Human translation and interpreting represent two
different approaches to facilitating communication
between speakers of different languages. Under-
standing these two tasks will allow us to better
understand the SST task, its commonalities, and
key differences compared to human translation and
interpreting.

Translation refers to the task of reformulating of
a written source text into a written target language
text, while interpreting refers to the non-written
re-expression of a non-written source (Gile, 2004).
In the context of this work, we understand the non-
written source as speech.

Translation and interpreting differ in several key
aspects (Gile, 2004). First, interpreters face strict
time constraints. They often have only seconds
to process the information and deliver the transla-
tion, whereas the translators typically have more
time for the translation. Another key aspect is the

target medium. Translations are presented as text
that can be reviewed and read at any pace. In con-
trast, interpreting delivers its end product in an oral
form. The interpretation must follow the pace of
the source, but also be understood by the target
audience. These considerations are reflected in the
contrasting goals of translation and interpreting:
while the translation favors accuracy, interpreting
focuses on conveying the core meaning within a
limited time. Interpreters must make quick deci-
sions about word choice, phrasing, and contextual
adaptation to facilitate seamless communication in
real time. While both translators and interpreters
may provide explanations of the intercultural con-
text, interpreters may also comment on the actions
of other actors (e.g., on stage), provide organiza-
tional comments, or interpret other relevant sources
such as slides or documents. Finally, because in-
terpreters must to listen, process the information,
and deliver the interpretation in real time, they are
under a high cognitive load, which in turn can lead
to exhaustion. In some cases, exhaustion can force
interpreters to omit parts of the source, i.e., making
the interpretation less reliable.

In the context of human translation and inter-
preting, simultaneous speech translation borrows
from both disciplines. Similar to the translation,
SST typically produces written text in the target
language. In addition, SST tries to provide accurate
translations without considering the complexity of
the text (e.g., avoids simplifications). On the other
hand, similar to interpreting, SST transforms the
source into speech. SST also tries to produce the
translations in real time. However, unlike interpret-
ing, SST cannot be exhausted and therefore can
therefore be considered more reliable in terms of
source coverage.

While contemporary SST systems have not yet
reached the quality of human interpreters in terms
of handling out-of-domain topics1 and dealing with
multimodality, they prove invaluable in situations
where employing human interpreters is impractical
or cost prohibitive.

2.2 Re-Translation vs. Incremental SST

SST can be classified as either re-translation or
incremental (see Figure 1). Re-translation SST
(Niehues et al., 2016, 2018) maintains multiple hy-

1See human quality evaluation of out-of-domain non-
native speeches translated/interpreted by SST and a human
interpreter in Anastasopoulos et al. (2022); Agarwal et al.
(2023).
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Figure 1: Blockwise re-translation vs. incremental
SST. Decoding is advanced after a new block of speech
becomes available (here: the dashed lines). The re-
translation SST can revise its previous translation pre-
sented to the user, allowing it to maintain multiple hy-
potheses with different prefixes. In contrast, the incre-
mental SST cannot revise its translation, and is limited
to maintaining only one hypothesis after each incremen-
tal decoding. Taken from (Polák et al., 2023b).

potheses throughout the entire decoding. From the
user’s perspective, these systems would display ei-
ther the top hypothesis or a set of hypotheses – criti-
cally, a re-translation SST can revise the hypothesis
or re-rank the set of hypotheses as more speech in-
put is read. Revising the translation allows the
re-translation SST to have comparable final trans-
lation quality with the offline speech translation
(Arivazhagan et al., 2020). This design approach
arguably introduces challenges for the user in pro-
cessing the translation and makes it impossible to
use in real-time speech-to-speech translation. Ad-
ditionally, it also complicates the evaluation of the
system’s latency.

In fact, several SST latency metrics (Ma et al.,
2020) were originally developed specifically for in-
cremental translation scenarios.2 Incremental SST
(Cho and Esipova, 2016; Dalvi et al., 2018) dif-
fers from the re-translation system in that it prunes
all hypotheses to a common prefix which is then
shown to the user. For the user, the translation
changes only by incrementally getting longer; none
of the previously displayed outputs are ever modi-
fied. In our work, we focus on incremental SST.

2.3 Cascaded vs. End-to-End
Traditionally, offline speech translation and SST
were achieved as a cascade of multiple systems:
automatic speech recognition (ASR), inverse tran-
script normalization, which includes punctuation

2IWSLT shared tasks (Ansari et al., 2020; Anastasopoulos
et al., 2021, 2022) also follow this evaluation standard.

prediction and true casing, and machine translation
(MT) (Osterholtz et al., 1992; Fügen et al., 2007;
Müller et al., 2016; Bojar et al., 2021). The advan-
tage of the cascade approach is that we can opti-
mize models for each subtask independently. The
main advantage of this approach is that ASR and
MT tasks have access to larger and more diverse
corpora compared to direct speech translation.

However, using a cascade system introduces sev-
eral challenges (Sperber and Paulik, 2020). The
most important among them is error propagation
(Ruiz and Federico, 2014). An additional chal-
lenge is the mismatched domains where MT mod-
els trained on written language may not be well-
suited to handle spoken language during infer-
ence, leading to potential loss in translation quality.
Furthermore, as the source is transformed into a
textual form, it loses crucial information about
prosody, i.e., the rhythm, intonation, and emphasis
in speech (Bentivogli et al., 2021). Indeed, the loss
of prosodic information can have a detrimental ef-
fect on translation quality, especially for languages
like Slovak, where the same words can be used
to express both declarative and interrogative sen-
tences through the use of different melodies. Fi-
nally, it’s important to note that many languages
have no written form, which makes the cascade
approach impractical or impossible for such lan-
guages (Harrison, 2007).

As of the latest findings, the current state-of-
the-art for offline speech translation continues to
be based on a cascaded approach (Anastasopoulos
et al., 2021, 2022; Agarwal et al., 2023). In the con-
text of simultaneous speech translation however,
both approaches yield competitive performance.
For example, in the last year’s edition of IWSLT
(Anastasopoulos et al., 2022), the best-performing
system in two out of three language pairs was our
end-to-end model (Polák et al., 2022a). The advan-
tage of the end-to-end model in SST may be due
to the fact that it avoids the extra delay caused by
ASR-MT collaboration in the cascade (Wang et al.,
2022).

In our work, we primarily work with end-to-end
models.

3 Modeling Speech

In this section, we briefly3 introduce some impor-
tant E2E modeling approaches for speech. The

3For a more detailed analysis refer to Prabhavalkar et al.
(2023).
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Figure 2: Example of the soft alignment of the word
“wee” (small) of an attention-based encoder-decoder
(AED) model. The AED model extends the vocabulary
with a special symbol <eos> to indicate a completed
hypothesis. Each output label cl (y-axis) attends to all
source frames with varying intensity.

purpose of this section is to highlight the differ-
ences between the architectures, with an emphasis
on how they process the input, and how they align
the source speech and the target translation.

We denote the input speech utterance as X .
Speech is usually represented as a vector of
length T of D-dimensonal acoustic features, i.e.,
X = (x1, · · · , xT ), where x ∈ RD is a feature
vector or frame typically representing 10 ms of
speech. The corresponding transcript/translation
C = (c1, · · · , cL) of length L, consists of a se-
quence of tokens c ∈ C, where C can be charac-
ters, words, or other sub-word units. All end-to-
end approaches in ASR, ST, and SST use an en-
coder (e.g., RNN or Transformer, Vaswani et al.,
2017) that processes the source X into a vector
H(X) = (h1, · · · , hT ) of abstract representations.
The goal of speech recognition or translation is to
model the following conditional distribution:

P (C|X) = P (C|H(X)). (1)

In the case of the incremental simultaneous
ASR/ST, the target of the modeling is the following
conditional distribution:

P (C1:g(X1:t)|X1:t) = P (C1:g(X1:t)|H(X1:t)),
(2)

where t ≤ T and g(X1:t) is a policy function
that decides how much transcript/translation can be
produced given X1:t.

3.1 Attention-Based Encoder-Decoder
Architecture

In the attention-based encoder-decoder (AED) ar-
chitecture, the entire source X is first encoded into
the abstract representation by an encoder H , and
then the attention-based decoder predicts the tran-
script/translation in a left-to-right autoregressive

manner. The alignment is realized by an attention
mechanism (Bahdanau et al., 2014) that “attends”
to all source positions during each step of genera-
tion. Each source position is assigned a score indi-
cating the amount of relevant information coming
from that position. Note that many source positions
can be relevant to a target token. An example of
such an alignment is given in Figure 2.

The AED architecture models the posterior prob-
ability as follows:

PAED(C|X) =

L∏
l=1

P (cl|al−1, · · · , a0, H(X)),

(3)

where ci is an output label at position i, and
c0 = <sos> is a special token that initiates the
decoding. The prediction is constructed based on
the output length l ∈ L rather than the source
position t ∈ T , a concept we refer to as output
synchrony (see definition in Section 3.4). Due to
this output synchrony, AED incorporates a special
token <eos> to indicate a completed hypothesis.

The AED architecture is widely used in offline
ST. The advantage is that the decoder can “see”
the entire source. This is a particularly important
feature for the translation task as it (generally) in-
volves reordering. The fundamental disadvantage
of AED is that it cannot work in a simultaneous
regime, as it needs to process the entire source first
before it starts to produce the translation. To ad-
dress this, researchers proposed alternatives that
guide or prevent the attention to “see” the future
source (Raffel et al., 2017; Chiu and Raffel, 2017;
Arivazhagan et al., 2019). Another body of work
studies chunk-based inference and the “stable hy-
pothesis” selection along with improvements in the
beam search decoding (Liu et al., 2020a; Polák
et al., 2022a; Polák et al., 2023b).

3.2 Connectionist Temporal Classification
Connectionist temporal classification (CTC,
Graves et al., 2006) directly maps the abstract
encoder representation of the source directly to la-
bels. To do so, CTC extends the vocabulary C with
a special blank (<b>) label, i.e., Cb = C ∪ {<b>}.
In CTC, every source frame is assigned a label,
directly modeling both alignment and prediction.
An alignment A ∈ C∗

b is a string of labels from the
vocabulary C∗

b . An example of an alignment is in
Figure 3.
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Figure 3: Example of a CTC alignment A =
(<b>, w, <b>, e, e, e, <b>, e, <b>) predicted by a CTC
model for a sequence C = (w, e, e). For each frame,
the model outputs a label from the vocabulary C or a
blank. The alignment A is converted to C by collapsing
repeated labels and removing blanks. Note that there
are multiple possible alignments, and all must be strictly
monotonic. I.e, a label cl can be only emitted after all
previous labels c1, · · · , cl−1 have been emitted.

CTC models the posterior of a label sequence
C by marginalizing over all possible CTC align-
ments ACTC

(X,C):

PCTC(C|X) =
∑

A∈ACTC
(X,C)

P (A|H(X))

=
∑

A∈ACTC
(X,C)

T∏
t=1

P (at|H(X)). (4)

As we can see in the second row of Equation (4),
CTC makes a strong independence assumption that
the label at at time t is conditionally independent
on all other predictions at t′ ̸= t. Critically, this is
a very strong assumption that manifests in lower
quality transcripts/translations (Prabhavalkar et al.,
2017; Libovický and Helcl, 2018) compared to
the AED architecture. However, a combination
of CTC and AED architectures showed promising
results in offline ASR, MT, and ST (Watanabe et al.,
2017; Yan et al., 2023a). In simultaneous regime,
Moritz et al. (2019) use CTC output to activate
the attention-based decoder for ASR, and Polák
et al. (2023a) estimate the position of the AED
translation prefix relative to the source.

3.3 Recurrent Neural Transducer

Recurrent neural transducers (RNN-T, Graves,
2012) relax some of the strong independence as-
sumptions in CTC. RNN-T model consists of an
encoder H , a predictor R, and a joiner J . Similarly,
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Figure 4: Example of an RNN-T alignment A =
(<b>, w, <b>, <b>, e, <b>, <b>, e, <b>, <b>, <b>) for se-
quence C = (w, e, e).

as CTC, RNN-T extends the vocabulary C with a
<b> token, i.e., Cb = C ∪ {<b>}. However, un-
like CTC, for each source frame, RNN-T predicts
zero or more labels c ∈ C terminated by exactly
one <b> token. In other words, the <b> serves as
an indicator that the decoding should move to the
next source frame. The set of all possible align-
ments is then the set of all possible sequences
of length T + L in C∗

b : ARNN-T(X,C) = {A =
(a1, · · · , aT+L)}. An example of an RNN-T align-
ment is in Figure 4.

The following equation defines the posterior
probability modeled by RNN-T:

PRNN-T(C|X) =
∑

A∈ARNN-T
(X,C)

P (A|H(X))

=
∑

A∈ARNN-T
(X,C)

T+L∏
τ=1

P (aτ |riτ , hτ−iτ ), (5)

where iτ denotes the number of non-blank to-
kens in the prefix alignment (a1, · · · , aτ ), rj =
R(rj−1, · · · , r0) is the output of predictor R con-
ditioned on previously generated non-blank tokens,
and ht is the abstract encoder representation at time
t.

The conditional dependence of the predictor R
on previously generated tokens makes the RNN-T
stronger than CTC. Different from AED architec-
ture, RNN-T still assumes monotonic source-target
alignment, which might be a too strong assumption
for the translation task. Nevertheless, recent liter-
ature suggests that RNN-T might be competitive
in ST and SST (Liu et al., 2021; Xue et al., 2022;
Tang et al., 2023; Yan et al., 2023b).

3.4 Input- and Output-Synchrony
The previous sections have highlighted a fundamen-
tal difference in how the AED processes the source,
in contrast to the approaches of CTC and RNN-T.



The AED models follow a two-step process: they
begin by encoding the entire utterance and sub-
sequently employ an attention-based decoder to
generate the target sequence in an autoregressive
left-to-right manner, attending to any desired sec-
tion of the source. We call this phenomenon an
“output synchrony”. On the other hand, both CTC
and RNN-T produce a monotonic alignment that
allows the processing of the source in a left-to-
right fashion. We call this an “input synchrony”.
For monotonic sequence-to-sequence tasks, such as
ASR, the input synchrony might be more desirable
as it allows for simultaneous decoding, i.e., it natu-
rally follows the gradually arriving input (assuming
a unidirectional encoder).

4 Long-form Simultaneous Speech
Translation

In the previous section, we discussed various as-
pects of simultaneous speech translation (SST) in
general. Most of the contemporary research on
SST assumes speech pre-segmented into short ut-
terances with segmentation following the sentence
boundaries. However, in any real application, there
is no such segmentation available. In this section,
we shift our focus to this real-world long-form set-
ting. We begin by placing long-form SST within
the broader context of long-form automatic speech
recognition (ASR), machine translation (MT), and
offline ST. Subsequently, we explore the current
literature on long-form SST.

4.1 Long-Form ASR

In terms of input and output modalities, long-form
ASR and ST are facing similar issues. There are
two types of strategies for long-form processing:
(1) the segmented approach, which divides the in-
put into smaller chunks, and (2) the true long-form
approach, which handles the entire long-form input
as a single unit.

Most of the literature focuses on the seg-
mented approach. A typical solution involves pre-
segmenting the audio using voice activity detection
(VAD). However, VAD segmentation may not be
optimal for real-world speech since it might fail
to handle hesitations or pauses in sentences that
need to be treated as undivided units. A more so-
phisticated solution uses CTC blank prediction to
indicate non-speech segments (Yoshimura et al.,
2020). Another approach, based on RNN-T, per-
forms joint modeling of ASR and sentence segmen-

tation (Huang et al., 2022).

An alternative solution based on fixed segments
(Chiu et al., 2019), introduced the concept of over-
lapping inference for RNN-T models. Here, the
utterance is segmented into overlapping (50%) seg-
ments. Words from two overlapping segments are
merged on the same words. In case of conflicts, pre-
dictions further from the boundaries are preferred.
Note that this algorithm requires an architecture
with explicit source-target alignment. Chiu et al.
(2021) extended their previous work and observe
that the overlapping inference is particularly impor-
tant for models with poor generalization to unseen
length. The chunking approach was also adopted
by the attentional model Whisper (Radford et al.,
2023).

Another line of work focused on long-form mod-
eling directly. For example, Chiu et al. (2019) con-
ducted a comprehensive study comparing differ-
ent architectures, including RNN-T and attention-
based models based on LSTM. The findings indi-
cate that only RNN-T and CTC architectures can
generalize to unseen lengths. Interestingly, RNN-
T in the long-form regime was only 1% worse
than their proposed overlapping inference with 16s
segments. Narayanan et al. (2019) treat the long-
form regime as a domain mismatch problem and
explores regularization via training on different do-
mains. Additionally, they suggest simulating con-
text either by randomly sampling the LSTM state
from a normal distribution or by passing the state
from the previous segment (similar to Dai et al.,
2019). Another way how to improve the general-
ization is to use minimum word error rate training
(MWER, Lu et al., 2021).

While the previously mentioned research was
predominantly based on RNNs, more recent work
has transitioned to utilizing Transformer models.
Zhang et al. (2023) compared a chunk-wise atten-
tion encoder, which involves an encoder with a
limited attention span, in combination with the
attention-based decoder (AD) and CTC. We note
here that while the encoder has a limited attention
span, the attention-based decoder sees the entire
encoder representation. The model employing AD
was unable to function without chunking, whereas
the CTC model processed the entire speech at once
and still outperformed the AD model.



4.2 Long-Form MT

The primary objective of long-form MT is to
enhance textual coherence, as conventional MT
systems typically assume sentence independence.
Early work explored a concatenation of previous
(Tiedemann and Scherrer, 2017; Donato et al.,
2021) and future sentences (Agrawal et al., 2018).
The work showed that MT models benefit from
the extra context and handle the inter-sentential
discourse phenomena better. However, the ben-
efits diminish if the context grows beyond a few
sentences (Agrawal et al., 2018; Kim et al., 2019;
Fernandes et al., 2021). This can be attributed
to the limitations of attention mechanisms, where
an extensive volume of irrelevant information can
lead to confusion. In this context, Kim et al. (2019)
demonstrated that filtering only essential tokens,
such as named entities or words with specific parts-
of-speech tags, proved to be beneficial in mitigating
the impact of irrelevant information on the model’s
performance.

Other body of work tries to directly model very
long sequences. Dai et al. (2019) introduced a
recurrence mechanism and improved positional en-
coding scheme in the Transformer. The limitation
is that the architecture stores previous states in an
uncompressed form which increases memory re-
quirements. Later work proposed an explicit com-
pressed memory realized by a few dense vectors
(Feng et al., 2022).

4.3 Long-Form Offline ST

Unlike written input text in long-form MT, speech
input in the ST task lacks explicit information about
segmentation. Therefore, the research in the area of
long-form offline speech translation concentrates
on two separate issues: (1) improving segmenta-
tion into sentences, and (2) enhancing robustness
through the use of larger context.

In the traditional cascaded approach with sep-
arate speech recognition and machine translation
models, the work focused on segmentation strate-
gies for the ASR transcripts.4 The methods are
usually based on the re-introduction of punctuation
to the transcript (Lu and Ng, 2010; Rangarajan Srid-
har et al., 2013; Cho et al., 2015, 2017). However,
these approaches suffer from ASR error propaga-
tion and they disregard the acoustic information of
the source audio. The latter issue was addressed

4ASR transcripts are traditionally normalized, i.e., they
consist of lowercase words without punctuation.

in Iranzo-Sánchez et al. (2020a), however, the ap-
proach still requires an intermediate ASR transcript
that is not available in E2E models.

Another take on this issue is segmentation based
purely on the source speech. The early work fo-
cused on segmentation based on VAD. VAD fo-
cuses solely on the presence of the speech and dis-
regards sentence boundaries. This usually results in
sub-optimal segmentation as humans tend to place
pauses inside of sentences and not necessarily be-
tween them (e.g., hesitations before words with a
high information content, Goldman-Eisler, 1958).
To this end, researchers tried to address this by con-
sidering not only the presence of speech but also its
length (Potapczyk and Przybysz, 2020; Inaguma
et al., 2021; Gaido et al., 2021). Later studies tried
to avoid VAD and focus on more linguistically-
motivated approaches. For example, Gállego et al.
(2021) used ASR CTC to predict voiced regions.
Further improvements were observed by directly
modeling the golden segmentation (Tsiamas et al.,
2022b; Fukuda et al., 2022).

To address the problem of inadequate segmenta-
tion, Gaido et al. (2020) proposed to leverage pre-
vious context and showed that context-aware ST
is less prone to segmentation errors. An extensive
study of context-aware ST was conducted by Zhang
et al. (2021). They compared different chunk-based
inference methods, context size, and robustness to
segmentation errors. Similarly to long-form MT,
they observed that context helps, but this holds only
for a limited number of previous utterances in the
memory.

4.4 Long-Form Simultaneous ST

Research focusing on direct long-form simultane-
ous speech translation remains relatively scarce.
The closest works are in long-form simultane-
ous MT. Schneider and Waibel (2020) proposed
a streaming MT model that is capable of transla-
tion of unsegmented text input. This model could
be theoretically adapted for speech input. How-
ever, it was later shown that this model exhibits
huge latency of up to 100 tokens (Iranzo Sanchez
et al., 2022). Another work (Iranzo Sanchez et al.,
2022), proposed a partially bidirectional encoder
and application of a wait-k policy (Ma et al., 2019)
to accommodate the streaming input. They also
explored the extended context and confirm the find-
ings from long-form MT and offline ST, demon-
strating that the use of the previous context signif-



icantly enhances performance. Furthermore, they
also confirm that when the context becomes too
long, it leads to a drop in translation quality.

Finally, the only direct SST model that claims
that it can work on a possibly unbounded input
is Ma et al. (2021). The model utilizes a Trans-
former encoder with a restriction on self-attention,
allowing it to attend solely to a memory bank and a
small segment (typically around 640 milliseconds),
to mitigate computational complexity. During the
processing, each vector is summarized into a sum-
marization vector and appended to the end of the
memory. Unfortunately, based on the reported ex-
periments, it remains unclear whether the model
was specifically evaluated in the long-form setting.

4.5 Evaluation

Evaluation of SST is a complex problem as we
have to consider not only the translation quality
but also the latency. Additionally, in the long-form
regime, segmentation becomes another obstacle.

The most commonly used metric for translation
quality in speech translation is BLEU (Papineni
et al., 2002; Post, 2018). Other metrics such as
chrF++ (Popović, 2017) and a neural-based metric
COMET (Rei et al., 2020) can be applied, too.

The other important property of an SST sys-
tem is latency. There are two main types of laten-
cies: computation-unaware (CU) and computation-
aware (CA) latency. The computation-unaware
latency measures the delay in emitting a translation
token relative to the source, regardless of the actual
computation time. Hence, CU latency allows for a
fair comparison regardless of the hardware infras-
tructure. However, CU latency cannot penalize the
evaluated system for extensive computation; hence,
CA latency can offer a more realistic assessment.

Measuring latency relative to the source or ref-
erence in SST is quite difficult because of the re-
ordering present in translation. Historically, latency
metrics were first developed for simultaneous ma-
chine translation (i.e., the source is text rather than
speech). The most common are Average Propor-
tion (AP; Cho and Esipova (2016)), differential
lagging (DAL; Cherry and Foster (2019)), and av-
erage lagging (AL; Ma et al. (2019)). Broadly
speaking, they measure “how much of the source
was read by the system to translate a word”, where
the latency unit is typically a word. These metrics
were quickly adopted by the speech community.
The downside is that the metrics assume a mono-

tonic alignment between the source and the target
translation. This issue is further elevated in speech-
to-text translation, as the metrics also assume uni-
form distribution and uniform length of the words
in the source. Alternatively, Ansari et al. (2021)
proposed to use a statistical word alignment of the
candidate translation with the corresponding times-
tamped source transcript. This theoretically allows
for more precise latency evaluation, but it is unclear
how the alignment errors impact the reliability of
the evaluation.

In the unsegmented long-form setting, additional
issues arise. In a typical “short-form” segmented
setup, the SST model does inference on a pre-
segmented input, where the reference follows the
same segmentation. However, in the long-form
unsegmented regime, the candidate and reference
segmentation into sentences might differ. Tradition-
ally, this issue was addressed by re-segmenting the
hypothesis based on the reference (Matusov et al.,
2005). The re-segmentation was done on reference
punctuation based on the alignment extracted from
a dynamic programming algorithm for edit distance
minimization. After the re-segmentation, a typical
sentence-level evaluation of translation quality and
latency is done. It should be noted that the com-
monly used latency metrics (AL, AP, DAL) cannot
be used in the long-form regime (Iranzo-Sánchez
et al., 2021) without the re-segmentation.

Yet, recent work observed that the re-
segmentation introduces errors (Amrhein and Had-
dow, 2022). This poses a risk of incorrect transla-
tion and quality assessment. To this end, Macháček
et al. (2023a) evaluated different translation quality
metrics and evaluation setups and their correlation
with human judgments. If the candidate and refer-
ence segmentation are identical, the results indicate
that translation quality exhibits an equal correla-
tion with human judgments at both the sentence
and document levels. If the inference and reference
segmentation differ, BLEU and COMET correlate
significantly more at the document level compared
to the sentence level after re-segmentation (Ma-
tusov et al., 2005).

In conclusion, we will evaluate the quality using
BLEU and COMET on the document level if the
candidate and reference segmentation differ. For
the latency evaluation, we will use the LAAL (an
improved version of AL; (Polák et al., 2022a; Papi
et al., 2022)) with re-segmentation, but we carefully
check for possible inconsistencies introduced by



the re-segmentation.

5 Goals

In this section, we briefly outline the goals of our
research.

Improving the quality-latency tradeoff in SST
The first step of our research concentrates on
enhancing the quality-latency tradeoff mainly in
the traditional “short-form” simultaneous speech
translation. First, we consider the “onlinization”,
i.e., conversion to the simultaneous regime, of
existing state-of-the-art offline ST models. Sec-
ond, we reconsider the beam search decoding for
attention-based encoder-decoder models. Third,
we reconsider the simultaneous policy for a joint
CTC/AED architecture. Finally, we compare dif-
ferent SST architectures, with special emphasis on
time- and label-synchronous architectures, such as
CTC, RNN-T, and AED architectures.

Towards the long-form SST In the next step, we
will explore the feasibility of long-form simulta-
neous speech translation by adopting segmented
inference. Our goal is to combine segmentation
strategies from long-form ASR and long-form ST
with existing short-form SST models. Through
this study, we aim to investigate the capabilities of
end-to-end models to jointly handle translation and
segmentation.

True long-form SST The final goal of our work
is to explore the potential of end-to-end modeling
for true long-form SST. Our focus will be on
identifying an appropriate model architecture and
effective training procedures to achieve seamless
and reliable long-form simultaneous speech
translation.

In the next section, we will describe the results
achieved so far.

6 Results

In the first part of our research (presented in Polák
et al. (2022a); Polák et al. (2023b,a)), we focused
on general improvements in the quality-latency
tradeoff. As discussed in Sections 2.3 and 3.1,
the AED is very popular in the offline ST. The end-
to-end AED architecture makes up the majority
of the submissions to the offline track at IWSLT
(Anastasopoulos et al., 2022; Agarwal et al., 2023),
and is essentially the only alternative to cascade.

However, these offline AED models have not typi-
cally been used in the simultaneous regime. This
is a missed opportunity, especially when consider-
ing that these models perform well and are eas-
ily trained and available for use. However, in
its vanilla form, AED is not capable of simulta-
neous inference. Therefore, we investigate ways
to use offline models in the simultaneous regime.
Here, we focus on chunked inference (Liu et al.,
2020a; Nguyen et al., 2021), specifically on the
stable hypothesis detection. Since we rely on the
standard beam search (Sutskever et al., 2014; Bah-
danau et al., 2014), the models always generate a
complete hypothesis up to the <eos> token. Un-
fortunately, this results in low quality translations,
especially towards the end of the hypothesis. There-
fore, in Polák et al. (2022a) we investigate methods
that select stable hypothesis prefixes that (hope-
fully) do not contain translation errors. Here, we
briefly summarize our findings:

• We identified the best onlinization tech-
nique (local agreement; Liu et al., 2020a),
and proposed varying the chunk size to enable
quality-latency tradeoff control.

• We observed that the models tend to over-
generate, especially in the low latency
regime. This led to a severe quality drop and
computation-aware latency increase.

• We proposed an improved latency metric
based on AL that was robust to overgeneration.
This metric was later proposed independently
length-adaptive average lagging (LAAL; Papi
et al., 2022).

• Onlinization of offline models is possible.
Across three language pairs (EN → DE, JA,
ZH) and two models (one trained from scratch
and the second based on pre-trained wav2vec
2.0 (Baevski et al., 2020) and mBART (Liu
et al., 2020b)) with AL around 2 seconds,
translation quality drops only about 0 to 1.5
BLEU compared to the offline baseline.

• Onlinized offline models are competitive
SST models. In fact, our onlinized model
outperformed all other models in EN → DE
and JA directions and all latency regimes in
the simultaneous speech translation track at
IWSLT 2022 (Anastasopoulos et al., 2022).



It appears that the local agreement combined
with a strong offline model has a competitive per-
formance, but it still suffers from overgeneration
and poor translation quality. The root causes are
likely to be label/exposure bias (Ranzato et al.,
2015; Hannun, 2019) and poor length generaliza-
tion (Dong et al., 2020; Variš and Bojar, 2021),
which manifests itself as hallucinations (Lee et al.,
2018). This suggests that the problem should be
addressed before the stability detection, i.e., during
the decoding. This leads us to revisit the beam
search decoding algorithm. In Polák et al. (2023b),
we proposed incremental blockwise beam search
(IBWBS). We base our algorithm on the block-
wise re-translation beam search (BWBS) for the
blockwise architecture (Tsunoo et al., 2021), but
we adapt it to produce an incremental translation.
The key idea of the proposed algorithm is to ex-
pand only “reliable” hypotheses. By a “reliable”
hypothesis we mean a hypothesis that satisfies all
of the following three conditions: (1) it is without
<eos> token, (2) without any repeated token,5 and
(3) with a higher score than any unreliable hypoth-
esis. Here is a summary of our findings from Polák
et al. (2023b):

• Offline ST models used for SST with the
proposed IBWBS outperformed standard
beam search by 5 to 8 BLEU points and re-
duced the number of decoder forward passes
by 20 %.

• Online blockwise AED/CTC models with
IBWBS outperformed BWBS by 0.6-3.6
BLEU points in the same latency regime, or
reduced the latency by 0.8-1.4 seconds with
the same translation quality.

While the IBWBS shows significant improve-
ments over the baselines, it still relies on the atten-
tion mechanism and the label-synchronous decod-
ing. Ideally, the decoding should be aware of how
much of the source has already been covered. This
information could prevent the decoding beyond the
current context, i.e., hallucination. Vanilla AED
models do not produce reliable alignment (see Sec-
tion 3.1), but current ST models use CTC together
with the AED architecture during training and also
during inference. As discussed in Section 3.2, CTC
produces a monotonic source-target alignment. In
Polák et al. (2023a), we explore the potential of

5The repeated token rule is only necessary for the block-
wise architecture and is not required for offline models.

CTC to guide the AED decoding. Specifically, we
use the CTC prefix probability (Graves, 2008) to
estimate the likelihood that the current hypothesis
proposed by the AED model covers the current
source. Our key findings from Polák et al. (2023a):

• The proposed CTC policy improves the
translation quality by up to 1 BLEU point
compared to our IBWBS in blockwise mod-
els.

• For a large offline model, the CTC policy loses
up to 1 BLEU point but reduces the real-time
factor to 50 % compared to our IBWBS.

It is important to note that we failed to train the
large models with CTC loss because the mBART
decoder vocabulary was too large. Instead, we used
a small blockwise model for the CTC posteriors.
Since the blockwise model uses a small vocabulary,
this resulted in a vocabulary mismatch between the
CTC and the AED decoders, which is likely the
reason why the large models observed a loss in
translation quality of up to 1 BLEU point with the
CTC policy. In the future, we would like to explore
strategies on how to reduce the memory footprint
of CTC with a large vocabulary or how to reduce
the vocabulary of large pre-trained models.

7 Future Work

Finally, this leads us to future work. So far, our
research has focused primarily on the AED archi-
tecture, ignoring other architectures such as CTC
and RNN-T. Thanks to the monotonic alignment
(discussed in Section 3) and supported by the recent
finding for the offline regime (Yan et al., 2023a,b),
these architectures have the potential to be advanta-
geous in the simultaneous regime. Our goal will be
to compare these architectures for SST. In particu-
lar, we will investigate the quality-latency tradeoff,
and explore how the monotonicity of CTC and
RNN-T affects the translation. We will also evalu-
ate the quality of the alignments and their potential
applications.

7.1 Towards the Long-Form SST

As described in the previous section, we already
have a solid starting point with capable models for
“short-form” SST. But how can we use these models
in the more natural long-form scenario?

We can take inspiration from the offline long-
form ST, where the main focus is on segmenta-
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Figure 5: English ASR CTC alignment (top) and English-to-German ST CTC alignment (bottom). The colors
represent the timestamps of the aligned word. ASR CTC outputs only lowercase words without punctuation. ST
CTC outputs words with correct case and sentence punctuation, including two full stops at 5.2s and 9.8s. The ST
CTC alignment closely matches the ASR CTC alignment. In addition, the two full stops are correctly aligned with
the silence.

tion. The best approach seems to be direct seg-
mentation modeling classification (Tsiamas et al.,
2022a; Fukuda et al., 2022). The limitation of
these approaches is that they do not allow simul-
taneous inference. However, we believe that their
adaptation to the simultaneous regime should be
relatively straightforward (e.g., by using a unidi-
rectional encoder and a sufficiently small loss in
accuracy). A possible improvement could be a
multitask translation-segmentation model similar
to Huang et al. (2022).

Our hopes go even further and we ask: Can we
just train a model to translate and let the model
figure out the segmentation? The target side of the
translation already contains punctuation marks, so
if we also knew the alignment, we could use it to di-
rectly segment the utterances directly. Here we turn
to our previous work, namely to the CTC policy
(see Section 6). The CTC policy already relies on
the CTC alignment, and it has shown a very good
performance in guiding the simultaneous decoding.
Therefore, we will design an experiment to use
CTC alignment for simultaneous translation and
segmentation. Our unpublished work-in-progress
already shows promising results as suggested by
some anecdotal evidence in Figure 5. However,
our focus will not be limited to CTC alignments
only. We will also investigate the RNN-T align-
ments. We may also consider vanilla AED with
whisper-style timestamps.6

However, we see another valuable use of the di-
rect speech-to-text alignments — dataset creation.
Today, ST datasets are created using the cascaded
approach (Iranzo-Sánchez et al., 2020b; Cattoni

6https://github.com/linto-ai/
whisper-timestamped

et al., 2021; Salesky et al., 2021). The source tran-
script is first forced-aligned to the speech, then the
transcript is word-aligned to the translations, and
finally, these two alignments are used to segment
the source speech into sentences based on the punc-
tuation in the translation. In fact, this approach has
a critical drawback in that it virtually eliminates
all data without a source transcript, preventing the
research community from utilizing potentially valu-
able data sources. It is worth noting that some
languages do not have a writing system, which
makes the direct speech-to-translation alignment
even more attractive. Therefore, if the alignment
evaluation shows promising results, we will explore
the feasibility of E2E speech-to-text creation.

Another important research direction is context.
As discussed in Sections 4.2 to 4.4, the use of
context yields significant improvements in robust-
ness, quality, and overall text coherence. Although
this has already been addressed in Zhang et al.
(2021), we see a few limitations of this work. First,
the authors used the re-translation approach (see
Figure 1). We hypothesize that the re-translation
approach is less susceptible to the exposure bias
problem, i.e., the mismatch between teacher-forced
training time and the inference where the previous
model’s own outputs are available (Ranzato et al.,
2015; Hannun, 2019), because it can revise the hy-
pothesis with more speech available. In contrast,
the incremental approach must continue with the
already generated hypothesis, which may become
inconsistent with more speech. Second, the work
used reference segmentation.

An additional question is how to accommodate
context beyond a few sentences. As pointed out in
Sections 4.2 to 4.4, the performance usually drops

https://github.com/linto-ai/whisper-timestamped
https://github.com/linto-ai/whisper-timestamped


with too much context. Some solutions have been
suggested (Kim et al., 2019; Feng et al., 2022), but
it remains unclear how to adapt them for SST with
the specifics of SST in mind (e.g., computational
constraints, speech input).

7.2 True Long-Form SST

The ultimate goal of our work is to achieve true
long-form simultaneous speech translation. In
other words, our goal is to develop a model ca-
pable of processing a potentially infinite stream of
speech input, without any segmentation or special
inference algorithm, and translating it directly into
the target language in real time. Admittedly, this is
a very ambitious goal. However, there is plenty of
evidence that it is feasible. For example, in long-
form ASR, related work has already observed that
the RNN-T and CTC architectures are capable of
long-form regime (Chiu et al., 2019; Narayanan
et al., 2019; Lu et al., 2021; Zhang et al., 2023;
Rekesh et al., 2023). Arguably, speech recogni-
tion is simpler than speech translation because it
monotonically transcribes speech without reorder-
ing. However, the literature also shows that an
architecture like RNN-T can be used in (S)ST (Yan
et al., 2023b). Therefore, we will compare the ar-
chitectures, or possibly their hybrids, in the true
long-form regime. In these experiments, we will
draw inspiration from related work in ASR and
MT (Narayanan et al., 2019; Dai et al., 2019; Feng
et al., 2022; Rekesh et al., 2023).

8 Conclusion

In conclusion, this thesis proposal has provided an
overview of simultaneous speech translation (SST)
and its main challenges, including the quality-
latency tradeoff. We have discussed different
modeling approaches, focusing on CTC, RNN-T,
and attention-based encoder-decoder architectures.
Through a comprehensive literature review, we ob-
served the limited research on long-form speech
translation. We outlined three main goals of our
research with a special focus on long-form speech
translation: improving the general quality-latency
tradeoff in SST, exploring long-form SST through
segmented inference, and ultimately achieving true
long-form SST modeling. We have placed these
goals in the context of related work and outlined
a clear strategy for achieving them. Finally, the
feasibility of this thesis is documented by our
progress in the SST (Polák et al., 2022a; Polák

et al., 2023a,b; Yan et al., 2023b; Agarwal et al.,
2023), as well as in other related areas (Kratochvíl
et al., 2020; Polák et al., 2020; Polák and Bojar,
2021; Polák et al., 2021; Bojar et al., 2021; Polák
et al., 2022b; Macháček et al., 2023b).
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