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Abstract

We introduce the problem of disentangled rep-
resentation learning and provide an overview
of the relevant literature both in and outside
of NLP. We find that unsupervised learning
of such representations in NLP is underdevel-
oped. We motivate the research and specify
experiments meant to address the issue.

1 Introduction

Reflecting on the stormy development of machine
learning research in the recent years, we can ob-
serve reactions demonstrating either of two some-
what opposing attitudes. The first, sky-is-the-limit
attitude focuses on the successes of the systems in
many tasks across different domains, with systems
often achieving human parity or beyond.

The second, more sobering approach stresses the
shortcomings of the current paradigm, sometimes
accenting differences to biological systems. The
concept of disentangled representations is closer to
the latter category.

Unfortunately, there is not yet a broadly accepted
formal definition of disentanglement, so we start
with the following intuition:

A disentangled representation should
capture and isolate all potentially rele-
vant characteristics of the data.

This vague starting point should be made more pre-
cise in the following section (2), where we also
argue why a disentangled representation is desir-
able, i.e. what problems is it supposed to solve.
Section (3) then presents the main approaches to-
wards learning disentangled representations from
the literature. The proposed areas of future work
are discussed in Section (4), followed by a short
conclusion (Section 5)

2 Disentanglement

Disentangled representation learning is typically
discussed in the context of generative modelling.
Observations x are assumed to be realizations of
some hidden, generative factors z. Thus the data
can be described as originating by following a two
step procedure: 1) sampling the generative factors
from a prior distribution and 2) sampling a con-
crete observation from the conditional distribution
(likelihood):

z ∼ p(z),x ∼ p(x|z). (1)

For example in a room with a single cube, the
individual factors in z could contain the position,
color, size and rotation of the cube as well as posi-
tion and type of the source of light (and many other
things). The observed x could be a photograph
of the room. Ideally, given an observation, one
would be able to reconstruct the generative factors
as these would be the perfect representation of the
real world state not distorted by, say, our perceptual
system. In practice, this ideal is not to be expected,
but if one learns to represent x by a code c such
that when a single generative factor from z changes,
only a small part of c changes, then the represen-
tation is said to be disentangled. In the example
above, moving the source of light (zi, zj , zk) could
affect the values of all the pixels in a photograph
(x), but the change of a disentangled representation
of the scene would be very local (ca, cb, cc).

2.1 Motivation
Deep learning has been able to beat the best players
in different board (Silver et al., 2016) or computer
(Mnih et al., 2015) games, surpass human judges
on various classification tasks (He et al., 2015),
drive cars in real traffic (Buehler et al., 2009), and
translate between languages achieving comparable
results to human translators (Barrault et al., 2019).



Despite the impressive ever-growing track record
some shortcomings of current deep learning ap-
proaches attract the attention.

The models are known to be extremely data-
hungry (Lake et al., 2015, 2017; Gu et al., 2016;
Higgins et al., 2018; Achille et al., 2018). In fact,
AlphaGo has learned from more than 100 million
games while its opponent Lee Sedol is estimated
to play about 50, 000 games in his entire life (Lake
et al., 2017). Lake et al. (2015) show that based on
a single example, people can learn (to recognize
and generate) a new handwritten character and be
much more successful than a neural network clas-
sifier (trained on many alphabets). Moreover, the
classifier is limited to the recognition task only.

Another related problem with current deep learn-
ing is poor generalization (Garnelo et al., 2016;
Higgins et al., 2017a; Achille et al., 2018). The
models often overfit to a task by learning only fea-
tures that can be directly utilized (Achille et al.,
2018). When a model encounters a new task it
learns a new set of features from scratch instead of
reusing previously learned information.

Not only is there little improvement on the per-
formance on the new task but also the models tend
to struggle to retain the previously learned infor-
mation. By learning a new set of features, a model
can overwrite the previous ones which leads to a
drop of performance on the initial task (Rusu et al.,
2016). This effect is known as catastrophic for-
getting (French, 1999). Although natural cognitive
systems exhibit some forgetting, they rarely over-
write all previous information.

Comparing human performance with the perfor-
mance of artificial neural networks often points to
an important role of prior knowledge. People carry
their experience (be it individual or ancestral) to
any new task while artificial neural networks start
usually almost from scratch.1 The importance of
early inductive biases in people is well documented
in cognitive literature (see Lake et al. (2017) for an
overview). But even in the context of artificial neu-
ral networks, embedding certain assumptions about
the structure of the data into the architecture proved
successful as demonstrated by convolutional or re-
current NNs processing images and sequential data,
respectively. Requiring learned representations to
be disentangled can be seen as another type of in-
ductive bias.

1Pre-training is an important phase of current neural mod-
els, but the pre-training task is usually connected closely to
the task at hand.

2.2 Purported benefits

Having access to explicit factors of variation in
the data is believed to be desirable for many rea-
sons. An information tied to a specific factor could
be transferred to other tasks (Bengio et al., 2013;
Lake et al., 2017; Higgins et al., 2017a; Achille
et al., 2018). A new task would require the model
to only acquire knowledge about the newly rele-
vant factors potentially increasing data-efficiency
(Lake et al., 2017; Higgins et al., 2017a; Achille
et al., 2018; van Steenkiste et al., 2019). Perfor-
mance at a given task could be explicitly connected
to the relevant factors which would make the model
more robust (less sensitive to irrelevant changes in
other variables) (Bengio et al., 2013; van Steenkiste
et al., 2019). Knowing probabilities of isolated fac-
tors, one could easily detect anomalies (Barlow
et al., 1989; Schmidhuber, 1992), infer causality
(Barlow et al., 1989) resulting in further benefits
(Lake et al., 2017), or represent data more com-
pactly (Barlow et al., 1989; Schmidhuber, 1992)
Moreover, disentangled representations would be
interpretable (Kulkarni et al., 2015; Chen et al.,
2016; Higgins et al., 2017a) and would lend them-
selves to performing interventions and counter-
factuals (Locatello et al., 2019; Peters et al., 2017).
It is also believed that the representations should be
learnable by unsupervised learning (Bengio et al.,
2013).

2.3 Defining disentanglement

As stated above, a single definition of disentangle-
ment has not yet been universally accepted. How-
ever recently, two research groups have indepen-
dently come up with three identical criteria for
judging the degree of disentanglement in a rep-
resentation: modularity, compactness and explicite-
ness (Eastwood and Williams, 2018; Ridgeway and
Mozer, 2018; terminology from Ridgeway and
Mozer, 2018). Modularity and compactness de-
scribe the mapping between the elements of the
representation (or code) c and the ground-truth
generative factors z.

A modular representation requires each element
of c to describe a single generative factor in z (leav-
ing open the possibility of a larger piece of code
describing a single generative factor).

Analogously, a compact representation requires
each element of z to to be described by a single
dimension in the code c (with the option of a sin-
gle element of the code capturing more generative



factors). A representation both modular and com-
pact would have a one-to-one mapping between the
elements of c and z.

Explicitness relates to how much information
about z is contained in c and can be formalized as
an error a regressor would make when predicting
the values of z from c. The type of the regressor
also plays the role: the simpler the regressor is
(e.g. linear vs non-linear), the more informative a
representation is deemed to be.

In general, modularity is required in all the re-
viewed papers trying to formalize or measure the
notion of disentanglement (Eastwood and Williams,
2018; Ridgeway and Mozer, 2018; Higgins et al.,
2017a; Kumar et al., 2018, . . . ). Compactness is
more problematic: some factors might be more
natural to represent by multiple code dimensions
(rotation) and moreover, a neural network discov-
ering a redundant code can be easier to optimize
(Ridgeway and Mozer, 2018). The degree of explic-
itness is dependent on the subsequent processing
of the code. Ridgeway and Mozer (2018) argue for
linear separability, Eastwood and Williams (2018)
use a non-linear regressor.

Trying to formalize the notion of the underlying
generative factors, Higgins et al. (2018) approaches
the definition from the angle of group theory. The
core observation is that the state of the world under-
goes transformations whose effects are very local-
ized, leaving the majority of the state unchanged
(Bengio et al., 2013). A group containing such
transformations (symmetries) can be decomposed
into subgroups and a vector representation is disen-
tangled if it can be decomposed into independent
subspaces each reflecting actions of a separate sub-
group. We believe the main benefit of this approach
is that it tries to facilitate thinking about the under-
lying factors of variation in non-trivial scenarios
(e.g. 3D rotation should be encoded in a single
subspace and not disentangled Higgins et al., 2018)

2.4 Disentanglement in NLP

In the context of NLP, disentanglement is some-
times understood in a more restricted sense (Lam-
ple et al., 2019). Rather than discovering unspec-
ified sources of variation in the data, researchers
aim at disentangling some pre-defined set of fea-
tures from the representation. In style transfer, the
representation of a piece of text is desired not to
include specific features corresponding to the style
of text. The generator processing such content-only

representation then takes the value of the attributes
as additional input and produces a text that con-
tains roughly the same information, but presented
in a different way (e.g. positive vs. negative re-
view) (Fu et al., 2017; Shen et al., 2017; Hu et al.,
2017). Interpreting the language of an utterance
as its style, one can similarly arrive at a method of
unsupervised machine translation (Lample et al.,
2018).

The same approach can be observed in other
domains: Lample et al. (2017) disentangle some at-
tributes (has glasses, male/female, . . . ) in a labelled
dataset of faces and by controlling the attributes
modify existing images; Wang et al. (2019) use the
approach to disentangle the speaker’s identity from
the content of the utterance to get better speaker
representation.

All these methods can be classified as unsuper-
vised from the point of view of the target task (e.g.
the unsupervised machine translation system of
Lample et al. (2018) is not trained on parallel sen-
tences). At the same time, they are supervised from
the point of view of disentanglement, as the values
of the attributes in question are used during training
of the models.

2.5 Evaluation

The leading approaches to unsupervised disentan-
gled representation learning (Section 3) have been
developed in the image domain by using genera-
tive models. In such cases, one possible approach
to evaluation is visual inspection of the effects of
manipulating different latent variables. One can
encode an image into a code c and generate images
from the code by gradually changing its value at
a given position ci. A successful model generates
a sequence of images differing in a single inter-
pretable attribute, such as rotation or width of an
object (Chen et al., 2016; Higgins et al., 2017a).
With rising interest in the topic the need to compare
different methods in a more principled way arose.

Typically, disentanglement is evaluated along
(one or more of) the three axes introduced in Sec-
tion 2.3: modularity, compactness and explicite-
ness. However, to do that one needs access to
the ground-truth factors of variation. For process-
ing images, there are some datasets of choice: ei-
ther simple pictures of objects artificially generated
according to some generative factors: 3D Chairs
(Aubry et al., 2014), 3D Faces (Paysan et al., 2009);
or pictures manually annotated with a given set of



attributes: celebA (Liu et al., 2015)
Couple of metrics have been proposed. Higgins

et al. (2017a) use a linear classifier to predict the
index of a single generative factor that has been
fixed when generating a batch of samples. This is
slightly modified in (Kim and Mnih, 2018). Two
metrics have been designed based on pointwise mu-
tual information between pairs of code dimensions
and factors: Mutual Information Gap (Chen et al.,
2018) and the Modularity metric (Ridgeway and
Mozer, 2018). Further metrics include the disentan-
glement score by Eastwood and Williams (2018)
and the SAP score by Kumar et al. (2018). Lo-
catello et al. (2019) show the correlation between
these metrics on various datasets.

A less direct way of evaluation is also possi-
ble. One of the purported benefits of disentangle-
ment discussed earlier (Section 2.2) can be mea-
sured with and without enforcing disentanglement:
Eastwood and Williams (2018) evaluate sample-
efficiency of disentangled representations on a vi-
sual abstract reasoning task, Higgins et al. (2017b)
focus on zero-shot domain transfer in the reinforce-
ment learning context.

2.6 Connections to other areas of research

Disentangled representation learning is related to
other, better known, areas of research. Some have
already been mentioned when discussing potential
benefits of isolating sources of variation in the data
(Section 2.2). Here, we try to extend the list and
clarify potential confusion arising from where there
is too much overlap.

Transfer learning and related concepts of zero-
/one-/few-shot learning describe the ability of
models to learn in a new setting (data distribution)
while reusing information learned in the previous
one. When the task remains the same and only
the source data distribution changes, one can speak
about domain adaptation. Multi-task learning
corresponds to training models under different ob-
jectives simultaneously. In all these cases disen-
tanglement is believed to be beneficial, but most
current approaches do not explicitly enforce it on
their representations.

Causal inference tries to discover the underly-
ing directed acyclic graph representing causation
between variables. In most cases, these variables
are presupposed, i.e. disentangled a priori. Deal-
ing with real-world perceptual data (images, text),
one needs to discover the latent variables first. Re-

cently, Bengio et al. (2020) try to infer causality
and learn disentangled representations jointly, al-
beit in a very restricted settings of two latent and
two observational variables, the later being gener-
ated by a rotation of the former.

A truly disentangled representation is supposed
to be interpretable (as it would correspond to
the ground-truth generative factors), but the inter-
pretability literature often works with entangled
vectors, e.g. self-explaining models (Ribeiro et al.,
2016). Moreover, getting fully disentangled codes
for real-world data seems not realistic. Even if it
was, the process of getting such a representation
might still be obscured. Thus, we see a place for
both lines of research.

Nonlinear ICA (independence component anal-
ysis) tries to find independent sources of variation.
This is not required from disentangled representa-
tions, although in practice independence is often
assumed for practical reasons (Section 3).

In the context of neural networks, sparsity is
mostly thought of as a means of data compression
(Gale et al., 2019) or (potentially) computational
efficiency (Zhou et al., 2019). However, Bengio
(2017) proposes sparse representations for repre-
senting higher-level (language-related) concepts.
The interplay between disentanglement and spar-
sity is also to be expected in continual learning,
where the space for new information encountered
later needs to be preserved (Achille et al., 2018).

3 Methods

There are two main competing approaches of unsu-
pervised learning of disentangled representations.
Each of them is based on a different method of gen-
erative modelling with neural networks. These are
discussed first (from Section 3.1 up to 3.4). A third,
unrelated method uses meta-learning approach and
is discussed in Section 3.5. Finally, we provide a
review of empirical results achieved with disentan-
gled representations (Section 3.6) and discuss the
application of generative models in the domain of
NLP (Section 3.7).

3.1 The marginal likelihood problem

Given the generative process described by Equation
1, we can express the desired latent representation
z using Bayes’ theorem:

pθ(z|x) =
pθ(x|z)pθ(z)

pθ(x)
(2)



Unfortunately, trying to optimize the model pa-
rameters θ by maximizing the likelihood of train-
ing data is not practical since finding the pθ(x) =∫
pθ(x|z)pθ(x)dz is usually intractable.

3.2 GANs
One way of dealing with the problem of intractable
marginal likelihood is using implicit models that
avoid specifying probabilities. A popular example
are Generative adversial networks (GANs) intro-
duced by Goodfellow et al. (2014).

GAN’s main component is a deterministic func-
tion GθG (generator) that transforms a sample
drawn from a specified prior distribution z ∼ p(z)
to the data space. The goal is to train the parameters
of the generator θG so that sampling z and trans-
forming it by GθG(z) produces examples matching
the true data distribution p(x). To do that an adver-
sial discriminator DθD is introduced, whose aim is
to distinguish between the true data samples and
the outputs of the generator. Both G and D are im-
plemented as multi-layer perceptrons and trained
by playing a minimax game:

min
G

max
D
V (D,G) = Ex∼p(x)[logD(x)]

+ Ez∼p(z)[log(1−D(G(z)))].
(3)

DθD(x) represents the probability of x coming
from the data distribution.

3.2.1 Information Maximizing GANs
Chen et al. (2016) follow with separating a sub-
space of the latent variable vector z and designating
it as a latent code c. The purpose of the code is
to capture the disentangled attributes of the data,
while z keeps its function of ‘incompressible noise’
(Chen et al., 2016, p. 3).

Thus the generator is now a function of two vec-
tors: GθG(z, c). To prevent the generator from
ignoring c, it is proposed to regularize the minimax
game (Eq. 3) by the mutual information between
the code and the generator output:

min
G

max
D

VI(D,G) = V (D,G) +λI(c;G(z, c)).

(4)
The mutual information can be expressed as

I(c;x) = H(x)−H(c|x). (5)

Intuitively, keeping I high during training forces
the generator to incorporate c into the output, so

that seeing the output gives us information about
the code (H(c|x) is low).

Unfortunately, having an implicit model means
no access to explicit probabilities that would en-
able the calculation of I(c;G(z, c). However, a
lower bound on I can be derived by approximat-
ing the true posterior p(c|x) by another distribution
Q(c|x). Then it can be shown that:

LI(G,Q) = Ex∼G,c∼P (c)[logQ(c|x) +H(c)]

≤ I(c;G(z, c)).

(6)

The approximating distribution is parametrized
as another neural network, but it can share some
layers with the discriminator reducing additional
computational cost compared to the original GANs.
Apart from providing the means of keeping mutual
information between the generator output and the
latent code, it enables inference, i.e. getting the
disentangled representations of actual data.

3.3 Regularized variational auto-encoders
Unlike plain GANs, variational auto-encoders
(VAEs) (Kingma and Welling, 2014) resolve the
problem of intractable marginal likelihood by
variational approximation to the true posterior:
qφ(z|x) ∼ pθ(z|x). The marginal likelihood of
the data can then be expressed as:

log pθ(x) = DKL(qφ(z|x)||pθ(z|x))+L(θ, φ;x).
(7)

As Kullback-Leibler divergence must be non-
negative, L(θ, φ;x) is the lower bound on the ev-
idence, i.e. log pθ(x), (marginal likelihood). Evi-
dence lower bound (ELBO) corresponds to:

L(θ, φ;x) = Eqφ(z|x)[− log qφ(z|x) + log pθ(x, z)]

(8)

and since pθ(x, z) = pθ(x|z)pθ(z), it can be
rewritten as:

L(θ, φ;x) = Eqφ(z|x)[log pθ(x|z))]

−DKL(qφ(z|x)||pθ(z)).
(9)

Both conditional distributions qφ(z|x) and
pθ(x|z) can be parametrized by neural networks,
producing an auto-encoder architecture. The first
term in Equation 9 corresponds to the reconstruc-
tion error while the second term is a regularizer



keeping the posterior distribution close to the prior
pθ(z). Moreover, under certain assumptions, such
as the prior and posterior being Gaussian, the regu-
larizer term can be integrated analytically, leaving
only the estimation of the reconstruction error for
sampling.

Unlike in the traditional auto-encoders, the VAE
encoder specifies the whole multivariate posterior
distribution qφ(z|x), not just point estimates. This
is done by predicting the distribution parameters,
such as the mean and variance of individual Gaus-
sian latent variables.

During training, the forward pass includes sam-
pling a representation from a parametrized dis-
tribution. In order for the gradient to flow back
through such a step into the encoder, z needs to be
reparametrized by a differentiable transformation,
such as the location-scale transformation:

z ∼ N (µ, σ2); z = µ+ σε; ε ∼ N (0, 1)

3.3.1 β-VAE
VAEs lend themselves for disentangled represen-
tation learning particularly well due to the regu-
larization term, which prevents the posterior from
diverging from the prior. As the prior tends to be
a factorized distribution (N (µ, I)) a push for dis-
entanglement arises automatically. Higgins et al.
(2017a) introduce a simple extension to VAEs by
adding a hyperparameter β to control the strength
of the regularization. The new training objective is
thus a simple modification of the evidence lower
bound (Eq. 9):

L(θ, φ;x, β) = Eqφ(z|x)[log pθ(x|z))]

− βDKL(qφ(z|x)||pθ(z)).
(10)

By setting β = 1, we get the original VAE formu-
lation.

Higgins et al. (2017a) demonstrate this simple
change of increasing the strength of regularization
has positive effect on the number of recovered fea-
tures and quality of disentanglement. Interestingly,
β-VAEs seem to be able to learn the number of
disentagled features as it was shown to keep some
latent variables close to the prior distribution (mea-
sured by DKL).

A follow-up work (Burgess et al., 2017) pro-
poses to gradually anneal the strength of the regu-
larization. At the beginning of training, the regular-
ization is strong, which forces the model to focus

on the most important generative factors. With
gradual lowering of the regularization strength, the
model can focus more on faithful reconstruction
of the input. The authors conclude this approach
leads to better reconstructions while keeping the
representations disentangled.

3.3.2 Factor-VAE
Kim and Mnih (2018) note that the regularizer in
β-VAEs involves penalizing I(x; z), i.e. mutual
information between the learned code and true data.
Increasing β then leads to poor reconstruction per-
formance. The proposed solution is to penalize
total correlation:

TC = DKL(q(z)||q̄(z)), (11)

where q̄(z) =
∏d
i=1 q(zi). To estimate the term, a

discriminator is trained to recognize between sam-
ples from q(z) and q̄(z).

3.3.3 β-TCVAE
Similar conclusion regarding the original β-VAE
regularization, mutual information and total cor-
relation was made by Chen et al. (2018). They
decompose the DKL term from Equation 10 into
three terms and found enforcing TC (Eq. 11) gives
the best results. While the objective is the same
as in (Kim and Mnih, 2018), here, the TC is esti-
mated by a Monte Carlo estimate with importance
sampling. No additional model is required.

3.3.4 DIP-VAE
As yet another alternative to β-VAE, (Ku-
mar et al., 2018) propose regularizing the co-
variance between q(z) and p(z) which under
certain assumptions (p(z) ∼ N (0, I)) can
be decomposed into λod

∑
i 6=j [Covqφ(z)[z]]2ij +

λd
∑

i([Covqφ(z)[z]]ij−1)2 with λd and λod being
two hyper-parameters controlling the strength of
the diagonal and off-diagonal entries, respectively.

3.4 VAEs vs GANs
Compared to VAEs, approaches using GANs tend
to be more difficult to optimize as the performance
of both the generator and discriminator must be
kept synchronized during training. In the context
of disentangled representation learning, IngoGAN
has been shown to perform worse than VAE-based
methods (Higgins et al., 2017a; Chen et al., 2018).
There are modifications to the standard GAN frame-
work (Arjovsky et al., 2017) that aim to alleviate
some of the instability problems, but even these



have been shown to perform worse than regular-
ized VAEs for disentanglement (Kim and Mnih,
2018).

On the other hand, since GANs do not need to
pass the gradient through the latent variables, there
is more room for putting assumptions on the prior
distribution p(z) such as a random variable being
discrete. Yet, while it was initially claimed that
InfoGAN can encode the identity of a digit in its
discrete variable (Chen et al., 2016), Kim and Mnih
(2018) struggled to replicate the results.

VAE-based methods learn continuous latent vari-
ables, although these can often encode binary
attributes (has glasses, male/female, . . . ) (Hig-
gins et al., 2017a; Lample et al., 2017). On
the other hand, they easily allow for discrete ob-
served variables as there is no need for the gradi-
ent to flow through them (unlike in the generator–
discriminator interface in GANs).

By using the encoder to parametrize the approxi-
mation to the posterior, VAEs create the “amortized
gap” between the true posterior and the approxi-
mation (Cremer et al., 2018). This is an additional
source of error that compounds with the “approxi-
mation gap.” Approximation gap appears when the
considered parametric family of distributions does
not include the true distribution. Amortization gap
arises due to the inability to find the best distribu-
tion in the family. This is caused by the fact that
the parameters are not optimised for each training
example separately as was the case in stochastic
variational inference (Hoffman et al., 2013). In-
stead, by using the encoder, the parameters and
the cost of learning are amortized over the training
data.

The amortization gap can be the main source of
error especially if the data are complex (Cremer
et al., 2018) which motivates the research for a
‘middle ground’ between the stochastic and amor-
tized variational inference. Kim et al. (2018) per-
form encoding by the global encoder, followed by
local refinement of the parameters.

However, the above dilemma is not unique for
VAEs. Once, there is a need for inference using
GANs, the posterior must also be approximated as
discussed in Section 3.2.1.

Currently it seems the focus in the literature on
disentangled representations favours VAE-based
approaches, but no specific form of regularization
has emerged as the method of choice yet. While
some disadvantages of β-VAE have been shown,

its main appeal is the ease of implementation, an
aspect missing from the other models.

3.5 Disentangling by meta-learning
We also note the recent work on causality by
Bengio et al. (2020). They infer the causal di-
rection between two latent variables (A → B,
B → A) together with a way of disentangling
them from observed variables. The encoder and
the parameter representing the belief about the
causal structure (P (A → B)) are updated in
the ‘outer loop’ of a meta-learning objective.
The parameters of the decomposed joint distri-
butions under the two hypotheses are learned
in the ‘inner loop’ (PA→B(A)PA→B(B|A);
PB→A(B)PB→A(A|B)).

While there is no special disentanglement-
enforcing term in the cost function of the model,
the inductive bias lies in the assumption of fre-
quent sparse changes of the ground-truth distribu-
tion. The main insight is that knowing the correct
causal model together with disentangled represen-
tations of the observed data would enable faster
learning when there is a local change in the under-
lying distribution. (A follow-up work (Ke et al.,
2019) modifies this approach for more complicated
scenarios, but it works with the ground-truth vari-
ables directly.)

In a similar vein to Bengio et al. (2020), Javed
and White (2019) propose to split a neural model
into two parts: representation learning network
(RLNθ) and prediction learning network (PLNW )
The output of the model is then given by p(y|x) =
PLNW (RLNθ(x)). The two parts are learned sepa-
rately, each on samples from a changed distribution.
Intuitively, one first forms a hypothesis about the
way to represent the data and trains the prediction
network (i.e. θ is fixed while W is updated). Then
the model is tested under new circumstances of a
changed data distribution. The hypothesis about
the way the data are represented is updated so that
the knowledge learned in the previous step can be
transferred more efficiently (i.e. W is fixed while θ
is updated). These two steps are repeated. The au-
thors demonstrate success of this approach on two
continual learning tasks and show that the learned
representations are very sparse.

3.6 Demonstrated benefits
The generative models have been evaluated with
respect to some of the potential benefits presented
in Section 2.2.



All the considered variants were developed us-
ing simple image datasets so their interpretability
could be presented by various ‘latent traversals’, i.e.
providing a sequence of images generated by mod-
ifying a single latent variable. Various attributes of
the images have been disentangled in the learned
representations, such as: object position, identity,
color, presence of sunglasses, baldness, gender, etc.
(Chen et al., 2016; Higgins et al., 2017a; Kim and
Mnih, 2018; Chen et al., 2018; Kumar et al., 2018).

The ability to transfer the learned knowledge
into a different scenario has also been demonstrated.
van Steenkiste et al. (2019) trained a specialized
model for an abstract visual reasoning task. Here,
the goal is to complete a sequence of 3 pictures
based on the pattern presented in two other com-
pleted sequences, e.g. color of the object and its
position stays the same. The picture representation
was pre-trained without supervision. The results
show that during early stages of learning, the model
benefits from representations having high disentan-
glement scores. (No type of regularization would
consistently outperform the others).

Higgins et al. (2017b) propose the DARLA (Dis-
entangled representation learning agent) model. It
first learns, without supervision, to produce disen-
tangled representations of its environment (β-VAE).
This part of the model then remains fixed. In the
second stage, it learns to act (various reinforcement
learning algorithms are tested) in specific settings
(picking certain objects in a room). Finally, its per-
formance was evaluated in an unseen combination
of factors (new room-objects combination). The
authors report significant benefit of using disentan-
glement as measured by the agent’s score under
new conditions.

3.7 Generative models in NLP

In the context of Natural Language Processing,
both basic types of deep generative models (GANs
and VAEs) are used, but usually for reasons differ-
ent from wanting to achieve unsupervised disen-
tanglement. (A list of literature on disentangling
hand-picked features from an entangled representa-
tion was given in section 2.4)

Each approach has its own specific challenges
when applying it to text, but the basic solution to
the issue of processing sequential data is the same,
i.e. recurrent encoder/decoder.

A sentence (the basic unit in the majority of the
literature) is encoded into a vector representation

by a recurrent cell of choice. The cell processes
the input word by word transforming its preceding
state and the current word embedding into a new
state (and output). When the cell reaches the end
of the sentence, the corresponding hidden state is
taken to be the desired representation of the whole.

During decoding, a recurrent cell sequentially
generates output conditioned on its current state
and the previously produced word, until it reaches
a terminating symbol. A recurrent decoder can
take its initial state from the output of an encoder
producing the encoder-decoder architecture, which
showed surprising results in neural machine transla-
tion (Sutskever et al., 2014; Bahdanau et al., 2015).

3.7.1 GANs
As mentioned earlier, using GANs in a discrete do-
main raises the problem of propagating the learning
signal from the discriminator to the generator.

A common solution is to approximate the one-
hot representation of the output with a continu-
ous distribution (Zhang et al., 2016; Kusner and
Hernández-Lobato, 2016). For example, the latter
authors use the following approximation:

y = one hot(arg max
i

(hi + gi))

∼= softmax

(
1

τ(h + g)

)
,

(12)

where each gi is sampled from the Gumbel distribu-
tion, Gumbel(0, 1). During training, the parameter
τ is gradually decreased, which corresponds to
making the approximation more accurate.

Another solution to the problem of non-
differentiability is proposed by Yu et al. (2017).
The generator is modelled as a stochastic policy
where each action in a given state corresponds to
generating a corresponding word. The policy is
trained using the REINFORCE algorithm with the
output of the (traditional) discriminator used as the
reward signal.

3.7.2 VAEs
The interest in VAEs in NLP comes from their
coverage of the latent space, which is useful when
generating new samples.

Bowman et al. (2016) merge the VAE architec-
ture with recurrent encoder and decoder to gen-
erate more coherent sentences. The final hidden
state of the encoder is linearly transformed to get
the parametrization of the estimated prior. They
evaluate the approach on the task of missing words



reconstruction and demonstrate the smooth nature
of the learned latent space by providing examples
of gradually changing sentences. These were gener-
ated from linear interpolation between two random
points in the latent space.

Training such a model turned out to be prob-
lematic as the decoder often learned to ignore the
encoded sentence representation. Bowman et al.
(2016) point out that the decoder is a recurrent
language model (RNNLM) that is known to be ca-
pable of learning to assign high probabilities to real
sentences. Increasing the ELBO (Eq. 9) can thus
be achieved by: 1) training a good language model
(high data likelihood under the prior) and 2) en-
coding sentences so that the representations closely
match the prior distribution (low DKL term). This
has became to be known as posterior collapse and
it mirrors the problems of imbalance between the
generator and discriminator known from GANs.

Two solutions were proposed by Bowman et al.
(2016): annealing the cost of the DKL term during
training and dropping out (some) previously gener-
ated words. The identical annealing (in a different
interval) was presented as an extension to β-VAE
(section 3.3.1). The second solution effectively
cripples the decoder by corrupting its expected in-
put, which forces the model to utilize the latent
variables more.

The posterior collapse became the target of much
follow-up research. Yang et al. (2017) control the
contextual capacity of the decoder by dilated convo-
lutions and show first success of VAEs for language
modelling. Qian and Cheung (2019) add a mutual
information between the data and their latent repre-
sentation (cf. Factor-VAE 3.3.2, β-TCVAE 3.3.3)
into the objective and estimate it by a neural net-
work and Kim et al. (2018) show combining the
amortized and stochastic information is also help-
ful.

4 Future Work

We perceive a gap in the literature on the topic of
unsupervised learning of disentangled feature rep-
resentation of language data, which we speculate
can be caused by some of the following factors.

First, the goal might seem too ambitious consid-
ering the problem is far from being solved even on
artificially generated image datasets. The existing
approaches have been found useful (cf. Section
3.6), but they have also been shown to suffer from
high variance and the disentanglement is never per-

fect. Moreover, some negative results on the down-
stream tasks have also been reported (Locatello
et al., 2019).

Secondly, it is harder to think about what the un-
derlying factors of variation actually are. In other
words, we do not know what we are looking for.
Using a 3d engine to render pictures of gradually ro-
tating objects under different lightning conditions,
one has a clear idea what to expect from a disentan-
gled representation. However with language, this
is harder to achieve.

A similar point is the difficulty of evaluation. It
seems to be easier to get intuition about the learned
representations by seeing images generated from
a latent space traversal than by reading a sequence
of generated sentences.

While acknowledging the above objections, we
believe they may be addressed and that investigat-
ing language representation disentanglement has
its own merits. As discussed earlier, successful
disentanglement has been observed on the celebA
dataset of human faces, with some of the dis-
covered features quite abstract (gender, baldness,
glasses, . . . ). The problems with evaluation can
be partially avoided by focusing on extrinsic eval-
uation (such as the speed of transfer). We also
note that the need to solve specific language-related
problems can lead to ideas applicable outside the
original domain (cf. attention Bahdanau et al.,
2015)

To make the proposed ideas more concrete two
more or less arbitrary choices have been made. The
first is the actual type of unit that should be repre-
sented. While the final ambition is to move beyond,
we decided to start with words. This bottom-up
approach seems natural, especially since there have
not yet been relevant results on this ground level.

As mentioned above, comparing the speed of
transfer of different representations can serve as
a proxy for evaluating the level of their disentan-
glement. However, the choice of the transfer task
actually matters as it should be related to the type
of features that can be expected to be isolated in
the representations. We believe the language model
objective and part of speech tagging constitute a
suitable pair for training and transfer evaluation.

Below, we propose three concrete experiments
targeting unsupervised disentanglement of lan-
guage representations.2 We provide the working

2These are not intended as a comprehensive plan of the
rest of the doctoral studies. Rather, they are to be understood



title, a summary in the form of a hypothesis or a
research question and a short description.

4.1 Evaluating existing methods in the new
settings
VAE-based disentangled word embed-
dings are beneficial for part of speech
tagging

Contextual word embeddings will be learned by
using the traditional BERT-like masked language
model objective (Devlin et al., 2019) both with and
without disentanglement. Disentanglement will be
enforced using a VAE-like approach, i.e. the output
of the encoder will parametrize the approximation
of the posterior p(z|x) and will be pressured to
match a factorised prior. The two types of repre-
sentations will be used for training POS tagging
models whose learning curves will be compared
for evaluation. We expect the model with access to
potentially disentangled features to learn faster.

Using the transformer architecture is assumed
but not necessary. (Transformer as a VAE has re-
cently been used by Wang and Wan (2019)). Using
a recurrent encoder and decoder with LM objec-
tive is also possible. As the language model score
is not of interest, we also point out the option of
a non-autoregressive decoder (Gu et al., 2018) to
encourage more information to be passed through
the encoder.

4.2 Classification objective for
disentanglement
Disentangled word embeddings can be
learned by classification

Analogously to VAEs, we propose to train an en-
coder parametrizing a distribution over the latent
variables, but this time, followed by a classifier
predicting part of speech for each word. The cross-
entropy will still be regularized by the divergence
of the learned latent distribution from a factorized
Gaussian, as is the case in VAEs. The intuition be-
hind this experiment is that the classification task
could produce more ‘focused’ disentangled repre-
sentations capturing e.g. grammatical categories.
Moreover, by limiting the capacity of the classifier
(e.g. linear), we hope to get representations that
would lend themselves to manual inspection. (They
should contain disentangled features whose linear

as probes into the topic, based on which further directions will
be considered. We believe this approach is justified by the
lack of relevant literature.

transformation predicts parts of speech). Never-
theless, the representations could still be evaluated
on a transfer task, such as training the masked lan-
guage model.

4.3 Meta-learning disentanglement
Word embeddings can be disentangled by
learning from sentences with gradually
changing topic and complexity

The idea of using non-stationarity as a training
signal was described in Section 3.5. Firstly, it must
be decided along which axes the data distribution
should change. We propose the complexity of the
text and/or its topic. The first can be approximated
by number of words, the second by a topic model,
such as LDA (M. Blei et al., 2003).

We would like to train an encoder/decoder ar-
chitecture with a language modelling objective by
repeating the following steps: 1) For a given state
of the encoder, update the decoder by training it on
samples from a particular distribution. 2) For the
given decoder, update the encoder parameters by
training it on samples from a changed distribution.

Evaluation can happen by a transfer to a new
task such as POS tagging, or by a transfer to a
new distribution (domain adaptation). The main
question is again whether the proposed method of
learning disentangled representations produces bet-
ter contextual word embeddings than the baseline.
Better stands for ‘enabling faster transfer’ and the
baseline here stands for embeddings learned on the
same data points but seen as a shuffled collection
simulating i.i.d. samples.

5 Conclusion

Above, we have proposed and motivated a specific
area of research within NLP, namely unsupervised
learning of disentangled representations. We de-
scribed disentanglement as a general concept of
representation learning which is related to many
other lines of research. Specific methods used to
approach the problem were reviewed as well as
their application in NLP in particular. We found
the motivation for the use of the methods in NLP
is usually different from wanting to achieve disen-
tanglement. Alternatively, the disentanglement is
understood in a limited sense of supervised isola-
tion of preselected features. Therefore, we argue
for filling in the gap and suggest three concrete
experiments that can be used to start doing so.
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F. dAlché-Buc, E. Fox, and R. Garnett, editors, Ad-
vances in Neural Information Processing Systems
32, pages 1820–1830. Curran Associates, Inc.

Nan Rosemary Ke, Olexa Bilaniuk, Anirudh Goyal,
Stefan Bauer, Hugo Larochelle, Chris Pal, and
Yoshua Bengio. 2019. Learning neural causal mod-
els from unknown interventions.

Hyunjik Kim and Andriy Mnih. 2018. Disentangling
by factorising. In Proceedings of the 35th Interna-
tional Conference on Machine Learning, volume 80
of Proceedings of Machine Learning Research,
pages 2649–2658, Stockholmsmässan, Stockholm
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