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1 Introduction

Optical Music Recognition (OMR) is a field of doc-
ument analysis that aims to automatically read music
scores. Music notation encodes music in a graphical
form; OMR backtracks through this process to extract
the musical information from this graphical representa-
tion.

Common western music notation (CWMN) is an in-
tricate system for visually representing music that has
shown considerable resilience in the face of many de-
velopments in the musical world, and has thrived be-
yond its original European cultural sphere, being able
to represent sufficiently well much of the world’s mu-
sical traditions. It has been evolving for about 1000
years, with the current standard having emerged in the
17th century and stabilized around the end of the 18th
century. In the latter half of the 20th century, there have
been multiple attempts to find new ways of conveying
musical thought visually from composer to performer;
however, none have yet threatened the dominance of
the CWMN system. As long as musicians think of mu-
sic in terms of notes, and have the need to communicate
this kind of music visually, CWMN is – probably – here
to stay, or at most keep evolving. Throughout these
years, CWMN has settled into an optimum for quickly
and accurately decoding the musical information. Un-
fortunately for OMR, this optimum has proven rather
complex for document analysis systems, and there are
only a few sub-problems of OMR that have been re-
solved successfully since OMR has first been attempted
over 50 years ago (Denis Pruslin, 1966; David S Prerau,
1971).

The main aim of the proposed thesis is to create an
OMR system capable of reading handwritten CWMN
music notation. Two tasks will be attempted: offline
handwriting recognition, and augmenting the system
with audio inputs for multimodal human-in-the-loop
recognition. Given the state of the art in OMR, how-
ever, it was necessary to first create the supporting in-
frastructure of evaluation and datasets, including some
theoretical work on ground truth design.

In the rest of this introduction, we first briefly present
the motivation for OMR and its application domains
(Subsec. 1.1). We then describe in more detail the pro-

cess of reading music that OMR is seeking to emulate
(Subsec. 1.2), and from this description we draw con-
clusions about why OMR is a difficult problem, espe-
cially compared to OCR (Subsec. 1.3). We finally de-
scribe the individual “flavors” of OMR based on the in-
put modalities and output requirements (Subsec. 1.4).

Next, in Section 2, we describe how OMR solu-
tions are typically structured and review the literature
on OMR. We then proceed to present our contribu-
tions to OMR so far: in Section 3, we analyze the
requirements for designing an OMR benchmark, and
present the MUSCIMA++ dataset,1 and in Section 4,
we present a data-driven approach to OMR end-goal
evaluation.2 In Section 5, we then present a plan of ex-
periments towards completing a workable handwritten
offline optical music recognition system.

Section 6 summarizes current achievements and con-
cludes the thesis proposal.

1.1 Motivation: Why OMR?

There are three main application domains where OMR
can make a mark.

1.1.1 Live and post-hoc digitalization of music
scores

OMR can be a useful tool for composers and arrangers,
helping to digitize their work quicker; and for orches-
tral and ensemble leaders, especially early music prac-
titioners, who often need to digitize and transcribe
manuscripts. Even though digital note entry tools are
available, they tend to restrict creative thought, and de-
spite the best efforts of many developers, using these
tools is often tedious and frustrating, which is detri-
mental for the composition process.3

1The section on data, 3, is taken from Hajič jr. and Pecina
(2017); all the work from that publication used in the thesis
proposal is the author’s own.

2The section on evaluation, 4, is taken from the paper of
Hajič jr. et al. (2016); all the work from that publication used
in the thesis proposal is the author’s own.

3We have conducted a survey among current Czech com-
posers at the Janáček Academy of Music and Performing
Arts, where 8 of 10 respondents stated they compose primar-
ily by hand, and 9 out of 10 stated they would use OMR soft-
ware if it was available and good enough.



1.1.2 Making accessible the musical content of
large music notation archives

There is also a large amount of music that only ex-
ists in its written form, in archives: both the works
of contemporary composers, and earlier works, espe-
cially from the 17th and 18th centuries. OMR would
enable content-based search in these archives, at scale.
In conjunction with open-source music analysis tools,4

OMR has the potential to expand the scope of possi-
ble in musicology. In the Czech Republic,there are
thousands of early music pieces in archives such as the
Kroměřı́ž collection,5 or the Church of St. Jacob col-
lection.6 Even more importantly, many 20th and 21st-
century composers have produced significant amounts
of manuscripts that have not been published or digi-
tized (e.g.: I. Hurnı́k, K. Sklenička, J. Novák, F. G.
Emmert, A. Hába)7 that are, or may well become, a part
of the “classical music canon” – given proper exposure.
OMR could make such collections accessible at a frac-
tion of the current costs, thus enabling preservation of
valuable cultural resources and their active utilization
and dissemination worldwide.8 Besides significantly
cutting down on publishing costs, OMR would open
this trove of musical documents to digital humanities
in musicology.

1.1.3 Integration of written music into other
digital music applications

OMR may also be useful as a component of a multi-
modal system, where visual information from the score
is combined with the corresponding audio signal. Score
following, where the “active” part of the musical score
is tracked according to the audio, is one such estab-
lished application,9 but applications in music peda-
gogy or a “musician’s assistant” require more thorough
OMR capabilities.

1.2 How music notation works

We have stated that “music notation encodes music in
a written form, OMR backtracks through this process”
to decode the music from its written form; this is read-
ing music. Understanding this process is key to under-

4Such as the music21 library: http:
//web.mit.edu/music21/

5http://wwwold.nkp.cz/iaml/
studie mahel2006.pdf

6Inventory of musical items of the St. Jacob church in
Brno, 1763, De Adventu, no. 4, Moravian Land Museum,
copy G 5.035

7From personal communication with persons knowledge-
able or in charge of the collections.

8The fact that OMR is a topic of interest to music
archives, but still in prototype stages, is apparent also from
a 2016 job posting at Bayerische Staatsbibliothek: https:
//vifamusik.wordpress.com/2016/03/10/
stellenausschreibung-der-musikabteilung-
der-bayerischen-staatsbibliothek/

9A score following track has been held since 2006 within
the MIREX framework of music information retrieval com-
petition.

standing the objectives of OMR. We now analyze the
music reading process, in order to better understand the
structure of the problem is OMR trying to solve.

The “music” that CWMN encodes can be described
as an arrangement of note musical objects in time. Each
of these objects has four characteristics: pitch, dura-
tion, strength, and timbre. When performed, these
properties translate to fundamental frequency, projec-
tion of the note into time, loudness (perceptual, not
always straightforwardly correlated to amplitude), and
spectral characteristics, both for the harmonic series as-
sociated with the note, and for noise outside this row.
Reading music denotes the process of gradually decod-
ing this arrangement of notes from the written score.
The rules of reading music determine how to decode
notes from music notation. It is a stateful process: ac-
cording to these rules, in order to correctly decode the
next note, one needs to remember some of what has al-
ready been read, especially in order to correctly decode
note onsets: when to start playing a certain note.

Pitch and duration are recorded most carefully. The
entirety of music notation is centered around conveying
them precisely – and very quickly, to allow for sight-
reading: real-time performance, where the music is
played just as the musician is reading. Encoding pitch
also entails a complex apparatus that is intimately con-
nected to the prevailing musical theory of harmony and
relationships of pitches within this theoretical frame-
work. The notation apparatus for strength and timbre
is less complex, and CWMN does not attempt to en-
code these two attributes very precisely, merely pro-
viding some clues for the musician to interpret.

The primary point of contact between the space of
music and the space of music notation is the notehead.
Overwhelmingly often, this is a bijection: one notehead
encodes one note object, and vice versa. Other music
notation symbols are then used to encode the four at-
tributes of notes: the aforementioned pitch, duration,
strength, and timbre.

Pitch is a categorical variable, with values from a
subset of frequencies defined by the scale and tuning
used. In the western music tradition, the scale of avail-
able pitches usually consists of semitones, using pre-
dominantly – since the late 18th century – the well-
tempered tuning system, where the frequency of the
next higher semitone si+1 is defined as si ∗ 2

1
12 .

The linear ordering of pitches by frequency, from
low to high, is arranged into a repeating pattern of
steps: A, B10, C, D, E, F and G. The distance between
neighboring steps is one tone, except for the step from
B to C and from E to F, which is a semitone. One rep-
etition of this pattern is called an octave. Octaves are
in the English-speaking tradition numbered from 1 to
8, with the well-tempered tuning system defining A4 to
have a frequency of 440 Hz.

Potentially, an accidental can shift the pitch by one

10In German tradition, which includes the Czech Republic,
B is called H.

http://web.mit.edu/music21/
http://web.mit.edu/music21/
http://wwwold.nkp.cz/iaml/studie_mahel2006.pdf
http://wwwold.nkp.cz/iaml/studie_mahel2006.pdf
https://vifamusik.wordpress.com/2016/03/10/stellenausschreibung-der-musikabteilung-der-bayerischen-staatsbibliothek/
https://vifamusik.wordpress.com/2016/03/10/stellenausschreibung-der-musikabteilung-der-bayerischen-staatsbibliothek/
https://vifamusik.wordpress.com/2016/03/10/stellenausschreibung-der-musikabteilung-der-bayerischen-staatsbibliothek/
https://vifamusik.wordpress.com/2016/03/10/stellenausschreibung-der-musikabteilung-der-bayerischen-staatsbibliothek/


Figure 1: Indexing pitch, illustrated on a piano key-
board. One octave period is indicated.

Figure 2: The elements encoding pitch: three notes
with the same pitch written in different ways. Note-
heads red, for clarity.

or two semitones in either direction: a sharp modifies it
by one semitone up, a flat by one semitone down. This
implies that in practice, a note of the same frequency
can be expressed as different pitches: a C modified by
a sharp refers – in the well-tempered tuning system –
to a sound of the same fundamental frequency as the
neighboring D modified by a flat. However, the mean-
ing of these pitches is not the same for a musician, even
though they may correspond to the same key on a pi-
ano: the role of a C sharp is different than that of a
D flat within the system of harmony, which is another
source of interpreting music notation from the written
page to performance. Figure 1 illustrates how pitches
are arranged and named on a piano keyboard.

The pitch of a note is encoded by the relationship
of the notehead to staffines, clefs, accidentals (whether
in the role of a global key signature, or as “inline”
modifiers), and ledger lines; sometimes, transposition
marks. Decoding pitch introduces long-distance rela-
tionships: the clef is generally only written at the start
of a staff, and the relationship of the notehead to the
clef is two-step: the clef determines how to interpret
the stafflines (e.g., the G-clef on the left in Figure 2 tells
the reader to interpret noteheads on the second staffline
from the bottom as having pitch G4).

Duration is also categorical. It encodes how many
beats (units of musical time) the given note lasts for.
The durations are fractions of a beat, mostly in pow-
ers of 2, incl. negative: in terms of beats, 4, 2, 1,
1/2, 1/4, 1/8. The terminology calls a 4-beat note a

Figure 3: The types of notes according to dura-
tion. Two half-notes takes as long as one whole note,
one half-note takes the same number of beats as two
quarter-notes, etc.

whole note, a 2-beat note is a half note, then quarter
note, eigth note, etc. (The most common grouping of
beats into regular units, called measures, is by 4, hence
the “whole” moniker for the 4-beat note.) Notes of the
common types are depicted in Figure 3. Additionally,
tuple symbols may encode durations that do not fit into
this powers-of-two sequence, such as 1/3 or 2/5.

Duration is encoded through the notehead type (full,
empty, and sometimes holdover “breve” rectangular
noteheads from earlier, mensural notation), presence or
absence of a stem, flags or beams, and can be modi-
fied also by augmentation dots that multiply the note’s
duration by 1.5. The elements of music notation that
encode duration are illustrated in Figure 4.

Durations also indirectly encode note onset: as mu-
sic is read left-to-right. the next note starts after the pre-
vious one has ended. In order to provide more synchro-
nization, music is usually organized into units of a fixed
number of beats (usually 3 or 4), which are denoted by
barlines. The length of a bar unit is denoted by the time
signature. There are also symbols that encode a certain
duration during which no notes are present: these sym-
bols are called rests.

A further complication is that consecutive groups of
notes with sub-beat duration (8th notes, 16th notes,
etc.) may be grouped using the beam symbol, in or-
der to indicate their overarching temporal structure.
Beamed groups usually group notes that together last
1 or 2 beats. Just like isolated 8th notes are indicated
by the presence of one flag and 16th notes by 2 flags
(see Fig. 3), 8th notes within beamed groups are indi-
cated by the presence of a single beam, 16th notes by
two beams, etc. Rules for constructing beamed groups
allow practically an endless variety of beamed group
configurations, and these groups are visually the most
complex units of music notation, presenting the great-
est challenge for OMR.

The projection of a note’s duration into time is yet
more complex (in fact, it is one of the most complex as-
pects of performing music, a subject of life-long learn-
ing even for professional musicians). There are two
components to this projection. First, the relationship
of beats to time, which is globally encoded by the
tempo marking (usually a vague description, such as
”quickly”, leaving to the performer the exact rate of
beats per minute), and local variations of this relation-



Figure 4: The elements encoding duration.

ship (called the agogics of music performance), which
is usually not encoded at all. Second, there are further
note-level articulation instructions that do not change
its duration in terms of beats, but instruct the performer
to only play the note for a portion of its assigned dura-
tion (staccato, tenuto, . . . ); there are also symbols that
instruct one to lengthen the note (fermata). In terms
of beats, the onset of the following note is not affected
by the presence of articulation marks. Fortunately, be-
yond recording the presence of articulation marks and
tempo-related text, OMR does not have to deal with the
relationship of durations and time.

Strength and timbre are not as important for the
purposes of OMR. Music notation expresses strength
– when at all – through dynamics instructions, which
are (a) textual signs from a pre-defined vocabulary of
terms (pianissimo, piano, mezzoforte, etc.), (b) loud-
ness change instructions, either textual (cresc., decr.),
or ideographical (hairpin symbols). Timbre is primar-
ily manipulated through the selection of musical in-
struments, exploiting how their timbral characteristics
change with respect to the other three parameters, and,
if need be, textual instructions: both vague expressive
terms that require musical intuition to interpret cor-
rectly (dolce, con fuoco, maestoso, . . . ), and directly
controlling how the musical instrument is handled (con
sordinho, col legno, instructions for percussion players
about which stickheads to use, pedalization signs for
piano, flageolets, etc.). Some of the instrument-specific
timbral notation uses specific symbols instead of text.

1.3 Why is OMR difficult?

There is a clear case for describing OMR as “OCR for
the music notation writing system”. However, OMR
remains an open problem and satisfactory solutions
only exist for limited sub-problems (Bainbridge and
Bell, 2001; Ana Rebelo et al., 2012; Jiřı́ Novotný and
Jaroslav Pokorný, 2015). This has two major reasons:
OMR has attracted less attention and effort than OCR,
and, more importantly, the task is more difficult.

There are multiple reasons why this is the case. First
of all, in terms of graphical complexity, CWMN is
more complex than practically any other writing sys-
tem (Donald Byrd and Jakob Grue Simonsen, 2015).
Following the classification of writing systems pro-

Figure 5: A somewhat complex beamed group. Note
how it changes stem sizes, which are otherwise mostly
fixed (at 3.5 ∗ staffspace height).

posed by Sampson (1985), as opposed to glottographic
writing systems for natural languages, which seek to
encode visually what is spoken rather than what is
meant, music is perhaps closer to a semasiographic
writing system, trying to visually express ideas more
directly,11 or a complex featural writing system, which
are characterized by using fixed ways of expressing
sub-morpheme, sub-phoneme units or categories such
as place of articulation or voicedness – this we see as
analogous to how music notation represents “orthogo-
nal” properties of notes using pre-defined sets of sym-
bols that cannot occur in isolation, but have a certain
fixed meaning with respect to notes (see Subsec. 1.2).
The featural view of music notation is further supported
by variants such as Braille notation, which also fac-
torizes into symbols and sub-symbols according to the
separate categories of pitch, duration, etc.

The main reasons why the way CWMN is written
makes OMR more difficult than OCR are:

• Both the vertical and horizontal dimensions are
salient and used to resolve symbol ambiguity.

• In terms of graphical complexity, the biggest is-
sues are caused by overlapping symbols (includ-
ing stafflines) (Bainbridge and Bell, 1997b) and
composite symbol constructions, esp. beamed
groups (see Fig. 5).

• In polyphonic music, there are multiple sequences
written, in a sense, “over” each other – as opposed
to OCR, where the ordering of the symbols is lin-
ear (Fig. 6).

• Recovering pitch and duration requires recovering
long-distance relationships (Fig. 7).

• In handwritten music, the variability of handwrit-
ing leads to a lack of reliable topological proper-
ties overall (Fig. 8), and symbols become easier to
confuse.

11A semasiographic writing system of natural language
exists – or is well-documented to have existed – for Yukaghir,
a nearly extinct group of languages in north-east Siberia:
https://historyview.blogspot.cz/2011/10/
yukaghir-girl-writes-love-letter.html, also
taken from (Sampson, 1985).

https://historyview.blogspot.cz/2011/10/yukaghir-girl-writes-love-letter.html
https://historyview.blogspot.cz/2011/10/yukaghir-girl-writes-love-letter.html


Figure 6: Multiple sequences of notes (voices) sharing
symbols, appearing and disappearing.

(a) C-clef on the left influences how stafflines are interpreted
with respect to the pitches they denote.

(b) Change of clef and key signature. Also, notice the sharp
in the middle: it is valid up to the end of the measure.

Figure 7: Long-distance relationships affecting pitch of
the note on the right.

Secondly, the objectives of OMR are also more am-
bitious than OCR. It aims to recover not just the lo-
cations and classification of musical symbols, but also
“the music”: pitch and duration information of individ-
ual notes. This introduces long-distance relationships:
the interpretation of one “letter” of music notation
may change based on notation events some distance
away. These intricacies of music notation has been
thoroughly discussed since early attempts at OMR, no-
tably by D. Byrd in (Byrd, 1984; Donald Byrd and
Jakob Grue Simonsen, 2015).

Finally, a separate problem that relates more to a lack
of resources and effort, although inherent properties of
music notation also play a role, is that OMR is seri-
ously lacking in two aspects: a set of practical evalua-
tion metrics that would enable practitioners to report
comparable and replicable results, and datasets that
would provide ground truth to evaluate performance on
(Bainbridge and Bell, 2001; Michael Droettboom and
Ichiro Fujinaga, 2004; Szwoch, 2008; Victor Padilla
et al., 2014; Chanda et al., 2014; Baoguang Shi et al.,
2015; Donald Byrd and Jakob Grue Simonsen, 2015;
Hajič jr. et al., 2016; Arnau Baro et al., 2016). Fur-
thermore, especially for handwritten notation, statisti-
cal machine learning methods have often been used that
require training data for parameter estimation (Stuckel-
berg and Doermann, 1999; Rebelo et al., 2011b,a; Jorge
Calvo-Zaragoza and Jose Oncina, 2014; Cuihong Wen
et al., 2015).

1.4 Flavors of OMR

Based on the mode of input, OMR is divided into offline
and online. Offline OMR processes images of music
notation, online OMR processes the sequence of pen
positions in time. Offline OMR is further divided ac-
cording to whether the sheet music is printed, or hand-
written. Different application domains also have differ-
ent requirements on OMR system accuracy.

Online OMR is significantly easier, as the sequential
nature of the input “untangles” most of symbol overlap.
Individual input strokes serve as a good initial overseg-
mentation, although some writers may connect more
symbols into one stroke. In contrast, for offline OMR,
the analogous heuristic of connected components is rel-
atively bad, even after stafflines are removed.

Handwriting is of course much harder to recognize
than printed notation, because of its variability. Indi-
vidual symbols assume radically different shapes, how-
ever, especially troublesome is the lack of topological
constraints. The rules of music notation specify how
individual symbols should indicate their relationships
to one another: stems should be connected to the note-
heads they pertain to, but none other; augmentation
dots should be a certain distance away from the note-
head; beams should be parallel to each other. The vari-
ability of handwriting styles is illustrated in Fig. 8.

OMR tasks can also be characterized by their objec-
tives: What kind of information does the application
need?

Miyao and Haralick (2000) group OMR applications
into two broad groups: those that require replayabil-
ity, and those that need reprintability. Replayabil-
ity entails recovering pitches and durations of individ-
ual notes and organizing them in time by note onset.
Reprintability means the ability to take OMR results
as the input to music typesetting software and obtain
a result that encodes this music in the same way as it
was encoded in the input sequence. Reprintability im-
plies replayability, but not vice versa, as one musical
sequence can be encoded by different musical scores;
e.g. MIDI is a good representation for replayability, but
not reprintability (see Fig. 9).

This is an important distinction, which – unfortu-
nately – has not been reflected upon further in OMR
literature beyond the mention in the original paper
(Miyao and Haralick, 2000). It clearly separates OMR
applications that care about recovering what was ex-
pressed, in terms of pitches and durations (replayabil-
ity), and applications that require knowing how it was
expressed.

The distinction is somewhat arbitrary, as replaya-
bility in terms of the ability to perform the music as
it was intended requires recovering nearly all of the
score anyway. Nevertheless, it is a practical way to
talk about OMR applications. For many applications
such as query by humming or harmony search in mu-
sic archives, it is enough to recover the corresponding
MIDI, or even just its subset (pitch and duration data, or



(a) Writer 9: nice handwriting.

(b) Writer 49: Disjoint notation primitives

(c) Writer 22: Disjoint primitives and deformed noteheads.
Some noteheads will be very hard to distinguish from the
stem

Figure 8: Variety of handwriting. Taken from the CVC-
MUSCIMA dataset (Fornés et al., 2012).

pitch sequences only). Understood in this way, replaya-
bility is less demanding overall, as many details about
the musical score can be “forgotten”. On the other
hand, reprintability is needed whenever a musician is
expected to read music based on OMR output. Mu-
sic notation conveys subtle, yet important hints beyond
what MIDI can record (beaming of notes may convey
rhythmical nuance, other markings encode structural
importance), but it does not necessarily require one to
actually recover pitch and duration data, and thus the
long-range relationships that are one of the reasons for
the difficulty of OMR can be ignored.

Besides the distinction between replayability and
reprintability, various OMR objectives also differ in er-
ror tolerance. Full digital transcription of music scores
for performance is the most demanding task, with no
tolerance to error; each mistake is a detriment to per-
formance. Searching the musical content of archives,
on the other hand, may be more tolerant – one does not
need every note recognized correctly to retrieve a use-
ful subset of scores (Andrew Hankinson et al., 2012).

Out of these flavors of OMR, we focus on of-

(a) Input: manuscript image.

(b) Replayable output: pitches, durations, onsets. Time is the
horizontal axis, pitch is the vertical axis. This visualization
is called a piano roll.

(c) Reprintable output: re-typesetting.

(d) Reprintable output: same music expressed differently

Figure 9: OMR for replayability and reprintability. The
input (a) encodes the sequence of pitches, durations,
and onsets (b), which can be expressed in different
ways (c, d).

fline OMR for handwritten CWMN.

2 Related Work

We review OMR literature in three groups: the meth-
ods by which OMR is usually tackled (Subsec. 2.1), the
state of OMR evaluation, which is a difficult problem
in its own right (Subsec. 2.2), and the available OMR
datasets (Subsec. 2.3).

2.1 Methods

OMR systems are usually pipelines with four major
stages (Bainbridge and Bell, 2001; Ana Rebelo et al.,
2012; Jiřı́ Novotný and Jaroslav Pokorný, 2015; An-
drew Hankinson, 2015):

1. Image preprocessing: enhancement, binarization,
scale normalization;

2. Music symbol recognition: staffline identification
and removal, localization and classification of re-
maining symbols;

3. Musical notation reconstruction: recovering the
logical structure of the score;

4. Final representation construction: depending on
the output requirements, usually inferring pitch
and duration (MusicXML, MEI, MIDI, LilyPond,
etc.).

The image preprocessing stage is mostly practical:
by making the image conform to some assumptions
(such as: stems are straight, attempted by de-skewing),
the OMR system has less complexity to deal with down
the road, while very little to no information is lost. The



problems that this stage needs to handle are mostly re-
lated to document quality (degradation, stains, espe-
cially bleedthrough) and imperfections in the imaging
process (e.g., uneven lighting, deformations of the pa-
per; with mobile phone cameras, limited depth-of-field
may lead to out-of-focus segments of the image) (Don-
ald Byrd and Jakob Grue Simonsen, 2015). The most
important problem for OMR in this stage is binariza-
tion (Ana Rebelo et al., 2012): sorting out which pix-
els belong to the background, and which actually make
up the notation. There is evidence that sheet music
has some specifics in this respect (John Ashley et al.,
2008), and there have been attempts to tackle bina-
rization for OMR specifically (JaeMyeong Yoo et al.,
2008; Pinto et al., 2010, 2011). On the other hand, au-
thors have attempted to bypass binarization, especially
before staffline detection (Rebelo and Cardoso, 2013;
Calvo Zaragoza et al., 2016), as information may be
lost with binarization that could help resolve symbol
overlap or other ambiguities later.

The input of music symbol recognition is a
“cleaned” and usually binarized image. The output
of this stage is a list of musical symbols recording
their locations on the page, and their types (e.g., c-
clef, beam, sharp). Usually, there are three sub-tasks:
staffline identification and removal, symbol localiza-
tion (in binary images, synonymous with foreground
segmentation), and symbol classification (Ana Rebelo
et al., 2012).

Stafflines are often handled first. Removing them
then greatly simplifies the foreground, and in turn the
remainder of the task, as it will make connected com-
ponents a useful (if imperfect) heuristic for pruning
the search space of possible segmentations (Fujinaga,
1996; Ana Rebelo, 2012). Staffline detection and re-
moval is a large topic in OMR since its inception (Denis
Pruslin, 1966; David S Prerau, 1971; Fujinaga, 1988),
and it is the only one where a competition was success-
fully organized, by Fornés et al. (Fornes et al., 2011).

Staff detection and removal methods make use of the
fact that stafflines are by definition long and straight, or
at least should be. Straight stafflines have been detected
by using horizontal projections since the first works
of Denis Pruslin (1966) and David S Prerau (1971),
notably also by Fujinaga (1988). For slightly curved
and slanted stafflines, such as may happen with imper-
fect scanning, Fujinaga applies de-skewing (Fujinaga,
1996). Others use a line-tracking approach that at-
tempts to identify adjacent vertical black runs that are
not too much longer than the detected staffline height
(Christoph Dalitz et al., 2008). dos Santos Cardoso
et al. (2009), further elaborated on by Ana Rebelo et al.
(2013), use the image as a graph of 8-connected pix-
els, assign costs corresponding to pixel intensity, and
search for shortest stable paths from the left edge of
the score to the right, assuming that the stafflines are
the only extensive horizontal dark object, and remove
staff pixels based on vertical run-lengths in binary im-

Figure 10: OMR pipeline from the original image
through image processing, binarization, and staff re-
moval. While staff removal is technically part of sym-
bol recognition, as stafflines are symbols as well, it is
considered practical to think of the image after staff re-
moval as the input for recognition of other symbols.

ages (Ana Rebelo, 2012) and what they call strong staff
pixels (Rebelo and Cardoso, 2013) in grayscale images.
More recently, convolutional networks have been ap-
plied by Calvo Zaragoza et al. (2016), achieving robust
results beyond the CVC-MUSCIMA dataset used for
the competition.

Because errors during staff removal make further
recognition complicated, especially by breaking sym-
bols into multiple connected components with over-
eager removal algorithms, some authors skip this stage:
Sheridan and George instead add extra stafflines to
annul differences between notes on stafflines and be-
tween stafflines (Sheridan and George, 2004), Pugin
interprets the stafflines in a symbol’s bounding box to
be part of that symbol for the purposes of recognition
(Laurent Pugin, 2006). However, even if stafflines are
not removed, correctly extracting staffline and staffs-
pace height is critical for scale normalization.

Next, the page is segmented into musical symbols,
and the segments are classified by symbol class. While
classification of musical symbols has produced near-
perfect accuracy for both printed and handwritten mu-
sical symbols (Ana Rebelo, 2012; Chanda et al., 2014;
Cuihong Wen et al., 2016), with baseline classification
algorithms on raw pixel values achieving close to 80
% accuracy (Jorge Calvo-Zaragoza and Jose Oncina,
2014), segmentation of handwritten scores remains elu-
sive. Most segmentation approaches such as projec-
tions (Fujinaga, 1988, 1996; Bellini et al., 2001) rely on
topological constraints that do not necessarily hold in



handwritten music. Morphological skeletons have been
proposed instead (Roach and Tatem, 1988; Ng et al.,
1999; Luth, 2002) as a basis for handwritten OMR.

It is worth noting the different definitions of what
the “alphabet” of elementary music notation symbols
at this stage is. Some OMR researchers decompose no-
tation into individual primitives (notehead, stem, flag)
(Coüasnon and Camillerapp, 1994; Bainbridge and
Bell, 1997a; Bellini et al., 2001; Bainbridge and Bell,
2003; Fornés, 2005), while others retain the “note” as
an elementary visual object. Beamed groups are de-
composed into the beam(s) and the remaining note-
head+stem “quarter-like notes” (Rebelo et al., 2010;
Ana Rebelo, 2012; Pham and Lee, 2015), or not in-
cluded (Jorge Calvo-Zaragoza and Jose Oncina, 2014;
Chanda et al., 2014).

In turn, the list of locations and classes of symbols
on the page is the input to the music notation recon-
struction stage. The outputs are more complex: at this
stage, it is necessary to recover the relationships among
the individual musical symbols, so that from the result-
ing representation, the “musical content” (most impor-
tantly, pitch and duration information – what to play,
and when) can be unambiguously inferred.

Naturally, the set of relationships over a list of ele-
mentary music notation graphical elements (symbols)
can be represented by a graph, possibly directed and
requiring labeled edges. The list of symbols from the
previous step can be re-purposed as a list of vertices
of the graph, with the symbol classes and locations
being the vertex attributes. While topological heuris-
tics are readily available for printed music to clearly
indicate how relationships should form, for handwrit-
ten music, this is also a non-trivial step. Graph-based
assembly of music notation primitives has been used
explicitly e.g. in (Reed and Parker, 1996; Miyao and
Haralick, 2000; Liang Chen et al., 2015), and grammar-
based approaches to notation reconstruction (e.g., (Fu-
jinaga, 1988; Coüasnon and Camillerapp, 1994; Bain-
bridge and Bell, 2003; Szwoch, 2007; Fornés, 2005))
lend themselves to a graph representation as well, by
recording the parse tree(s).

The outputs of symbol recognition and notation re-
construction are illustrated in Fig. 11.

Finally, the extracted infromation about the input
score is encoded in the desired output format. There
is a plethora of music encoding formats: from the text-
based formats such as DARMS,12

**kern,13 Lily-

12http://www.ccarh.org/publications/
books/beyondmidi/online/darms/ – under the
name Ford-Columbia music representation, used as output
already in the DO-RE-MI system of Prerau, 1971 (David
S Prerau, 1971).)

13http://www.music-cog.ohio-state.edu/
Humdrum/representations/kern.html

Pond, ABC,14 over NIFF,15 MIDI,16 to XML-based for-
mats MusicXML17 and MEI. The individual formats
are each suitable for a different purpose: for instance,
MIDI is most useful for interfacing different electronic
audio devices, MEI is great for editorial work, Lily-
Pond allows for excellent control of music engraving.
Many of these have associated software tools that en-
able rendering the encoded music as a standard musical
score, although some – notably MIDI – do not allow for
a lossless round-trip. Furthermore, evaluating against
the more complex formats is notoriously problematic
(Szwoch, 2008; Hajič jr. et al., 2016).

Text-based formats such as LilyPond or ABC are
ripe targets for end-to-end OMR, as they reduce the
output to a single sequence, which enables the appli-
cation of OCR, text-spotting, or even image-captioning
models. This has been attempted specifically for
OMR by Baoguang Shi et al. (2015) using a recurrent-
convolutional neural network – although with only
modest success on a greatly simplified task. However,
even systems that only use stage 4 output and do not
use stage 2 and 3 output in an intermediate step have
to consider stage 2 and 3 information implicitly: that is
simply how music notation conveys meaning.

That being said, stage 4 is – or, with a good stage
3 output, could be – mostly a technical step. The out-
put of the notation reconstruction stage should leave as
little ambiguity as possible for this last step to handle.
In effect, the combination of outputs of the previous
stages should give a potential user enough information
to construct the desired representation for any task that
may come up and does not require more input than the
original image: after all, the musical score contains a
finite amount of information, and it can be explicitly
represented.18

2.1.1 Neural Networks for OMR
Fully-connected feedforward neural networks have
been used for isolated symbol classification by Rebelo
et al. (2010); Jorge Calvo-Zaragoza and Jose Oncina
(2014); Cuihong Wen et al. (2015). Recently, deep
learning approaches based on convolutional neural net-
works (CNNs) have been applied. These approaches
have also demonstrated their utility for pixel-level la-
beling of musical score regions (music vs. lyrics vs.
other) and robust staff removal (Calvo Zaragoza et al.,
2016, 2017). Other authors tried to obviate the need
for the binarization and staff removal steps for OMR
(Baoguang Shi et al., 2015) and live score following of

14http://abcnotation.com/
15http://www.music-notation.info/en/

formats/NIFF.html
16https://www.midi.org/
17http://www.musicxml.com/
18This does not mean, however, that the score contains by

itself enough information to perform the music. That skill re-
quires years of training, experience, familiarity with tradition,
and scholarly expertise, and is not a goal of OMR systems.

http://www.ccarh.org/publications/books/beyondmidi/online/darms/
http://www.ccarh.org/publications/books/beyondmidi/online/darms/
http://www.music-cog.ohio-state.edu/Humdrum/representations/kern.html
http://www.music-cog.ohio-state.edu/Humdrum/representations/kern.html
http://abcnotation.com/
http://www.music-notation.info/en/formats/NIFF.html
http://www.music-notation.info/en/formats/NIFF.html
https://www.midi.org/
http://www.musicxml.com/


the score image (Matthias Dorfer et al., 2016b). Deep
learning for end-to-end OMR has so far been restricted
to monody (Baoguang Shi et al., 2015), as representing
polyphonic scores as outputs for deep learning models
– and defining good and differentiable loss functions –
is an open problem.

2.1.2 Multimodal OMR
First work on combining OMR with the audio modality
was done by Fremerey et al. (2008, 2009) on automati-
cally matching recordings to sheet music images.

Matthias Dorfer et al. (2016b) use multimodal OMR
for score following in the image itself. The score is di-
vided into buckets that correspond to sufficiently fine-
grained positions. A multimodal deep learning model
is then trained on pairs of [spectral window, window
of score image]. In this work, both the audio and the
graphical representation of the window was syntheti-
cally generated from an underlying semantic represen-
tation with using MIDI and LilyPond. The spectral
window and the score image window were each passed
as input, without further preprocessing, to the first layer
of an image processing stack (score image) and audio
processing stack (spectrum of the audio in the time-
frame corresponding to the score image window), and a
stack of two joint layers is added on top of the unimodal
pillars. The objective function is classification categor-
ical cross-entropy of the model prediction. This ap-
proach demonstrated quite convincing results in a live
late-breaking demo at ISMIR 2016, including robust-
ness to such perturbations as ornamentation or sudden
jumps.

The work of Dorfer et al. was also novel from the
Score following perspective. Traditionally (Cont et al.,
2007), score following had at its input some structured
representation of the musical content such as MIDI,
not the score image; this is the definition of the cor-
responding task of the MIREX score following com-
petition. Similarly, mOMR has the potential to enable
using musical score images instead of structured tran-
scriptions for score-informed source separation (Ewert
et al., 2014) or score-informed polyphonic transcrip-
tion (Benetos et al., 2012; Ewert et al., 2016).

2.1.3 User Feedback
“Pure” OMR has proven difficult, and for using OMR
to transcribe music, it holds that OMR outputs re-
main under suspicion until cleared by a qualified re-
viewer (Christopher Raphael and Jingya Wang, 2011).
Therefore, there has been work introducing other in-
formation aside from the score image to improve re-
sults. New applications are introduced that do not re-
quire full-scale automated transcription of sheet music
– both as responses to existing needs of OMR users
(musicians (Matthias Dorfer et al., 2016b) and musi-
cologists (Andrew Hankinson et al., 2012), music ped-
agogy (Véronique Sébastien et al., 2012) and audiences

and the general public (Dan Ringwalt et al., 2015)),
and as stepping stones, partial steps towards a com-
plete OMR system. Hankinson et al. (Andrew Han-
kinson et al., 2012) argue – very rightly so, we believe
– that OMR should expand beyond the transcription ap-
plication for individual users and towards retrieval from
large collections, but individual transcription for per-
formance purposes will remain a major target applica-
tion of OMR for musicians and composers, so the need
for user feedback is here to stay. The question is: how
to efficiently incorporate user feedback?

Fujinaga (1996) proposed an adaptive system that
learned from user feedback over time. Maura Church
and Michael Scott Cuthbert (2014) created an inter-
face to let users correct misrecognized rhythmic pat-
terns using correct measures elsewhere in the score. In
contrast to these post-editing approaches, Liang Chen
et al. (2016) incorporate human guidance directly into
the recognition process. Jorge Calvo-Zaragoza et al.
(2016) combine the musical score image with the sig-
nal from pen-based tracing of the symbols, merging the
offline and online modalities of OMR.

What has not been attempted yet is Interactive OMR
guided by audio input. Closest is the work of Matthias
Dorfer et al. (2016b,a), even though playing the mu-
sic in question seems to be the fastest and most natu-
ral way of providing user feedback: after all, musical
instruments are exactly the interfaces intended for the
interpretation of the musical score.

2.2 Evaluation

The problem of evaluating OMR and creating a stan-
dard benchmark has been discussed before (Michael
Droettboom and Ichiro Fujinaga, 2004; Pierfrancesco
Bellini et al., 2007; Szwoch, 2008; Graham Jones et al.,
2008; Donald Byrd and Jakob Grue Simonsen, 2015)
and it has been argued that evaluating OMR is a prob-
lem as difficult as OMR itself (Michael Droettboom
and Ichiro Fujinaga, 2004). Graham Jones et al. (2008)
suggest that in order to automatically measure and eval-
uate the performance of OMR systems, we need (a) a
standard dataset and standard terminology, (b) a defi-
nition of a set of rules and metrics, and (c) definitions
of different ratios for each kind of errors. The authors
noted that distributors of commercial OMR software
often claim the accuracy of their system is about 90 %,
but provide no information about how that value was
estimated.

Pierfrancesco Bellini et al. (2007) manually assess
results of OMR systems at two levels of symbol recog-
nition: low-level, where only the presence and posi-
tioning of a symbol is assessed, and high-level, where
the semantic aspects such as pitch and duration are
evaluated as well. At the former level, mistaking a
beamed group of 32nds for 16ths is a minor error; at
the latter it is much more serious. They defined a de-
tailed set of rules for counting symbols as recognized,
missed and confused symbols. The symbol set used



by Pierfrancesco Bellini et al. (2007) is relatively rich:
56 symbols. They also define recognition gain, based
on the idea that an OMR system is at its best when it
minimizes the time needed for correction as opposed to
transcribing from scratch, and stress verification cost:
how much it takes to verify whether an OMR output is
correct.

An extensive theoretical contribution towards bench-
marking OMR has been made recently by Donald Byrd
and Jakob Grue Simonsen (2015). They review exist-
ing work on evaluating OMR systems and clearly for-
mulate the main issues related to evaluation. They ar-
gue that the complexity of CWMN is the main reason
why OMR is inevitably problematic, and suggest the
following stratification into levels of difficulty:

1. Music on one staff, strictly monophonic,
2. Music on one staff, polyphonic,
3. Music on multiple staves, but each strictly mono-

phonic, with no interaction between them,
4. “Pianoform”: music on multiple staves, one or

more having multiple voices, and with significant
interaction between and/or within staves.

They provide 34 pages of sheet music that cover the
various sources of difficulty. However, the data does
not include handwritten music and no ground truth for
this corpus is provided.

Automatically evaluating MusicXML has been at-
tempted most significantly by Szwoch (2008), who
proposes a metric based on a top-down MusicXML
node matching algorithm and reports agreement with
human annotators, but how agreement was assessed is
not made clear, no implementation of the metric is pro-
vided and the description of the evaluation metric it-
self is quite minimal. Due to the complex nature of
MusicXML (e.g., the same score can be correctly rep-
resented by different MusicXML files), Szwoch also
suggests a different representation may be better than
comparing two MusicXML files directly.

More recently, evaluating OMR with MusicXML
outputs has been done by Victor Padilla et al. (2014).
While they provide an implementation, there is no
comparison against gold-standard data. (This is under-
standable, as the work of Victor Padilla et al. (2014) is
focused on recognition, not evaluation.) Aligning Mu-
sicXML files has also been explored by Knopke and
Byrd (2007) in a similar system-combination setting,
although not for the purposes of evaluation. They how-
ever make an important observation: stems are often
mistaken for barlines, so the obvious simplification of
first aligning measures is not straightforward to make.

In an attempt to tie errors in semantics to units
that can be counted, instead of a notation reconstruc-
tion stage, authors define two levels of symbols: low-
level primitives that cannot by themselves express mu-
sical semantics, and high-level symbols that already
do have some semantic interpretation (Michael Droett-
boom and Ichiro Fujinaga, 2004; Pierfrancesco Bellini

et al., 2007; Donald Byrd and Jakob Grue Simonsen,
2015). For instance, the letter p is just a letter from
the low-level point of view, but a dynamics sign from
the high-level perspective. From the perspective of a
notation graph (see 2.1, stage 3 of the OMR pipeline),
the high-level symbols can also belong to the symbol
set of stage 2, and the two levels of description can be
explicitly linked. The fact that correctly interpreting
whether the p is a dynamics sign, or part of a text (e.g.,
presto) requires knowing the positions and classes of
other symbols, simply hints that it may be a good idea
to solve stages 2 and 3 jointly.

To summarize, OMR evaluation wrestles with the
two-step nature of OMR: on the one hand, OMR just
recognizes symbols on the page, on the other hand, it
is only useful when it also recovers the musical infor-
mation, as analyzed in 1.2. Furthermore, when using
OMR to transcribe scores, it is not clear how individ-
ual errors relate to the effort it takes to correct them, as
the toolchain used for post-editing and the individual
editors factor in.

In Hajič jr. et al. (2016), we introduced a data-driven
approach to automated cost-to-correct evaluation for
end-to-end OMR that attempts to take these concerns
into account. This work of ours is described in detail in
sec. 4.

2.3 Datasets

There are already some OMR datasets available.
For staff removal in handwritten music, the premier

dataset is CVC-MUSCIMA of Fornés et al. (2012),
consisting of 1000 handwritten scores (20 pages of mu-
sic, each copied by hand by 50 musicians). The state-
of-the-art for staff removal has been established with
a competition using CVC-MUSCIMA (Fornes et al.,
2011). For each input image, CVC-MUSCIMA has
three binary images: a “full image” mask, which con-
tains all foreground pixels; a “ground truth” mask of
all pixels that belong to a staffline and at the same time
to no other symbol, and a “symbols” mask that com-
plementarily contains only pixels that belong to some
other symbol than a staffline. The dataset was collected
by giving a set of 20 pages of sheet music to 50 musi-
cians. Each was asked to rewrite the same 20 pages
by hand, using their natural handwriting style. A stan-
dardized paper and pen was provided for all the writers,
so that binarization and staff removal was done auto-
matically with very high accuracy, and the results were
manually checked and corrected. In vocal pieces, lyrics
were not transcribed. The dataset also provides a vari-
ety of data:the 20 pages include scores of various lev-
els of complexity and a wide array of music notation
symbols (including tremolos, glissandi, grace notes, or
trills), and handwriting style varies greatly among the
50 writers, including topological inconsistencies, as il-
lustrated in Fig. 8. Importantly, CVC-MUSCIMA is
freely available for download under a CC-BY-NC-SA



Table 1: CVC-MUSCIMA notation complexity

Complexity level CVC-MUSCIMA pages

Single-staff, single-voice 1, 2, 4, 6, 13, 15,

Single-staff, multi-voice 7, 9 (?), 11 (?), 19

Multi-staff, single-voice 3, 5, 12, 16,

Multi-staff, multi-voice 14 (?), 17, 18, 20

Pianoform 8, 10

4.0 license.19

Handwritten symbol classification systems can be
trained and evaluated on the HOMUS dataset of Jorge
Calvo-Zaragoza and Jose Oncina (2014), which pro-
vides 15200 handwritten musical symbols (100 writ-
ers, 32 symbol classes, and 4 versions of a symbol per
writer per class, with 8 for note-type symbols). HO-
MUS is also interesting in that the data is captured from
a touchscreen: it is availabe in online form, with x, y
coordinates for the pen at each time slice of 16 ms, and
for offline recognition (ie. from a scan), images of mu-
sic symbols can be generated from the pen trajectory.
Together with potential data from a recent multimodal
recognition (offline + online) experiment (Jorge Calvo-
Zaragoza et al., 2016), these datasets might enable tra-
jectory reconstruction from offline inputs. Since on-
line recognition has been shown to perform better than
offline on the dataset (Jorge Calvo-Zaragoza and Jose
Oncina, 2014), such a component – if performing well
– could lead to better OMR accuracy.

Rui Miguel Filipe da Silva (2013) collects a similar
dataset of 12600 symbols from 50 writers (84 different
symbols, each drawn 3 times), but this dataset is not
made available.

However, these datasets only contains isolated sym-
bols, not their positions on a page. While it might be
possible to synthesize handwritten music pages from
the HOMUS symbols, such a synthetic dataset will be
rather limited, as HOMUS does not contain beamed
groups and chords.20 For symbol localization, we are
only aware of a dataset of 3222 handwritten symbols
by the group of Rebelo et al. (Rebelo et al., 2010; Ana
Rebelo, 2012).

For notation reconstruction, we are not aware of a
dataset that explicitly marks the relationships among
handwritten musical symbols. While Pierfrancesco
Bellini et al. (2007) do perform evaluation of OMR
systems with respect to pitch and duration on a limited

19http://www.cvc.uab.es/cvcmuscima/
index database.html

20It should also be noted that HOMUS is not avail-
able under an open license, so copyright restrictions ap-
ply. Not even every EU country has the appropri-
ate “fair use”-like exception for academic research, even
though it is mandated by the EU Directive 2001/29/EC,
Article 5(3) (http://eur-lex.europa.eu/legal-
content/EN/ALL/?uri=CELEX:32001L0029).

dataset of 7 pages, the evaluation was done manually,
without creating a ground truth for this data.

Musical content reconstruction is usually under-
stood to entail deriving pitch and relative duration of
the written notes. It is possible to mine early music
manuscripts in the IMSLP database21 and pair them
against their open-source editions, which are some-
times provided on the website as well, or look for
matching encoded data in large repostories such as Mu-
topia22 or KernScores23; however, we are not aware of
such a paired collection for OMR, or any other avail-
able dataset for pitch and duration reconstruction.

3 The MUSCIMA++ Dataset

As has been stated, OMR is in dire need of benchmark-
ing. One part of the equation are evaluation metrics:
how do we measure the performance of a system? The
other part is a benchmark dataset: what do we measure
OMR performance on?

In this section,24 we present MUSCIMA++25, our
new extensive dataset of handwritten musical notation
for OMR. We use the term dataset in the following
sense: D = 〈(xi, yi) ∀i = 1 . . . n〉. Given a set of in-
puts xi (in our case, images of sheet music), the dataset
D records the desired outputs yi – ground truth. The
quality of OMR systems can then be measured by how
closely they approximate the ground truth, although
defining this approximation for the variety of represen-
tations of music is very much an open problem (see 2.2,
4).

For MUSCIMA++, we proposed and applied a prin-
cipled ground truth definition that bridges the gap be-
tween the graphical expression of music and musical
semantics (described in Subsec. 1.2), enabling evalua-
tion of multiple OMR sub-tasks up to inferring pitch
and duration both in isolation and jointly, and provide
open-source tools for processing the data, visualizing
it and annotating more. In the rest of this section, we
describe how the dataset is designed

3.1 Designing a benchmark dataset

To build a dataset of handwritten music, we need to
decide:

• What should the desired output yi be for an image
xi? (Ground truth.)

• What sheet music do we choose as data points?
(Choice of data.)

21https://www.imslp.org
22http://www.mutopiaproject.org
23http://humdrum.ccarh.org
24Corresponding to the author’s work described in

(Hajič jr. and Pecina, 2017).
25Standing for MUsic SCore IMAges, credit for abbrevia-

tion to (Fornés et al., 2012)

http://www.cvc.uab.es/cvcmuscima/index_database.html
http://www.cvc.uab.es/cvcmuscima/index_database.html
http://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32001L0029
http://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32001L0029
https://www.imslp.org
http://www.mutopiaproject.org
http://humdrum.ccarh.org


Table 2: OMR Pipeline as inputs and outputs

Sub-task Input Output

Image Processing Score image “Cleaned” image

Binarization “Cleaned” image Binary image

Staff ID & removal Binary image Stafflines list

Symbol localization (Staff-less) image Symbol regions

Symbol classification Symbol regions Symbol labels

Notation assembly Symbol regs. & labels Notation graph

Infer pitch/duration Notation graph Pitch/duration attrs.

Output conversion Notation graph + attrs. MusicXML, MIDI, ...

3.1.1 Ground truth

The definition of ground truth must reflect what OMR
does (see 1.2, 1.4). The dataset should capture enough
information to be useful for OMR aimed both at re-
playability and reprintability.

As the ground truth over a dataset is the desired out-
put of a system solving a task, we need to understand
how the OMR pipeline can be expressed in terms of in-
puts and outputs. This is summarized in Table 2. The
key problems of OMR reside in stages 2 and 3: finding
individual musical symbols on the page, and recovering
their relationships.

The input of music symbol recognition is a
“cleaned” and usually binarized image. The output of
this stage is a list of musical symbols recording their lo-
cations on the page, and their types (e.g., c-clef, beam,
sharp). Usually, there are three sub-tasks: staffline
identification and removal, symbol localization (in bi-
nary images, synonymous with foreground segmenta-
tion), and symbol classification (Ana Rebelo et al.,
2012). Stafflines are typically handled separately: they
have distinct graphical properties that enable solving
staffline identification and removal in isolation, and re-
moving them then greatly simplifies the foreground, as
it will make connected components a useful (if imper-
fect) heuristic for pruning the search space of possible
segmentations (Fujinaga, 1996; Ana Rebelo, 2012).

In turn, the list of locations and classes of symbols
on the page is the input to the music notation recon-
struction stage. At this stage, it is necessary to recover
the relationships among the individual musical sym-
bols. These relationships open the gateway towards in-
ferring the “musical content” (most importantly, pitch
and duration information – what to play, and when):
there is a 1:1 relationship between a notehead notation
primitive and a note musical object, of which pitch and
duration are properties,and the other symbols that re-
late – directly or indirectly – to a notehead, such as
stems, stafflines, beams, accidentals, or clefs, inform
the reader’s decision to assign the pitch and duration.

The result of OMR stage 3 naturally forms a graph.
The symbols from the previous stage become vertices
of the graph, with the symbol classes and locations be-
ing the vertex attributes, and the relationships between
symbols assume the role of edges. Graph-based as-

sembly of music notation primitives has been used ex-
plicitly e.g. by Reed and Parker (1996); Liang Chen
et al. (2015), and grammar-based approaches (e.g., (Fu-
jinaga, 1988; Coüasnon and Camillerapp, 1994; Bain-
bridge and Bell, 2003; Szwoch, 2007)) lend themselves
to a graph representation as well, by recording the parse
tree(s).

An example of symbol recognition and notation re-
construction output over the same snippet of a musical
score is given in Figure 11.

The notation graph is a good ground truth for an
OMR dataset. We contend that its information content
is both necessary and sufficient for both replayability
and reprintability.

Necessary. Before the notation graph is constructed
in stage 3, there is not enough information extracted for
the output to be either replayable or reprintable. Rec-
ognizing a note is not enough to determine its pitch:
one needs it to relate to the stafflines, accidentals, etc.
The non-locality of pitch, duration, and onset informa-
tion implies that whatever the design of the vocabulary
of (contiguous) musical symbols, there will always be
a configuration of notes in time that, when correctly
encoded into CWMN, will be impossible to represent
using such a vocabulary. Recovering relationships be-
tween symbols is necessary for replayability.

Sufficient. The nature of reading musical scores (see
Subsec. 1.2) is such that stage 3 output is the point
where the OMR system has extracted all the useful in-
formation – signal – from the input image, resolving
all ambiguities; the system is therefore properly “free”
to forget about the input image. All that remains to
project the written page to the corresponding point in
the space of musical note26 configurations in time is to
follow the rules for reading music, which can be ex-
pressed in terms of querying the graph to infer addi-
tional properties of the nodes representing noteheads –
essentially, a graph transformation. This implies that
all it takes to create the desired representation in stage
4 is a technical task: implementing conversion to the
desired output format (which can nevertheless still be a
very complex piece of software).27

A notable and desirable property of the notation
graph is that once inter-symbol relationships are fully
recovered (including precedence, simultaneity and
high-level relationships between staves), symbol posi-

26A musical note object, as opposed to the written note, is
characterized in music theory by four attributes: pitch, dura-
tion, loudness, and timbre, of which OMR needs to recover
pitch and duration; the musical score additionally encodes the
onsets of notes in musical time.

27Note that while the dataset will record its ground truth
in some representation, it is not necessarily the representa-
tion that should be used for experiments. Rather, experiment-
specific output representations (such as pitch sequences for
end-to-end experiments by Baoguang Shi et al. (2015), or in-
deed a MIDI file for replayability-only experiments) is unam-
biguously obtainable from the notation graph. This choice of
dataset representation is made to make clear its “information
content”.



(a) Notation symbols: noteheads, stems, beams,
ledger lines, a duration dot, slur, and ornament
sign; part of a barline on the lower right. Vertices
of the notation graph.

(b) Notation graph, highlighting noteheads as
“roots” of subtrees. Noteheads share the beam and
slur symbols.

Figure 11: Visualizing the list of symbols and the notation graph over staff removal output. Colors of symbol
bounding boxes correspond to symbol classes (noteheads in red, stems in orange, ledger lines in green, etc.). The
notation graph in (b) allows unambiguously inferring pitch and duration (stafflines removed for clarity, although
for encoding pitch, we would need to establish the relationship of the noteheads to stafflines).

tions cease to be informative: they serve primarily as
features that help music readers infer these relation-
ships. If we wanted to, we could forget the input image
after stage 3.

3.1.2 Choice of data
Second, the selection of musical score images in the
dataset should cover the “dimensions of difficulty”,
to allow for assessing OMR systems with respect to in-
creasingly complex inputs.

As we are focusing on musical manuscripts, we col-
lect a dataset of handwritten notation. This is also the
economical choice: for printed music notation, the lack
of datasets can be bypassed by generating music in rep-
resentations such as LilyPond28 or MEI,29 and captur-
ing intermediate steps of the rendering process, but for
handwritten music, no satisfactory synthetic data gen-
erator exists so far, and thus an extensive annotation
effort cannot be avoided.

What is the challenge space of OMR, besides printed
vs. handwritten inputs? In their state-of-the-art anal-
ysis of the difficulties of OMR, Byrd and Simonsen
(Donald Byrd and Jakob Grue Simonsen, 2015) iden-
tify three axes along which musical score images be-
come less or more challenging inputs for an OMR sys-
tem:

• Notation complexity
• Image quality
• Tightness of spacing (adherence to topological

standards)

The dataset should also contain a wide variety of mu-
sical symbols, including less frequent items such as

28http://www.lilypond.org
29http://www.music-encoding.org

tremolos or glissandi, to enable differentiating systems
also according to the breath of their vocabulary.

The axis of notation complexity is structured by
Donald Byrd and Jakob Grue Simonsen (2015) into
four levels:

1. Single-staff, monophonic music (one note at a
time),

2. Single-staff, multi-voice music (chords or multi-
ple simultaneous voices),

3. Multiple staves, monophonic music on each
4. Multiple staves, “pianoform” music.

The category of pianoform music is defined as multi-
staff, polyphonic, with interaction between staves, and
with no restrictions on how voices appear, disappear,
and interact throughout.30

Each of these levels brings a new challenge. Level
1, single-staff single-voice music, tests an “OMR min-
imum”: the recognition of individual symbols for a
single sequence of notes. Level 2, single-staff multi-
voice music, tests the ability to deal with multiple se-
quences of notes in parallel, so e.g. rhythmical con-
straints based on time signatures (Ana Rebelo et al.,
2013) are harder to use (but still applicable (Rong Jin
and Christopher Raphael, 2012)). Level 3, multi-staff
single-voice music, tests high-level segmentation into
systems and staffs; this is arguably easier than dealing
with the polyphony of level 2 (Pau Riba et al., 2015),
as the voices on the staves are not allowed to interact.
Level 4, pianoform music, then presents the most com-
plex, combined challenge, as piano music has exploited

30Technically, we should also add another level between
multi-staff monophonic and pianoform music: multi-staff
music with multi-voice staves, but without notation complex-
ities specific to the piano, as described in (Donald Byrd and
Jakob Grue Simonsen, 2015) appendix C.

http://www.lilypond.org
http://www.music-encoding.org


the rules of CWMN to their fullest (Donald Byrd and
Jakob Grue Simonsen, 2015) and sometimes beyond.31

The dataset should contain a choice of musical scores
representing all these levels.

On the other hand, difficulties relating to image
quality – deformations, noise, and document degrada-
tions – do not have to be represented in the dataset.
Their descriptions in (Donald Byrd and Jakob Grue
Simonsen, 2015) essentially define how to simulate
them: increasing salt-and-pepper noise, random pertru-
bations of object borders, and distortions such as ka-
nungo noise or localized thickening/thinning opera-
tions. Many morphological distortions have already
been implemented for staff removal data (Christoph
Dalitz et al., 2008; Fornés et al., 2012). Also bearing
in mind that the dataset is supposed to address stages 2
and 3 of the OMR pipeline, this leads us to believe that
it is a reasonable choice to annotate binary images,
also with respect to the economy of the annotation pro-
cess.

The tightness of spacing in (Donald Byrd and
Jakob Grue Simonsen, 2015) refers to default horizon-
tal and vertical distances between symbols.32 As spac-
ing tightens, assumptions about relative notation spac-
ing may cease to hold: Byrd and Simonsen give an
example where the augmentation dot of a preceding
note can be easily confused with a staccato dot of its
following note (see (Donald Byrd and Jakob Grue Si-
monsen, 2015), Fig. 21). This leads to increasingly
ambiguous inputs to the primitive assembly stage. In
handwritten music, variability in spacing is superseded
by the variability of handwriting itself. Handwritten
music gives no topological guarantees: by definition
straight lines, such as stems, become curved, noteheads
and stems do not touch, accidentals and noteheads do
touch, etc. The various styles of handwriting, and the
ensuing challenges, also have to be represented in the
dataset, as broadly as possible. As there is currently
no model available to synthesize realistic handwritten
music scores, we need to cover this spectrum directly
through choice of data.

Based on this analysis, we designed the MUS-
CIMA++ dataset ground truth, selected music to anno-
tate, and collected the data. In the following sections,
we describe the specifics of the resulting data.

3.2 Inside MUSCIMA++ 0.9
Our main source of musical score images is the CVC-
MUSCIMA dataset described in Subsection 2.3. The
CVC-MUSCIMA dataset fulfills the requirements for
a good choice of data: the 20 pages include scores of
all 4 levels of complexity, as summarized in Table 1,

31The first author of (Donald Byrd and Jakob Grue
Simonsen, 2015), Donald Byrd, has been maintain-
ing a list of interesting music notation events. See:
http://homes.soic.indiana.edu/donbyrd/
InterestingMusicNotation.html

32We find adherence to topological standards to be a more
general term that describes this particular class of difficulties.

and a wide array of music notation symbols (including
tremolos, glissandi, grace notes, or trills), and hand-
writing style varies greatly among the 50 writers, in-
cluding topological inconsistencies.

The goal for the first round of MUSCIMA++ anno-
tation was for each of our annotators to mark one of the
50 versions for each of the 20 pages. With 7 available
annotators, this amounted to 140 annotated pages of
music. Furthermore, we assigned the 140 out of 1000
pages of CVC-MUSCIMA so that all of the 50 writers
are represented as equally as possible: 2 or 3 pages are
annotated from each writer.33

There is a total of 91255 symbols marked in the
140 annotated pages of music, of 107 distinct symbol
classes. There are 82261 relationships between pairs
of symbols. The total number of notes encoded in
the dataset is 23352. The set of symbol classes con-
sists of both notation primitives, such as noteheads or
beams, and higher-level notation objects, such as key
signatures or time signatures. The specific choices of
symbols and ground truth policies is described in Sub-
sec. 3.4.

The frequencies of the most significant symbols are
described in Table 3. We can draw two lessons immedi-
ately from the table. First, even when lyrics are stripped
away (Fornés et al., 2012), texts make up a significant
portion of music notation – nearly 5 % of symbols are
letters. Some utilization of handwritten OCR, or at
least identifying and removing texts, therefore seems
reasonably necessary. Second, at least among 18th to
20th century music, some 90 % of notes occur as part
of a beamed group, so works that do not tackle beamed
groups are in general greatly restricted (possibly with
the exception of choral music such as hymnals, where
isolated notes are still the standard).

How does MUSCIMA++ compare to existing
datasets? Given that individual notes are split into
primitives and other ground truth policies, to obtain a
fair comparison, we should subtract the stem count, let-
ters and texts, and the measure separator sym-
bols. Some sharps and flats are also part of key signa-
tures, and numerals are part of time signatures, which
again leads to two symbols where other datasets may
only annotate one. These subtractions bring us to
a more directly comparable symbol count of about
57000.

A note on naming conventions: CVC-MUSCIMA
refers to the set of binary images described in ??.
MUSCIMA++ 1.0 refers to the symbol-level ground
truth of the selected 140 pages. (Future versions of
MUSCIMA++ may contain more types of data, such as
MEI-encoded musical information, or other represen-
tations of the encoded musical semantics.) The term
“MUSCIMA++ images” refers to those 140 undis-
torted images from CVC-MUSCIMA that have been

33With the exception of writer 49, who is represented in 4
images due to a mistake in the distribution workflow that was
only discovered after the image was already annotated.

http://homes.soic.indiana.edu/donbyrd/InterestingMusicNotation.html
http://homes.soic.indiana.edu/donbyrd/InterestingMusicNotation.html


Table 3: Symbol frequencies in MUSCIMA++

Symbol Count Symbol (cont.) Count

stem 21416 16th flag 495

notehead-full 21356 16th rest 436

ledger line 6847 g-clef 401

beam 6587 grace-notehead-full 348

thin barline 3332 f-clef 285

measure separator 2854 other text 271

slur 2601 hairpin-decr. 268

8th flag 2198 repeat-dot 263

duration-dot 2074 tuple 244

sharp 2071 hairpin-cresc. 233

notehead-empty 1648 half rest 216

staccato-dot 1388 accent 201

8th rest 1134 other-dot 197

flat 1112 time signature 192

natural 1089 staff grouping 191

quarter rest 804 c-clef 190

tie 704 trill 179

key signature 695 All letters 4072

dynamics text 681 All numerals 594

annotated so far.

3.3 Designated test sets

To give some basic guidelines on comparing trainable
systems over the dataset, we designate some images
to serve as a test set. One can always use a different
train-test split; however, we believe our choice is bal-
anced well. Similar to Jorge Calvo-Zaragoza and Jose
Oncina (2014), we provide a user-independent test set,
and a user-dependent one. Each of these contains 20
images, one for each CVC-MUSCIMA page. How-
ever, they differ in how each of these 20 is chosen from
the 7 available versions, with respect to the individual
writers.

The user-independent test set evaluates how the
system handles data form previously unseen writers.
The images are split so that the 2 or 3 MUSCIMA++
images from any particular writer are either all in the
training portion, or all in the test portion of the data.

The user-dependent test set, to the contrary, con-
tains at most one image from each writer in its set of
the 20 CVC-MUSCIMA pages. For each writer in the
user-dependent test set, there is also at least one image
in the training data. This allows experimenting with at
least some amount of user adaptation.

Furthermore, both test sets are chosen so that the an-
notators are represented as uniformly as possible, so
that the evaluation is not biased towards the idiosyn-
cracies of a particular annotator.34

34The choice of test set images is provided as supplemen-
tary data, together with the dataset itself.

3.4 MUSCIMA++ ground truth
How does MUSCIMA++ implement the notation
graph?

We define a fine-grained vocabulary of musical sym-
bols as the graph vertices, and we define relationships
between symbols to be expressed as unlabeled directed
edges. A “proto-grammar” then defines which ordered
pairs of symbols are allowed to participate in a relation-
ship.35

Each vertex (symbol) furthermore has a set of at-
tributes. These are a superset of the primitive attributes
in (Miyao and Haralick, 2000) – for a symbol, we en-
code:

• its bounding box with respect to the page,
• its label (notehead, sharp, g-clef, etc.),
• its mask: exactly which pixels in the bounding

box belong to this symbol?

The mask is important especially for beams, as they are
often slanted and so their bounding box overlaps with
other symbols (esp. stems and parallel beams). Slurs
also often have this problem. Annotating the mask en-
ables us to build an accurate model of actual symbol
shapes.

The symbol set includes what Michael Droettboom
and Ichiro Fujinaga (2004), Pierfrancesco Bellini et al.
(2007) and Donald Byrd and Jakob Grue Simonsen
(2015) would describe as a mix of low-level symbols
as well as high-level symbols, without explicitly label-
ing the symbols as either. Instead of trying to catego-
rize symbols according to whether they carry seman-
tics or not, we chose to express the high- vs. low-
level dichotomy through the rules for forming relation-
ships. This leads to “layered” annotation. For instance,
a 3/4 time signature is annotated using three symbols: a
numeral 3, numeral 4, and a time signature
symbol that has outgoing relationships to each of the
numerals involved. In the current version of MUS-
CIMA++ (0.9, beta) we do not annnotate invisible
symbols (e.g. implicit tuplets). Each symbol has to
have at least one foreground pixel.

The policy for making decisions that are arbitrary
with respect to the information content, as discussed
in Subsec. 3.1, was set to stay as close as possi-
ble to the written page, rather than the semantics.
If this principle was in conflict with the require-
ment for both replayability and reprintability intro-
duced in 1, a symbol class was added to the vo-
cabulary to capture the requisite meaning. Exam-
ples are the key signature, time signature,
tuple, or measure separator. These second-
layer symbols are often composite, but not necessar-
ily so: for instance, a single sharp can also form

35The most complete annotation guidelines de-
tailing what the symbol set is and how to deal
with individual notations are available online:
http://muscimarker.readthedocs.io/en/
develop/instructions.html

http://muscimarker.readthedocs.io/en/develop/instructions.html
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Figure 12: Two-layer annotation of a
triplet. Highlighted symbols are numeral 3,
tuple bracket/line, and the three noteheads
that form the triplet. The tuple symbol itself, to
which the noteheads are connected, is the darker
rectangle encompassing its two components; it has
relationships leading to both of them (not highlighted).

a key signature, or a measure separator is
expressed by a single thin barline. An example
of this structure for is given in Figure 12.

While we take care to define relationships so that the
result is a Directed Acyclic Graph (DAG), there is no
hard limit on the maximum oriented path length. How-
ever, in practice, it very rarely goes deeper than 3, as the
path in the tuple example leading from a notehead
to the tuple and then to its constitutent numeral 3
or tuple bracket/line, and in most cases, this
depth is at most 2.

On the other hand, we do not break down symbols
that consist of multiple connected components, unless
it is possible that these components can be seen in valid
music notation in various configurations (e.g., an empty
notehead may show up with a stem, without one, with
multiple stems when two voices share pitch,36 or may
share stem with others). A bass clef dot, for instance,
cannot show up without the rest of the bass clef, and
vice versa; on the other hand, a single repeat spanning
multiple staves may have a variable number of repeat
dots. This is a different policy from Miyao & Har-
alick (Miyao and Haralick, 2000), who split e.g. the
repeat measure “percent sign” into three primi-
tives.

We do not define a note symbol. Notes are hard
to pin down on the written page: in the traditional un-
derstanding of what is a ”note” symbol (Ana Rebelo,

36As seen in page 20 of CVC-MUSCIMA.

2012; Jorge Calvo-Zaragoza and Jose Oncina, 2014;
Michael Droettboom and Ichiro Fujinaga, 2004), they
consist of multiple primitives (notehead and stem and
beams or flags), but at the same time, multiple notes can
share these primitives, including noteheads – the rela-
tionship between high- and low-level symbols has in
general an m:n cardinality. Another high-level symbol
may be a key signature, which can consist of multiple
sharps or flats. It is not clear how to annotate notes. If
we follow the ”semantics” criterion for distinguishing
between the low- and high-level symbol description of
the written page, should e.g. an accidental be consid-
ered a part of the note, because it directly influences its
pitch?37

The policy for relationships was to make noteheads
independent. That is: as much as possible of the se-
mantics of a note corresponding to a notehead can be
inferred based on the explicit relationships that per-
tain to this particular notehead. However, this ideal
is not fully implemented in the current version MUS-
CIMA++ (0.9, beta) , and possibly cannot be reason-
ably reached, given the rules of music notation. While
it is possible to infer duration from the current annota-
tion (with the exception of implicit tuples), not so much
pitch. First of all, one would need to add staffline and
staff objects and link the noteheads to the staff. This
is not explicitly done in MUSCIMA++ (0.9, beta) ,
but given the staff removal ground truth included with
the annotated CVC-MUSCIMA images, it should be
merely a technical step that does not require much man-
ual annotation. The other missing piece of the pitch
puzzle are assignment of notes to measures, and prece-
dence relationships. Precedence relationships need to
include (a) notes, to capture effects of accidentals at
the measure scope; (b) clefs and key signatures, which
can change within one measure,38 so it is not sufficient
to attach them to measures.

3.5 Available tools

In order to make using the dataset easier, we provide
two software tools under an open license.

First, the musicma Python 3 package39 implements
the MUSCIMA++ data model, which can parse the
dataset and enables manipulating the data further (such
as assembling the related primitives into notes, to pro-
vide a comparison to the existing datasets with different
symbol sets).

Second, we provide the MUSCIMarker applica-
tion.40 This is the annotation interface, and can visu-
alize the data.

37 We would go as far as to say that it is inadequate to try
marking ”note” graphical objects in the musical score. A note
is a basic unit of music, but it is not a unit of music notation.
Music notation encodes notes, it does not contain them.

38Even though this does not occur in CVC-MUSCIMA, it
does happen, as illustrated e.g. by Fig. 8 in (Donald Byrd and
Jakob Grue Simonsen, 2015).

39https://github.com/hajicj/muscima
40https://github.com/hajicj/MUSCIMarker
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Figure 13: MUSCIMarker 1.1 interface. Tool selection
on the left; file controls on the right. Highlighted rela-
tionships have been selected. (Last bar of from MUS-
CIMA++ image W-35 N-08.)

3.6 Annotation process
Annotations were done using custom-made MUSCI-
Marker open-source software, version 1.1.41 The anno-
tators worked on symbols-only CVC-MUSCIMA im-
ages, which allowed for more efficient annotation. The
interface used to add symbols consisted of two tools:
a background-ignoring lasso selection, and connected
component selection.42 A screenshot of the annotation
interface is in Fig. 13.

As annotation was under way, due to the prevalence
of first-try inaccuracies, we added editing tools that en-
abled annotators to ”fine-tune” the symbol shape by
adding or removing arbitrary foreground regions to the
symbol’s mask. Adding symbol relationships was done
by another lasso selection tool. A significant speedup
was also achieved by providing a rich set of keyboard
shortcuts. The effect was most acutely felt in the key-
board interface for assigning classes to annotated sym-
bols, as the class list is rather extensive.

There were seven annotators working on MUS-
CIMA++. Four of these are professional musicians,
three are experienced amateur musicians. The anno-
tators were asked to complete three progressively more
complex training examples. There were no IT skills
required (we walked them through MUSCIMarker in-
stallation and usage, the odd troubleshooting was done
through the TeamViewer43 remote interface). Two of
these were single measures, for basic familiarization
with the user interface; the third was a full page, to
ensure understanding of the majority of notation situ-
ations. Based on this ”training round”, we have also
further refined the ground truth definitions.

As noted above, each annotator completed one im-

41https://lindat.mff.cuni.cz/repository/
xmlui/handle/11234/1-1850, ongoing development
at https://github.com/hajicj/MUSCIMarker

42Basic usage is described in the MUSCIMarker tu-
torial: http://muscimarker.readthedocs.io/en/
develop/tutorial.html

43https://www.teamviewer.com

age of each of the 20 CVC-MUSCIMA pages. The
work was dispatched to annotators in four packages
of 5 images each, one package at a time. After each
package submission by an annotator, we checked for
correctness. Automated validation was implemented to
check for ”impossible” or missing relationships (e.g.,
a stem and a beam should not be connected, a grace
notehead has to be connected to a ”normal” notehead).
However, there was still need for manual checks and
manually correcting mistakes found in auto-validation,
as the validation itself was an “advisory voice” to high-
light questionably annotated symbols, not an authorita-
tive response.

Manually checking each submitted file also allowed
for continuous annotator training and filling in ”blind
spots” in the annotation guidelines (such as specifying
how to deal with volta signs, or tuples). Some notation
events were simply not anticipated (e.g., mistakes that
CVC-MUSCIMA writers made in transcription or non-
standard symbols). Feedback was provided individ-
ually after each package was submitted and checked.
This feedback was the main mechanism for continual
training. Requests for clarifications of guidelines for
situations that proved problematic were also dissemi-
nated to the whole group.

At first, the quality of annotations was inconsistent:
some annotators performed well, some poorly. Some
required extensive feedback. Thanks to the continuous
communication and training, the annotators improved,
and the third and fourth packages required relatively
minor corrections. Overall, however, only one annota-
tor submitted work at a quality that required practically
no further changes in quality control. Differences in
annotator speed did not equalize as much as annotation
correctness.

Finally, after collecting annotations for all 140 im-
ages, we performed a second quality control round,
this time with further automated checks. We checked
for disconnected symbols, and for symbols with sus-
piciously sparse masks (a symbol was deemed suspi-
cious if more than 0.07 of the foreground pixels in its
bounding box were not marked as part of any symbol at
all). This second round of quality control uncovered yet
more errors, and we also fixed clearly inaccurate mark-
ings (e.g., if a significant amount of stem-only pixels
was marked as part of a beam).

On average throughout the annotations, the fastest
annotator managed to mark about 6 symbols per
minute, or one per 10 seconds; the next fastest came
at 4.6 symbols per minute. Two slowest annotators
clocked in around 3.4 symbols per minute. The av-
erage speed overall was 4.3 symbols per minute, or
one per 14 seconds. The “upper bound” on annota-
tion speed was established by the author (who is inti-
mately familiar with best ways of using the MUSCI-
Marker annotation tool) to be 8.9 objects per minute
(one in 6.75 seconds). These numbers are computed
over the whole time spent annotating, so they include

https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-1850
https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-1850
https://github.com/hajicj/MUSCIMarker
http://muscimarker.readthedocs.io/en/develop/tutorial.html
http://muscimarker.readthedocs.io/en/develop/tutorial.html
https://www.teamviewer.com


the periods during which annotators were marking re-
lationships and checking their work: in other words, if
you plan to extend the dataset with a comparable an-
notator workforce, you can expect an average page of
about 600 symbols to take about 2.5 hours.

Annotating the dataset using the process detailed
above took roughly 400 hours of work; the “quality
control” correctness checks took an additional 100 –
150. The second, more complete round of quality con-
trol took roughly 60 – 80 hours, or some 0.5 hours per
image.44

3.7 Inter-annotator agreement

In order to assess (a) whether the annotation guidelines
are well-defined, and (b) the extent to which we can
trust annotators, we conducted a test: all seven annota-
tors were given the same image to annotate, and we
measured inter-annotator agreement. Inter-annotator
agreement does explicitly not decouple the factors (a)
and (b). However, given that the overall expected level
of ambiguity is relatively low, and given the learn-
ing curve along which the annotators were moving
throughout their work, which would as be hard to de-
couple from genuine (a)-type disagreement, we opted
to not expend resources on annotators re-annotating
something which they had already done, and therefore
cannot provide exact intra-annotator agreement data.

Another use of inter-annotator agreement is to pro-
vide an upper bound on system performance. If a sys-
tem performs better than average inter-annotator agree-
ment, it may be overfitting the test set. (On the other
hand, it may have merely learned to compensate for
anntoator mistakes – more analysis is needed before
concluding that the system overfits. But it is a useful
warning: one should investigate unexpectedly high per-
formance numbers.)

3.7.1 Computing agreement
In order to evaluate the extent to which two annotators
agree on how a given image should be annotated, we
perform two steps:

• Align the annotated object sets against each other,
• Compute the macro-averaged f-score over the

aligned object pairs.

Objects that have no counterpart contribute 0 to both
precision and recall.

Alignment was done in a greedy fashion. For symbol
sets S, T , we first align each t ∈ T to the s ∈ S with the
highest pairwise f-score F (s, t), then vice versa align
each s ∈ S to the t ∈ T with the highest pairwise
f-score. Taking the intersection, we then get symbol
pairs s, t such that they are each other’s “best friends”
in terms of f-score. The symbols that do not have such a

44For the sake of completeness, implementing MUSCI-
Marker took about 600 hours, including the learning curve
for the GUI framework.

Table 4: Inter-annotator agreement

Setting macro-avg. f-score

noQC-noQC (inter-annot.) 0.89

noQC-withQC (self) 0.93

withQC-withQC (inter-annot.) 0.97

clear counterpart are left out of the alignment. Further-
more, symbol pairs that are not labeled with the same
symbol class are removed from the alignment as well.

When breaking ties in the pairwise matchings (from
both directions), symbol classes c(s), c(t) are used. If
F (s, t1) = F (s, t2), but c(s) = c(t1) while c(s) 6=
c(t2), then (s, t1) is taken as an alignment candidate
instead of (s, t2). (If both t1 and t2 have the same class
as s, then then the tie is broken randomly. In practice,
this would be extremely rare and would not influence
agreement scores very much.)

3.7.2 Agreement results
The resulting f-scores are summarized in Table 4.
We measured inter-annotator agreement both before
and after quality control (noQC-noQC and withQC-
withQC), and we also measured the extent to which
quality control changed the originally submitted anno-
tations (noQC-withQC). Tentatively, the post-QC mea-
surements reflect the level of genuine disagreement
among the annotators about how to lead the boundaries
of objects in intersections and the inconsistency of QC,
while the pre-QC measurements also measures the ex-
tent of actual mistakes that were fixed in QC.

Ideally, the task of annotating music notation sym-
bols is relatively unambiguous. Legitimate sources
of disagreement lie in two factors: unclear symbol
boundaries in intersections, and illegible handwriting.
For relationships, ambiguity is mainly in polyphonic
scores, where annotators had to decide how to attach
noteheads from multiple voices to crescendo and de-
crescendo hairpin symbols. However, after quality con-
trol, there were 689 – 691 objects in the image and 613
– 637 relationships, depending on which annotator we
asked. This highlights the limits of both the annotation
guidelines and QC: the ground truth is probably not en-
tirely unambiguous, so various configurations passed
QC, and additionally the QC process itself allows for
human error. (If we could really automate infallible
QC, we would also have solved OMR!)

At the same time, as seen in Table 4, the two-round
quality control process apparently removed nearly four
fifths of all disagreements, bringing the withQC inter-
annotator f-score of 0.97 from a noQC f-score of 0.89.
On average, quality control introduced less change than
was originally between individual annotators. This
statistic seems to suggest that the withQC results are
somewhere in the “center” of the space of submitted an-
notations, and therefore the quality control process re-
ally leads to more accurate annotation instead of merely



distorting the results in its own way.
We can conclude that the annotations, using the qual-

ity control process, is quite reliable, even though slight
mistakes may remain.

3.8 Known limitations

The MUSCIMA++ dataset is not perfect, as is always
the case with extensive human-annotated datasets. In
the interest of full disclosure and managing expecta-
tions, we list the known issues.

Annotators also might have made mistakes that
slipped both through automated validation and man-
ual quality control. In automated validation, there is
a tradeoff between catching errors and false alarms:
events like multiple stems per notehead happen even
in the limited set of 20 pages of MUSCIMA++. In
the same vein, although we did implement automated
checks for highly inaccurate annotations, they only
catch some of the problems as well, and our manual
quality control procedure also relies on inherently im-
perfect human judgment. All in all, the data is not per-
fect. With limited man-hours, there is always a tradeoff
between quality and scale.

The CVC-MUSCIMA dataset has had staff lines re-
moved automatically with very high accuracy, based on
a precise writing and scanning setup (using a standard
notation paper and a specific pen across all 50 writers).
However, there are still some errors in staff removal:
sometimes, the staff removal algorithm took with it
some pixels that were also legitimate part of a symbol.
This manifests itself most frequently with stems.

The relationship model is rather basic. Precedence
and simultaneity relationships are not annotated, and
stafflines and staves are not among the annotated sym-
bols, so notehead-to-staff assignment is not explicit.
Similarly, notehead-to-measure assignment is also not
explicitly marked. This is a limitation that so far does
not enable inferring pitch from the ground truth. How-
ever, much of this should be obtainable automatically,
from the annotation that is available and the CVC-
MUSCIMA staff removal ground truth.

There are also some outstanding technical issues in
the details of how the bridge from graphical expres-
sion to interpretation ground truth is designed. For
example, there is no good way to encode a 12/8 time
signature. The ”1” and ”2” would currently be anno-
tated as separate numerals, and the fact that they belong
together to encode the number 12 is not represented
explicitly: one would have to infer that from knowl-
edge of time signatures. A potential fix is to introduce
a “numeric text“ symbol as an intermediary between
“time signature“ and “numeral X“ symbols, similarly
to various “(some) text“ symbols that group “letter X“
symbols. Another technical problem is that the mask of
empty noteheads that lie on a ledger line includes the
part of the ledger line that lies within the notehead.

Finally, there is no good policy on symbols broken
into two at line breaks. They are currently handled as

two separate symbols.

4 Data-driven evaluation
There is presently no (publicly available) way of com-
paring various OMR tools and assessing their perfor-
mance. While it has been argued that OMR can go far
even in the absence of such standards (Donald Byrd and
Jakob Grue Simonsen, 2015), the lack of benchmarks
and difficulty of evaluation has been noted on multi-
ple occasions (Michael Droettboom and Ichiro Fuji-
naga, 2004; Victor Padilla et al., 2014; Baoguang Shi
et al., 2015). The need for end-to-end system evalua-
tion (at the final level of OMR when musical content is
reconstructed and made available for further process-
ing), is most pressing when comparing against com-
mercial systems such as PhotoScore,45 SmartScore46 or
SharpEye47: these typically perform as “black boxes”,
so evaluating on the level of individual symbols re-
quires a large amount of human effort for assessing
symbols and their locations, as done by Bellini et
al. (Pierfrancesco Bellini et al., 2007) or Sapp (Sapp,
2013). Manually counting errors, however, is too time-
consuming for iterative experimentation. OMR would
greatly benefit from an automated evaluation metric
that could guide development and reduce the price of
conducting evaluations. However, an automated metric
for OMR evaluation needs itself to be evaluated: does
it really rank as better systems that should be ranked
better?

In this section,48 we describe our robust, cumula-
tive, data-driven methodology for creating one. We
collect human preference data that can serve as a
gold standard for comparing MusicXML automated
evaluation metrics, mirroring how the BLEU metric
and its derivatives has been established as an evalu-
ation metric for the similarly elusive task of assess-
ing machine translation based on agreement with hu-
man judgements (Papineni et al., 2002). This “evaluat-
ing evaluation” approach is inspired by machine trans-
lation (MT), a field where comparing outputs is also
notoriously difficult The Workshop of Statistical Ma-
chine Translation competition (WMT) even has a sep-
arate Metrics track (Callison Burch et al., 2010; Bo-
jar et al., 2011; Matouš Macháček and Ondřej Bo-
jar, 2014), where automated MT metrics are evaluated
against human-collected evaluation results, and there is
ongoing research (Bojar et al., 2011; Matouš Macháček
and Ondřej Bojar, 2015) to design a better metric than
the current standards such as BLEU (Papineni et al.,
2002) or Meteor (Lavie and Agarwal, 2007).

To collect cost-to-correct estimates for various no-
tation errors, we generate a set of synthetically dis-

45http://www.neuratron.com/photoscore.htm
46http://www.musitek.com/index.html
47http://www.visiv.co.uk
48This section is taken from our publication (Hajič jr. et al.,

2016); all the segments of (Hajič jr. et al., 2016) used here
describe work done solely by the author.

http://www.neuratron.com/photoscore.htm
http://www.musitek.com/index.html
http://www.visiv.co.uk


torted “recognition outputs” from a set of equally syn-
thetic “true scores”. Then, annotators are shown ex-
amples consisting of a true score and a pair of the dis-
torted scores, and they are asked to choose the simu-
lated recognition output that would take them less time
to correct. Assuming that the judgment of (qualified)
annotators is considered the gold standard, the follow-
ing methodology then can be used to assess an auto-
mated metric:

1. Collect a corpus of annotator judgments to define
the expected gold-standard behavior,

2. Measure the agreement between a proposed met-
ric and this gold standard.

This methodology is nothing surprising; in principle,
one could machine-learn a metric given enough gold-
standard data. However: how to best design the gold-
standard data and collection procedure, so that it en-
compasses what we in the end want our application
(OMR) to do? How to measure the quality of such a
corpus – given a collection of human judgments, how
much of a gold standard is it?

In the rest of this section, we describe the corpus
of collected human judgments, estimate the extent to
which the corpus can be trusted, and propose and as-
sess some automated end-to-end evaluation metrics.

4.1 Test case corpus

We collect a corpus C of test cases. Each test case
c1 . . . cN is a triplet of music scores: an “ideal” score
Ii and two “mangled” versions, P (1)

i and P (2)
i , which

we call system outputs. We asked our K annotators
a1 . . . aK to choose the less mangled version, formal-
ized as assigning ra(ci) = −1 if they preferred P (1)

i

over P (2)
i , and +1 for the opposite preference. The

term we use is to “rank” the predictions. When assess-
ing an evaluation metric against this corpus, the test
case rankings then constrain the space of well-behaved
metrics.49

The exact formulation of the question follows the
“cost-to-correct” model of evaluation of (Pierfrancesco
Bellini et al., 2007):

“Which of the two system outputs would take you less
effort to change to the ideal score?”

4.1.1 What is in the test case corpus?
We created 8 ideal scores and derived 34 “system out-
puts” from them by introducing a variety of mistakes
in a notation editor. Creating the system outputs man-
ually instead of using OMR outputs has the obvious
disadvantage that the distribution of error types does
not reflect the current OMR state-of-the-art. On the

49We borrow the term “test case” from the software devel-
opment practice of unit testing: test cases verify that the pro-
gram (in our case the evaluation metric) behaves as expected
on a set of inputs chosen to cover various standard and corner
cases.

other hand, once OMR systems change, the distribu-
tion of corpus errors becomes obsolete anyway. Also,
we create errors for which we can assume the annota-
tors have a reasonably accurate estimate of their own
correction speed, as opposed to OMR outputs that of-
ten contain strange and syntactically incorrect notation,
such as isolated stems. Nevertheless, when more anno-
tation manpower becomes available, the corpus should
be extended with a set of actual OMR outputs.

The ideal scores (and thus the derived system out-
puts) range from a single whole note to a “pianoform”
fragment or a multi-staff example. The distortions were
crafted to cover errors on individual notes (wrong pitch,
extra accidental, key signature or clef error, etc.: micro-
errors on the semantic level in the sense of (Michael
Droettboom and Ichiro Fujinaga, 2004; Pierfrancesco
Bellini et al., 2007)), systematic errors within the con-
text of a full musical fragment (wrong beaming, swap-
ping slurs for ties, confusing staccato dots for note-
heads, etc.), short two-part examples to measure the
tradeoff between large-scale layout mistakes and local-
ized mistakes (e.g., a four-bar two-part segment, as a
perfect concatenation of the two parts into one vs. in
two parts, but with wrong notes) and longer examples
that constrain the metric to behave sensibly at larger
scales.

Each pair of system outputs derived from the same
ideal score forms a test case; there are 82 in total. We
also include 18 control examples, where one of the sys-
tem outputs is identical to the ideal score. A total of 15
annotators participated in the annotation, of whom 13
completed all 100 examples; however, as the annota-
tions were voluntary, only 2 completed the task twice
for measuring intra-annotator agreement.

4.1.2 Collection Strategy
While Pierfrancesco Bellini et al. (2007) define how to
count individual errors at the level of musical symbols,
assign some cost to each kind of error (miss, add, fault,
etc.) and define the overall cost as composed of those
individual costs, our methodology does not assume that
the same type of error has the same cost in a different
context, or that the overall cost can be computed from
the individual costs: for instance, a sequence of notes
shifted by one step can be in most editors corrected si-
multaneously (so, e.g., clef errors might not be too bad,
because the entire part can be transposed together).

Two design decisions of the annotation task merit
further explanation: why we ask annotators to compare
examples instead of rating difficulty, and why we dis-
allow equality.

Ranking. The practice of ranking or picking the best
from a set of possible examples is inspired by machine
translation: Callison-Burch et al. have shown that peo-
ple are better able to agree on which proposed transla-
tion is better than on how good or bad individual trans-
lations are (Callison Burch et al., 2007). Furthermore,
ranking does not require introducing a cost metric in
the first place. Even a simple 1-2-3-4-5 scale has this



problem: how much effort is a “1” on that scale? How
long should the scale be? What would the relationship
be between short and long examples?

Furthermore, this annotation scheme is fast-paced.
The annotators were able to do all the 100 available
comparisons within 1 hour. Rankings also make it
straightforward to compare automated evaluation met-
rics that output values from different ranges: just count
how often the metric agrees with gold-standard ranks
using some measure of monotonicity, such as Spear-
man’s rank correlation coefficient.

No equality. It is also not always clear which out-
put would take less time to edit; some errors genuinely
are equally bad (sharp vs. flat). These are also impor-
tant constraints on evaluation metrics: the costs asso-
ciated with each should not be too different from each
other. However, allowing annotators to explicitly mark
equality risks overuse, and annotators using underqual-
ified judgment. For this first experiment, therefore, we
elected not to grant that option; we then interpret dis-
agreement as a sign of uncertainty and annotator uncer-
tainty as a symptom of this genuine tie.

4.2 How gold is the standard?
We need to assess the quality of the test case rank-
ings we have gathered. Similarly to our analysis of
the MUSCIMA++ dataset quality, we turn to inter-
annotator agreement.

All annotators ranked the control cases correctly, ex-
cept for one instance. However, this only accounts for
elementary annotator failure and does not give us a bet-
ter idea of systematic error present in the experimental
setup. In other words, we want to ask the question: if
all annotators are performing to the best of their abil-
ity, what level of uncertainty should be expected un-
der the given annotation scheme? (For the following
measurements, the control cases have been excluded.)

Normally, inter-annotator agreement is measured: if
the task is well-defined, i.e., if a gold standard can ex-
ist, the annotators will tend to agree with each other to-
wards that standard. However, usual agreement metrics
such as Cohen’s κ or Krippendorf’s α require comput-
ing expected agreement, which is difficult when we do
have a subset of examples on which we do not expect
annotators to agree but cannot a priori identify them.
We therefore start by defining a simple agreement met-
ric L. Recall:

• C stands for the corpus, which consists of N ex-
amples c1 . . . cN ,
• A is the set of K annotators a1 . . . aK , a, b ∈ A;
• ra is the ranking function of an annotator a that

assigns +1 or -1 to each example in c,

L(a, b) =
1

N

∑
c∈C

|ra(c) + rb(c)|
2

This is simply the proportion of cases on which a and
b agree: if they disagree, ra(c) + rb(c) = 0. How-

ever, we expect the annotators to disagree on the gen-
uinely uncertain cases, so some disagreements are not
as serious as others. To take the existence of legitimate
disagreement into account, we modify L(a, b) to weigh
the examples according to how certain the other anno-
tatorsA\{a, b} are about the given example. We define
weighed agreement Lw(a, b):

Lw(a, b) =
1

N

∑
c∈C

w(−a,b)(c)
|ra(c) + rb(c)|

2

where w(−a,b) is defined for an example c as:

w(−a,b)(c) =
1

K − 2
|

∑
a′∈A\a,b

ra′(c)|

This way, it does not matter if a and b disagree on
cases where no one else agrees either, but if they dis-
agree on an example where there is strong consensus,
it should bring the overall agreement down. Note that
while maximum achievable L(a, b) is 1 for perfectly
agreeing annotators (i.e., all the sum terms equal to 1),
because w(c) ≤ 1, the maximum achievable Lw(a, b)
will be less than 1, and furthermore depends on the
choice of a and b: if we take notoriously disagreeing
annotators away from the picture, the weights will in-
crease overall. Therefore, we finally adjust Lw(a, b) to
the proportion of maximum achievable Lw(a, b) for the
given (a, b) pair, which is almost the same as Lw(a, a)
with the exception that b must also be excluded from
computing the weights. We denote this maximum as
L∗w(a, b), and the adjusted metric L̂w is then:

L̂w(a, b) = Lw(a, b)/L
∗
w(a, b)

This metric says: “What proportion of achievable
weighed agreement has been actually achieved?” The
upper bound of L̂w is therefore 1.0 again; the lower
bound is agreement between two randomly generated
annotators, with the humans providing the consensus.

The resulting pairwise agreements, with the lower
bound established by averaging over 10 random anno-
tators, are visualized in Fig. 14. The baseline agree-
ment L̂w between random annotators weighed by the
full human consensus was close to 0.5, as expected.
There seems to be one group of annotators relatively
in agreement (green and above, which means adjusted
agreement over 0.8), and then several individuals who
disagree with everyone – including among themselves
(lines 6, 7, 8, 11, 12, 14).

Interestingly, most of these “lone wolves” reported
significant experience with notation editors, while the
group more in agreement not as much. We suspect this
is because with increasing notation editor experience,
users develop a personal editing style that makes cer-
tain actions easier than others by learning a subset of
the “tricks” available with the given editing tools – but
each user learns a different subset, so agreement on the



Figure 14: Weighed pairwise agreement. The cell [a, b]
represents L̂w(a, b). The scale goes from the average
random agreement (ca. 0.55) up to 1.

relative editing cost suffers. To the contrary, inexperi-
enced users might not have spent enough time with the
editor to develop these habits.

4.3 Assessing some metrics

We illustrate how the test case ranking methodol-
ogy helps analyze these rather trivial automated Mu-
sicXML evaluation metrics:

1. Levenshtein distance of XML canonization
(c14n),

2. Tree edit distance (TED),
3. Tree edit distance with <note> flattening

(TEDn),
4. Convert to LilyPond + Levenshtein distance (Ly).

c14n. Canonize the MusicXML file formatting and
measure Levenshtein distance. This is used as a trivial
baseline.

TED. Measure Tree Edit Distance on the Mu-
sicXML nodes. Some nodes that control auxiliary and
MIDI information (work, defaults, credit, and
duration) are ignored. Replacement, insertion, and
deletion all have a cost of 1.

TEDn. Tree Edit Distance with special handling of
note elements. We noticed that many errors of TED
are due to the fact that while deleting a note is easy
in an editor, the edit distance is higher because the
note element has many sub-nodes. We therefore en-
code the notes into strings consisting of one position
per pitch, stem, voice, and type. Deletion cost
is fixed at 1, insertion cost is 1 for non-note nodes, and
1 + length of code for notes. Replacement cost between
notes is the edit distance between their codes; replace-
ment between a note and non-note costs 1 + length of
code; between non-notes costs 1.

Metric rs r̂s ρ ρ̂ τ τ̂
c14n 0.33 0.41 0.40 0.49 0.25 0.36
TED 0.46 0.58 0.40 0.50 0.35 0.51
TEDn 0.57 0.70 0.40 0.49 0.43 0.63
Ly 0.41 0.51 0.29 0.36 0.30 0.44

Table 5: Measures of agreement for some proposed
evaluation metrics.

Ly. The LilyPond50 file format is another possi-
ble representation of a musical score. It encodes mu-
sic scores in its own LaTeX-like language. The first
bar of the “Twinkle, twinkle” melody would be repre-
sented as d’8[ d’8] a’8[ a’8] b’8[ b’8]
a’4 | This representation is much more amenable
to string edit distance. The Ly metric is Levenshtein
distance on the LilyPond import of the MusicXML sys-
tem output files, with all whitespace normalized.

For comparing the metrics against our gold-standard
data, we use nonparametric approaches such as Spear-
man’s rs and Kendall’s τ , as these evaluate monotonic-
ity without assuming anything about mapping values
of the evaluation metric to the [−1, 1] range of prefer-
ences . To reflect the “small-difference-for-uncertain-
cases” requirement, however, we use Pearson’s ρ as
well (Matouš Macháček and Ondřej Bojar, 2014). For
each way of assessing a metric, its maximum achiev-
able with the given data should be also estimated, by
computing how the metric evaluates the consensus of
one group of annotators against another. We randomly
choose 100 splits of 8 vs 7 annotators, compute the av-
erage preferences for the two groups in a split and mea-
sure the correlations between the average preferences.
The expected upper bounds and standard deviations es-
timated this way are:

• r∗s = 0.814, with standard dev. 0.040
• ρ∗ = 0.816, with standard dev. 0.040
• τ∗ = 0.69, with standard dev. 0.045

We then define r̂s as rs
r∗s

, etc. Given a cost metric L,

we get for each example ci = (Ii, P
(1)
i , P

(2)
i ) the cost

difference `(ci) = L(Ii, P (1)
i )−L(Ii, P (2)

i ) and pair it
with the gold-standard consensus r(ci) to get pairwise
inputs for the agreement metrics.

The agreement of the individual metrics is summa-
rized in Table 5. When developing the metrics, we
did not use the gold-standard data against which metric
performance is measured here; we used only our own
intuition about how the test cases should come out.

4.4 Lessons Learned
Our results weakly suggest that the central assumption
of a single ground truth for preferences among a set
of system outputs is weaker with increasing annotator
experience. This is not an encouraging result for au-
tomating cost-to-correct evaluation..

50http://www.lilypond.org

http://www.lilypond.org


To make the methodology more robust, we recom-
mend:
• Explicitly control for experience level; do not as-

sume that more annotator experience is necessar-
ily desirable.
• Measure actual cost-to-correct (in time and inter-

face operations) through a notation editor, to ver-
ify how much human estimation of this cost can
be relied on.
• Develop models for computing expected agree-

ment for data where the annotations may legiti-
mately be randomized (the “equally bad” cases).
Once expected agreement can be computed, we
can use more standard agreement metrics.

The usefulness of the test case corpus for develop-
ing automated evaluation metrics was clear: the TEDn
metric that outperformed the others by a large margin
was developed through analyzing the shortcomings of
the TED metric on individual test cases (before the
gold-standard data had been collected). As Szwoch
(2008) suggested, modifying the representation helped.

However, if enough human judgments are collected,
it should even be possible to sidestep the difficulties
of hand-crafting an evaluation metric through machine
learning; we can for instance try learning the inser-
tion, deletion, and replacement costs for individual Mu-
sicXML node types.

5 Plan of Recognition Experiments
We plan two complementary lines of experimentation:
notation syntax-aware offline handwritten OMR, and
augmenting it by including the audio modality.

5.1 Syntax-aware OMR
For offline handwritten OMR, the key problem is seg-
mentation. While staff removal is the logical first step,
As illustrated by Fig. 8, post-staff removal connected
components – while potentially a useful heuristic for
initialization – are not a reliable indicator of segmenta-
tion.

However, we can exploit music notation syntax to
jointly solve segmentation, symbol classification, and
reconstruction. Once we are certain that a symbol ex-
ists at some location, the uncertainty in its surround-
ings is greatly reduced. For instance, once we find a
notehead, it is quite certain that a vertical line starting
in its close vicinity will be a stem, not a barline. The
challenge is then to design a model that can take the
syntax of music notation into account, while working
with handwritten images: a parser for music notation.

This is by no means a new idea. However, very few
syntactic models of music notation have so far been ac-
tually developed, and with the exception of the fuzzy
system of Rossant and Bloch (2007), we are not aware
of a system that would not rely on topological heuris-
tics, such as ”a notehead is connected to a stem”, which
not hold in handwritten music (although at least in early
music, the scribes are generally more consistent than

in contemporary musical handwriting). Additionally,
systems that do take musical syntax or other higher-
order information (such as regular grouping of beats
into measures) into account are often using it as a sep-
arate step after recognizing the individual symbols, so
the syntactic constraints are not leveraged for improv-
ing the symbol recognition step (Ana Rebelo et al.,
2013; Victor Padilla et al., 2014).

The project will focus on designing a joint model for
musical symbol recognition and notation graph con-
struction: in other words, a parser of handwritten
music notation.

After establishing non-joint baselines for object de-
tection such as Faster R-CNN (Shaoqing Ren et al.,
2015) and post-hoc notation graph building, we will
explore parser models that output a sequence of parser
actions, with a sequential input reading mechanism.

The hurdles for this approach are:

• designing a tractable parsing algorithm that can
deal with the notation graph,

• designing an appropriate input sequentialization
mechanism,

• developing an oracle which unrolls training data
into parser action sequences, so that the sequence-
to-sequence relationship is learnable by available
algorithms.

While there are many ways to design such a graph,
the design implemented in the MUSCIMA++ dataset
which (a) is a directed acyclic graph, (b) allows de-
composition into many individual trees (rooted at note-
heads), which only share leaves (e.g., a beam which
multiple noteheads relate to). Therefore, the graph
parser for music notation does not have to be too gen-
eral, and there is hope it should be possible to general-
ize transition-based dependency parsing methods used
in natural language processing for individual trees. The
swap system of ? for limited non-projective structures
is especially interesting, as the swap operation mim-
ics the Bag data structure of Bainbridge’s notation con-
struction engine (Bainbridge and Bell, 2003). How-
ever, there will be work on adapting these parsers to
2-dimensional input.

For transition-based parsers, a sequential reading
mechanism for the input image needs to be designed.
Here, we will draw inspiration from the skeleton-based
approaches. Subsampling the input image to skeleton
pixels simplifies the image greatly, somewhat mimics
the sequential nature of the input (as the author wrote
the score), and we have observed that there is almost
no reconstruction error when labels assigned to skele-
ton pixels are dilated back to “fill in” the original fore-
ground shapes. Furthermore, many more skeleton pix-
els can be discarded and skeleton segments can be clas-
sified as a whole, even though care needs to be taken for
some handwriting styles not to be too zealous. Even so,
a mechanism for walking through the chosen points of
interest that chooses an ordering which does not hinder



the parser operations will still need to be designed.
The oracle for converting MUSCIMA++-like nota-

tion graphs to gold-standard parser action sequence
will follow from the sequentialization approach.

5.2 Multimodal OMR

We see the potential of mOMR in the complementar-
ity of the strong and weak points of the input modali-
ties. The audio signal by itself does not carry sufficient
information to be converted to a musical score – for
instance, it cannot resolve the time signature (e.g.: 6/8
vs. 3/4), key signature, voice leading, clef changes, and
other major readability issues. However, these compo-
nents of a musical score are quite straightforward for
image-only OMR systems, as they are isolated, well-
defined symbols that are not involved in beamed groups
or chords, and their locations are usually quite pre-
dictable. However, image-only systems face a greater
challenge with the core notation symbols (noteheads,
stems, beamed groups): ascertaining pitch and duration
of notes, which is exactly the information that is present
in the audio signal: frequency information for pitch,
and energy information (onsets) to resolve individual
notes from non-note symbols. Deep learning multi-
modal models have already demonstrated that they can,
to some extent, capture and combine information from
both modalities (Matthias Dorfer et al., 2016b,a).

We formulate the following incremental steps:

• The first step is to adapt multimodal models of
Matthias Dorfer et al. (2016b) from live score fol-
lowing to multi-pitch transcription of polyphonic
music. We could, of course, simply use exist-
ing transcription solutions. However, the visual
signal can inform the transcription - for instance,
the system can get a better estimate of how many
pitches are probably sounding at a given point in
time based on the number of noteheads in the cor-
responding segment of the score. An audio-only
transcription model will be used as a baseline.
This setting will bypass the problem with design-
ing a differentiable objective function for reprint-
abile OMR.

• The second step is to also have the model align
the piano-roll representation to the symbol data.
In this step, we attempt to make the hidden trained
relationships between the image and the pitch es-
timation explicitly into output. The most straight-
forward approach is incorporating visual atten-
tion.

• The third step is to modify the model to con-
currently provide symbol location and classifi-
cation explicitly. This involves incorporating a
region-of-interest and symbol classifier above the
attention model, and incorporating this additional
learning signal into the model.

5.3 MUSCIMA++
Future work on the MUSCIMA++ dataset should in-
clude enlarging it with data from different sources
than CVC-MUSCIMA that are closer to OMR appli-
cation domains, if perhaps not as varied in terms of
handwriting styles: expecially early manuscripts and
manuscripts of contemporary composers.51 The estab-
lished annotation methodology, tooling, and especially
the annotator team should make extending the dataset
a relatively smooth operation.

A separate concern is extending the notation graph
annotation to printed datasets. This is a technical is-
sue: there are open-source tools for rendering music
notation (LilyPond, MuseScore, LibMEI) that at some
point have to explicitly record the information that the
notation graph stores. “Hijacking” this process to re-
member this data and convert it to a notation graph is
a serious software undertaking, but nevertheless not a
research problem.

5.4 Evaluation
The work on evaluation (done prior to work on
datasets) is inconclusive so far. The test case corpus
needs enlargement, and new annotations are needed
– both from newcomers, and from those who have
participated in order to provide robust self-agreement
statistics. However, as became clear during the inves-
tigation of appropriate ground truth formats, cost-to-
correct evaluation of outputs in an interchange format
such as MusicXML can be handled separately from
OMR accuracy in recovering the notation graph, even
though the latter is more relevant to applications.

Future work on evaluation will therefore focus first
on evaluting the accuracy of how the notation graph is
recovered. For lower-level metrics on symbol recog-
nition, the ground truth defined for MUSCIMA++ en-
ables using straightforward metrics once an alignment
of the predicted objects to the ground truth is found.
The notehead-centric structure of the graph then en-
ables simple recovery of semantic information about
the encoded notes, and allows for easy backtracking
of errors in pitch and duration recovery to the original
symbols.

The critical issue is searching for this alignment,
as graph alignment with respect to an arbitrary scor-
ing functon f is a computationally hard problem (NP-
hard, in fact). However, the structure of the notation
graph and some constraints on aligned symbol loca-
tions should help prune the search space to a manage-
able size, and the evaluation algorithm does not neces-
sarily need to find an optimal alignment with respect
to the evaluation metric – an approximation of the op-
timum should be sufficient, as long as the evaluated
OMR system inputs are sufficiently distinct from each
other, so that the approximations made during align-
ment cannot be responsible for differences in the re-

51We are in contact with several composers’ estates, nego-
tiating the licensing scheme for the contemporary data.



sulting evaluation metric values. (Given a good enough
approximate graph alignment, we can also argue that if
the ranking of two systems could be affected by the ap-
proximation, for all intents and purposes, the systems
perform the same.) Some research into approximate
graph alignment algorithms is needed, beyond tree edit
distances mentioned in 4.3. An alternate approach is
to improve the ad-hoc alignment used to assess inter-
annotator agreement for MUSCIMA++ using min-cost
max-flow algorithms for bipartite graphs. However, it
is not clear how to incorporate relationships and local
neighborhood similarity into the cost function.

6 Conclusions

Optical Music Recognition is a complex open prob-
lem that will have significant impact on musicology,
preservation and dissemination musical heritage, the
economics of music composition, and may open new
avenues for music learning. It is also of personal in-
terest to the author, who is an active musician and has
studied composition.

The work described in this thesis proposal does not
implement OMR solutions. On the other hand, consid-
erable contributions have been made to OMR as a field,
by providing new and much needed benchmarking in-
frastructure: evaluation procedures and, even more im-
portantly, data. The ground truth design process led
to establishing a theoretical result in OMR objectives:
the sufficiency and necessity of the notation graph for
reprintability and replayability. While the idea of a no-
tation graph is not new, to the best of our knowledge,
ours is the first body of work to implement it in full: de-
fine the graph thoroughly for the wide range of music
notation symbols and symbol configurations, consis-
tently with the information content of music notation
that makes it straightforward to infer musical content
conveyed by the notation graph, and provide a substan-
tial dataset.52

These results should now enable developing differ-
entiable objective functions that enable solving OMR
globally with respect to the notation graph, such as
those described in sec. 5 of this proposal, leveraging
the syntactic properties of music notation.
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