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Abstract

Insufficient training data is a typical issue for
many NLP tasks. In this thesis proposal, we
design a new method which allows to transfer
the knowledge between models trained on tasks
of different nature. We experiment with our ap-
proach in a particular type of situations where
the user wants to impose some constraints on
the output. A very simple way would be to
filter the training data to satisfy the constraints,
exacerbating the small data issue. Instead, we
define two tasks: a constraining task, which
in some way exhibits properties relevant for
the desired constraint, and a primary task, i.e.
the task that should be solved under the given
constraints. We train a model for the constrain-
ing task and repurpose attribution techniques,
which originally aim to explain models deci-
sions, to identify constraint features. Then, we
train a model for the primary task and use the
collected attribution scores as an additional in-
formation source to integrate the constraints.

1 Introduction

The improvements of neural models recently sur-
passed our expectations in various areas of natural
language processing. Concerning neural machine
translation (NMT), the quality of models is in some
cases comparable with humans’ decisions or even
better (Popel et al., 2020; Barrault et al., 2019).
However, there is still a notable gap in the output
quality for tasks which are too specific under some
constraints, and for which we usually do not have
enough training data, e.g. the translation of low
resource languages (Weller-di Marco and Fraser,
2022). The dependence on large amounts of train-
ing data brings a new problem, the inherent bias
towards facts and formulations exemplified in the
data (Garrido-Muñoz et al., 2021; Hovy and Prab-
humoye, 2021).

In many situations, the user of a trained model
can provide not just the input but also additional

specific pieces of information which crucially in-
fluence which outputs are desired and which are
not, in various aspects. For example, considering
a multi-modal NMT setting, the performance of
models increases when providing more than one
channel (Sulubacak et al., 2020). This gives a rather
vague form of constraints. Such additional informa-
tion can be also given as a simple one-dimensional
feature: In speech translation, knowing the gender
of a speaker is a critical bit of information when
translating from a language which does not express
gender very often to a language which requires this
information for every verb. It is known that cur-
rent translation systems still struggle with correct
gender choice (Kocmi et al., 2020; Stanovsky et al.,
2019). Similarly, knowing the presentation criteria
in subtitling helps the machine translation model
conveniently fit the output to predefined length or
decompose some articulations into shorter units,
compared to what the generally available parallel
texts exhibit (Karakanta et al., 2020; Zhang et al.,
2020). In both cases, the model is provided with
constraints from the user and we expect the model
to adhere to them.

We can view that some of these constraints
are global in the sense that the whole run of the
model during a given session should reflect them
(speakers’ gender choice in translation, translation
length), some of these constraints are local in the
sense that the model’s previous output affects their
values.

Constraints typically limit the use of available
training data. In such circumstances, the quality
of a neural model can be improved by pretraining
the model on a more general domain and gaining
the task-specific knowledge from the target domain
afterwards. This procedure is known as transfer
learning and was first introduced by Bozinovski
and Fulgosi (1976). Thanks to this, the dependence
on large amounts of the task-constrained training
data for constructing neural models is reduced.



Transfer learning is a powerful way to share
learned knowledge across several domains which
are different but related. However, there are situ-
ations when the number of samples from the tar-
get domain is still insufficient or a suitable related
dataset does not exist because of its high specificity.
In such situations, transfer learning, as it is known
and used, cannot be employed.1

Contribution In this thesis proposal, we propose
an innovative (to our best knowledge) method of
transfer learning that allows combining datasets of
a different nature. It consists of two steps.

In the first step, we repurpose one of the attri-
bution techniques (De Cao et al., 2020) originally
introduced to explain the predictions of a model
trained for a specific task. Attribution methods
typically compute sentence-level scores for each
input unit (token, word, segment), identifying the
ones that contribute most to the decision of the
given model. By targeting a task which strongly
expresses some desired constraints, we believe to
extract attribution scores that correlate well with
the importance of the constraint features.

In the second step, we analyze how to effec-
tively apply these attribution scores to the models
which are trained for unconstrained, yet well data-
covered tasks. Note that this is a limitation of this
method: We suppose that such models are capable
of accepting and working with such scores as addi-
tional inputs. We provide the analysis of two tasks:
Shortening in NMT and Gender Bias in NMT. We
describe both tasks and provide a summary of avail-
able datasets for their evaluation.

Outline In the next section, we present an
overview of the related work: Model analysis and
its interpretability, transfer learning, and two se-
lected problems in NMT that we focus on. Sec-
tion 3 describes our proposed method. Section 4
discusses our approach of addressing two known
problems from the perspective of our proposed
transfer learning method. Section 5 describes se-
lected experiments and preliminary results. In Sec-
tion 6, we conclude the proposal and present plans

1An alternative is few-shot learning, a method that allows
models to solve tasks providing only few examples or ‘shots’
(Sulubacak et al., 2020), which was first shown in language
modelling (Brown et al., 2020). Since this behaviour is con-
sidered as an emergent property in Large Language Models
(Wei et al., 2022), we limit ourselves to utilizing the few-
shot learning approach because of the requirements on spacial
and computational resources, which the usage of such large
models brings.

for the future work.

2 Related Work

2.1 Model Analysis and Interpretability

Given the popularity and the number of useful ap-
plications of neural models in natural language pro-
cessing, there is a need to be able to interpret the
behaviour of such models. Comprehensive reviews
by Madsen et al. (2022); Belinkov et al. (2020)
present a number of approaches, such as probing
classifiers, studies on language modelling or infer-
ence tasks, layerwise analyses, neuron activations
or attention mechanisms.

Our work focuses on quantifying the importance
of input units (tokens, words, segments) in the deci-
sions computed by the neural network. A simple ap-
proach along these lines analyzes attention patterns
in neural models (Clark et al., 2019). Alternative
methods assign significance scores to input tokens,
such as in attention-based attribution (Vashishth
et al., 2019), back-propagation (Sundararajan et al.,
2017) or perturbation-based techniques (Schulz
et al., 2020; Guan et al., 2019). A recent approach
addresses several limitations of previous methods
and introduces a new way of obtaining attribution
scores where the training is performed in a fully dif-
ferentiable way (De Cao et al., 2020). The authors
show the analysis of a BERT model (Devlin et al.,
2019) finetuned on question answering and senti-
ment classification tasks. We use this technique to
obtain so-colled attribution scores which capture
constraints in the task, and which are further help-
ful for training the general model. A more detailed
description of this approach is in Section 3.

2.2 Transfer Learning

Transfer learning is a research technique that fo-
cuses on sharing knowledge across different task.
During past years, diverse approaches have been
proposed. We describe a selection of possible direc-
tions with the focus on natural language processing.

Meta learning One option is meta learning, also
called ‘learning to learn’, which is an approach
of observing learning from a wide range of tasks
and learning new tasks much faster than otherwise
possible. It is also capable of learning on very few
examples of the training data, e.g. in the context of
low-resource translation when the model learns to
adapt to low-resource languages starting from mul-
tilingual high-resource language tasks (Gu et al.,



2018). A comprehensive review is provided by
Hospedales et al. (2021).

Continual learning Another direction is contin-
ual learning which represents learning on the set
of tasks where the model observes, once and one
by one, examples concerning a sequence of tasks
(Lopez-Paz and Ranzato, 2017). Only the data
from the current task are available and the tasks are
assumed to be clearly separated. The difficulty lies
in not forgetting past tasks but accumulating the
knowledge. A detailed summary is given by van de
Ven and Tolias (2019).

Multi-task learning In multi-task learning, mul-
tiple tasks are all presented throughout the training,
not one by one. The challenge is to balance them
well for the best performance in the desired ones:
E.g training a many-to-many model on a number of
weakly related tasks such as machine translation,
constituency parsing, image captioning, sequence
autoencoding (Subramanian et al., 2018; Luong
et al., 2015). A comprehensive review is presented
by Zhang et al. (2023).

Ensemble learning Ensemble learning is an-
other approach to transfer learning: An ensemble
method is a machine learning technique that
combines several base models in order to produce
one predictive model with better prediction quality.
The summary of existing ensemble methods is
described by Sagi and Rokach (2018).

A different categorization of transfer learning
is from the perspective of supervision: Unsuper-
vised approaches, which aim to model the dataset it-
self without any provided annotation (Devlin et al.,
2019; Radford et al., 2018; Howard and Ruder,
2018); And supervised approaches, which utilize
large annotated datasets (McCann et al., 2017; Con-
neau et al., 2017; Yang et al., 2017). Independently
of our summary, a comprehensive review of trans-
fer learning methods is presented by Alyafeai et al.
(2020).

In our approach, compared to these transfer
learning techniques, we use a separate task, train-
ing dataset and model, where the analysis of such
outputs is used as an additional input for the gen-
eral model. Other techniques employ either one
model that is trained for several different tasks (con-
tinual, multi-task learning), or several models that
are trained for a similar task (ensemble learning).

2.3 Shortening Machine Translation

The objective of shortening machine translation is
to generate a translation whose length is smaller
than the source or reference length. Shortening ma-
chine translation can be viewed as a monolingual
text compression with a follow-up machine transla-
tion. One direction is to filter training data and use
only sample pairs where the source is shorter than
target sentence (Macháček et al., 2021).

More complex approaches include neural end-to-
end models developed for neural machine transla-
tion, notably the Transformer model (Vaswani et al.,
2017), by explicitly introducing length constraints
to control the behavior of the decoder (Lakew et al.,
2019; Kikuchi et al., 2016), or incorporating length
information to positional embeddings (Takase and
Okazaki, 2019).

Alternatively, text compression can be addressed
from the perspective of length disentanglement
(Thompson and Post, 2020). The desired outcome
is achieved by e.g. adversarial training (one of the
components is an adversarial network which forces
the encoder to build a representation of the input
such that the selected attribute is not deducible
from its output) (Goodfellow et al., 2020; Zhang
et al., 2018; Lample et al., 2017). Similarly, one
can use variational autoencoders, encode the input
in the latent probabilistic space and then shift it
towards a desired representation (Liu et al., 2020a).

2.4 Gender Bias in Machine Translation

Keeping correct and consistent gender becomes
a challenging task not only when translating to a
language with rich morphology, but also in natural
language processing in general (Sun et al., 2019;
Hovy and Spruit, 2016). Stanovsky et al. (2019)
proposed an evaluation method for spotting biases
in the text and showed that current state-of-the-
art models are extensively prone to gender biases.
A way to mitigate the effects of such bias is to
train a machine translation model which uses addi-
tional input in the form of word-level annotations
containing information about the subject’s gender
(Stafanovičs et al., 2020). Another approach is to
use a method based on transfer learning (Saunders
and Byrne, 2020), utilizing a small set of trusted,
gender-balanced examples. This approach gives a
strong improvement in gender debiasing with much
less computational cost than training from scratch.

Another option is to use methods which modify
data directly and remove gender biases from the



conversation

Two elderly women having a conversation with their children
0.75 0.35 0.15 0.15 0.00 1.00 0.08 0.26 0.54

Two women children

Two women are talking to
children

Deux femmes parlent aux
enfants

Figure 1: An illustration of a shorter, cascade-generated
translation of a sentence with words labeled by signifi-
cance scores underneath. Steps: 1. Generating scores;
2. Removing words under a threshold; 3. Recovering
grammar; 4. Translating. The phrase taken from the
NLI dataset (Bowman et al., 2015).

training data (Zmigrod et al., 2019; Zhao et al.,
2018).

3 Method

3.1 Tasks

Let us have the following phrase ‘Two elderly
women having a conversation with their children’.
Intuitively, we can say that some of the words in
the phrase contribute to the overall meaning less
than others. For instance, we would say that ‘a’
carries considerably less information than ‘chil-
dren’, or that ‘elderly’ is slightly less important
than ‘women’. Supposing that we have a scoring
function S → [0, 1] which assigns an importance
score to each input word in the sentence, we eas-
ily identify words that contribute to the meaning
the least. It results in a scalable shortening transla-
tion if the translation model is capable of accepting
and working with such scores as additional inputs.
Figure 1 shows an example of shortening machine
translation, the first task with constraints we focus
on.

Similarly, having the sentence ‘The doctor asked
the nurse to help her in the procedure’ we can
see that the gender of ‘doctor’ is not expressed
in English.2 Consequently, when translating to a
language in which the surface form of this word
differs across genders, the gender has to be inferred
from the context. Here, the information about the
gender is captured in ‘her’. The goal of the scoring
function S in this context identifies words that aid
to disambiguate the translation. Figure 2 presents
the problem of gender bias in machine translation,
the second task with constraints in the work.

We suppose that solving a task with given con-

2Note that we focus only on resolving gender bias in sen-
tences where the gender is deducible from the context or from
the user input.

El doctor   le pidio a la enfermera  que le ayudara con el procedimiento

The doctor asked the nurse to help her   in the procedureherdoctor

El doctor la enfermera

Figure 2: An illustration of gender bias in machine
translation. ‘doctor’ is mistakenly translated as male
profession ‘el doctor’ even though the context ‘her’
identifies her as feminine. It is caused by wrong corefer-
ence alignment between ‘her’ and ‘nurse’. The example
inspired by Stanovsky et al. (2019).

straints can be decomposed to two parts. Formally,
we denote these parts as a constraining task and a
primary task. Theoretically, the model trained for
solving the constraining task learns features that
represent the constraints and is not biased towards
formulations exemplified in training data of the
primary task (the scoring function S). On the con-
trary, the model trained for the primary task is not
restricted in any way and is able to learn general
features of the original task (machine translation).
We show the details about constraining tasks for
both problems in Section 4.

3.2 Scoring
To obtain the scoring function S, we first train the
model for the constraining task. Then, we use an
interpreter relying on attribution methods that aims
to identify the words that are the most important
for explaining the decision of the model trained for
the constraining task. These attribution scores are
extracted from the constraining task’s hidden states
through a series of masking procedures.

In particular, we employ the attribution method
proposed by De Cao et al. (2020) that seeks to
mask the largest possible number of words in the
input, while at the same time preserving the output
decision obtained from the full input. This means
that the interpreter minimizes a loss function com-
prising two terms: an L0 term, on the one-hand,
which forces the interpreter to maximize the num-
ber of masked elements; a divergence term D∗, on
the other hand, which aims to diminish the differ-
ence between the prediction of the constraining
task model given (a) the original input or (b) the
masked input. We selected the work of De Cao
et al. (2020) over all other approaches, because its
main contribution is to approximate the masking
process in a fully differentiable loss and thus im-
prove the learning process compared to the other
methods.



Premise input Hypothesis input 

NLI Model

Binary mask 

Interpreter

Attributions 

Figure 3: The first pass (yellow plain arrows): A
premise and hypothesis are passed to the NLI model.
The interpreter takes both text inputs xp, xh, and hidden
states hp of the NLI model’s encoder. It generates a bi-
nary mask zp which is used to mask xp, resulting in x̂p.
The second pass (green dashed arrows): x̂p is passed
to the NLI model together with the original hypothesis.
The divergence D∗ minimizes the difference between
predicted distributions y and ŷ of these two passes.

Having obtained attribution scores, we interpret
them as importance scores which reflect the phe-
nomenon defined by the constraints. These scores
are then used as additional information for training
the model of the primary task.

3.3 Modelling

This additional information in the form of word-
level scores can be used in different ways. One
option can be to use these scores to scale word
embeddings because it has been shown they en-
code meaning (Conneau et al., 2018; Sileo et al.,
2019; Adi et al., 2017). For shortening machine
translation, a specific possible direction can be to
set a threshold and remove tokens with scores be-
low its value. The subsequent MT model only
needs to be pretrained on noisy input (Liu et al.,
2020b), or to be created as a cascade of a mono-
lingual denoiser (Lewis et al., 2020) and a vanilla
machine translation. Another approach is to inte-
grate scores into textual input of the model (Jain
and Berg-Kirkpatrick, 2021).

4 Tasks

We describe two tasks — shortening machine trans-
lation and gender bias in machine translation. For
the sake of clarity, we denote a constraining task
as CT, a primary task as PT and explicitly state the
global/local type. Formally, given an autoregres-
sive decoding function F , the constraint C is global
when we can formulate the next token prediction

xn+1 as

xn+1 = F (x0, x1, ..., xn, C),

otherwise the constraint Ci is a local constraint
modeled as

(xn+1, Cn+1) = F (x0, x1, ..., xn, Cn).

In other words, global constraints are invariant to
the decoding whereas local constraints may change
over time.

4.1 Shortening in NMT
PT Machine Translation
CT Natural Language Inference
TYPE Global constraint

Application Generating translation which is
shorter than the output from a regular machine
translation model is often beneficial in online sub-
titling (a display system cannot handle the load of
incoming subtitles), dubbing (the translation length
does not match actor’s mouth movements) or in
non-isometric machine translation (the pace of the
source language is higher than in the target lan-
guage). This is yearly a part of IWSLT shared
tasks (Agarwal et al., 2023).

Description In our setting, we suppose that a
model trained for a semantic task is able to learn
semantic properties of sentences. Additionally, we
assume that word significance within the sentence
(defined as word importance) can be estimated by
the amount of contribution to the overall mean-
ing of the sentence. This means that removing
low-scored words should only slightly change the
sentence meaning. We thus use a semantic task
(e.g. Natural Language Inference or Paraphrase
Identification) as the constraining task. We use the
available datasets (Bowman et al., 2015; Williams
et al., 2018; Rajpurkar et al., 2016) and train the
constraining model. Then, by training an inter-
preter (De Cao et al., 2020) we obtain a score for
each input token. We illustrate the process in Fig-
ure 3.

We use these scores as additional information for
training the model for the primary task (machine
translation), as discussed in Section 3.3.

Evaluation Concerning direct compression
across languages, Ive and Yvon (2016) provide
a small set of ∼1k parallel sentences extracted
from the testset of the WMT 2014 News trans-
lation shared task that has been compressed



in the language pair English↔French in both
ways. Alternatively, there are several options for
monolingual text compression: Text compression
data (in domains Europarl, TED, EU bookshop,
News) containing English, French, and German
(Mallinson et al., 2018); A corpus which contains
manual compressions for single and multiple
sentences in English (Toutanova et al., 2016); And
several other (Cohn and Lapata, 2013; Filippova
and Altun, 2013; Clarke and Lapata, 2008).

We evaluate our systems using these datasets
and the metrics such as SARI (Xu et al., 2016),
Rouge-N or Rouge-L (Lin, 2004). These metrics
are used for evaluating sentence simplification or
summarization systems. For the translation qual-
ity we use common measures such as BLEU (Pap-
ineni et al., 2002), model-based COMET (Rei et al.,
2020) or character n-gram F-score chrF (Popović,
2015). For baselines, we employ pretrained models
for sentence summarization (Zhang et al., 2019;
Rothe et al., 2020).

4.2 Gender Bias in NMT
PT Machine Translation
CT Coreference
TYPE Global constraint

Application Consistent translation of words that
exist in different genders, and reducing the impact
of gender bias is useful in situations when the tar-
get language has comparably richer morphology
than the source language. A possible usage is also
in the context of translating dialogues: Given a
limited history of a dialogue, the translation sys-
tem has to correctly assess the gender of speakers.
Stanovsky et al. (2019) present a challenge set and
evaluation protocol for the analysis of gender bias
in machine translation, which was used as a test
suite of WMT20 by Kocmi et al. (2020).

Description In our setting, we explore several op-
tions for the constraining task but we suppose that
training a model for detecting coreference allows to
detect words which are important for sustaining the
correct gender within or across sentences. We use
the available datasets (Bamman et al., 2020; Web-
ster et al., 2018) to train the constraining model –
given a sentence (or multiple sentences) and a noun
that is contained in the input, the model predicts
the gender of the noun, e.g. ‘The doctor asked the
nurse to help her. || doctor → feminine’. Thanks to
the coreference resolution datasets we can correctly
derive gender for gold labels. Similarly to short-

ening machine translation, we train the interpreter
(De Cao et al., 2020) for generating importance
scores of the input tokens which contribute the
most to the decision of choosing the word gender
of the given noun. We use these tokens in the next
step as additional information for the model of the
primary task – we pretrain an MT model with the
form of the input ‘sentence || noun || word that
helps to identify the gender of the noun → sentence
translation’. For the inference, we ask the con-
straining model for the word that helps with the
gender choice and use it for the subsequent MT
model such as ‘The doctor asked the nurse to help
her. || doctor || her → La doctora...’, supposing
that ‘her’ is the token which achieves the highest
importance score. The model should select the cor-
rect translation ‘la doctora’ which is a feminine
noun.

Evaluation Zhao et al. (2018) publish a dataset
called WinoBias that contains ∼3k sentences. An-
notators were asked to describe situations where
entities interact in plausible ways. The tem-
plates were selected to be challenging and de-
signed to cover cases requiring semantics and syn-
tax separately. Similarly, Stanovsky et al. (2019)
present WinoMT, a dataset containing ∼4k in-
stances, equally balanced between male and female
genders, as well as between stereotypical and non-
stereotypical gender-role assignments.

We use regular machine translation systems for
baselines and evaluate the quality of our systems us-
ing simple metrics such as accuracy or F1-measure.

5 Experiments

This section describes preliminary results that are
related to the first task: Shortening in NMT. As we
introduced in the description part of Section 4.1,
we first aim to detect important words in sentences.
We conduct experiments and show the results in
Section 5.1. Second, having the importance scores,
our goal is to use these scores to make MT models
aware of the importance of the tokens on their input.
For this, we examine scaling word embeddings
because we suppose that they encode meaning. We
show results of such experiments in Section 5.2.

Note that all experiments are related to the first
task and we have not conducted any experiments
for the second task, gender bias in NMT, yet.
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Figure 4: Average scores for each POS category for the
NLI model (left) and PI model (right).

5.1 Word importance

The following text is a selection of results presented
in Javorský et al. (2023).3 We follow the method-
ology from Section 3 and construct a pipeline as
shown in Figure 3. An example of our importance
scores is displayed in Figure 1. In this section, we
show properties that the importance scores have,
evaluated on the SNLI validation set (Bowman et al.,
2015). Recall that we independently train two se-
mantic models: One for Natural Language Infer-
ence (NLI) and one for Paraphrase Identification
(PI).

5.1.1 Content Words are More Important
We first examine the scores that are assigned to
content and functional words. We compute the av-
erage score for each POS tag (Zeman et al., 2022)
and display the results in Figure 4. For both mod-
els, Proper Nouns, Nouns, Pronouns, Verbs, Adjec-
tives and Adverbs have leading scores. Determin-
ers, Particles, Symbols, Conjunctions, Adpositions
are scored lower. We observe an inconsistency
of the PI model scores for Punctuation. We sup-
pose this reflects idiosyncrasies of the PI dataset:
Some items contain two sentences within one seg-
ment, and these form a paraphrase pair only when
the other segment also consists of two sentences.
Therefore, the PI model is more sensitive to Punc-
tuation than expected. We also notice the estimated
importance of the X category varies widely, which
is expected since this category is, based on its def-

3Note that several parts of this section are cited as they
appear in the original paper.
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Figure 5: The NLI model (left), PI model (right) and
the distribution of differences between the maximal and
minimal value for each token.

NLI Model PI Model
Depth Avg Std Avg Std Count
1 0.52 0.35 0.64 0.31 9424
2 0.36 0.36 0.53 0.39 27330
3 0.23 0.31 0.40 0.35 26331
4 0.22 0.31 0.33 0.36 7183
5 0.22 0.30 0.35 0.35 1816

Table 1: Importance scores of tokens for each depth in
syntactic trees. Stat. significant differences between the
current and next row are bolded (p < 0.01).

inition, a mixture of diverse word types. Over-
all, these results fulfil our requirement that content
words achieve higher scores than function words.

5.1.2 Word Significance is Context-Dependent

We then question the ability of the interpreter to
generate context-dependent attributions, contrast-
ing with purely lexical measures such as TF-IDF.
To answer this question, we compute the distribu-
tion of differences between the lowest and highest
scores for words having at least 100 occurrences in
the training and 10 in the validation data, excluding
tokens containing special characters or numerals.
The full distribution is plotted in Figure 5.

Scores extracted from both models report in-
creased distribution density towards larger differ-
ences, confirming that significance scores are not
lexicalized, but instead strongly vary according to
the context for the majority of words. The greatest
difference in scores for PI model is around 0.5, the
analysis of the NLI model brings this difference
even more towards 1. We explain it by the nature of
the datasets: It is more likely that the NLI model’s
decision relies mostly on one or on a small group
of words, especially in the case of contradictions.



5.1.3 Important Words are High in the Tree
Linguistic theories differ in ways of defining de-
pendency relations between words. One estab-
lished approach is motivated by the ‘reducibility’
of sentences (Lopatková et al., 2005), i.e. gradual
removal of words while preserving the grammat-
ical correctness of the sentence. In this section,
we study how such relationships are also observ-
able in attributions. We collected syntactic trees
of input sentences with UDPipe (Straka, 2018),4

which reflect syntactic properties of the Universal
Dependencies format (Zeman et al., 2022).5 When
processing the trees, we discard punctuation and
compute the average score of all tokens for every
depth level in the syntactic tree. We display the
first 5 depth levels in Table 1.

We can see tokens closer to the root in the syn-
tactic tree obtain higher scores on average. We
measure the correlation between scores and tree
levels, resulting in -0.31 Spearman coefficient for
the NLI model and -0.24 for the PI model. Nega-
tive coefficients correctly reflect the tendency of the
scores to decrease in lower tree levels. It thus ap-
pears that attributions are well correlated with word
positions in syntactic trees, revealing a relationship
between semantic importance and syntactic depth.

5.2 Downscaling Word Embeddings

We assume that down-scaling word embeddings
makes the input signal weaker. For generating new
embeddings, we multiply embeddings of tokens
that we aim to alter by a scaling factor α. We
denote two operations: (a) SCALE if α ∈ [0, 1] or
(b) BINARY if α = 0.

5.2.1 Experiment Setup
We selected the family of Helsinki-NLP models
to conveniently analyze the behavior of translation
models across different language pairs (Tiedemann
and Thottingal, 2020). We study en→{fr,cs,de,zh}
to cover various language families. Note that Trans-
former models contain two layers of embeddings:
word and positional. We apply our strategies to
both of them and to all subwords that belong to one
word. We use a subset of the MS COCO dataset (Lin
et al., 2014), with the size of 677 sentences. We
evaluate in two modes:

4https://lindat.mff.cuni.cz/services/udpipe/
5UD favors relations between content words, function

words are systematically leaves in the tree. However, hav-
ing function words as leaves better matches our perspective of
information importance flow, unlike in Gerdes et al. (2018).

Spearman rank correlation
Direction en→fr en→cs en→de en→zh
en→fr 1.00 0.71 0.90 0.62
en→cs 0.71 1.00 0.90 0.88
en→de 0.90 0.90 1.00 0.83
en→zh 0.62 0.88 0.83 1.00

Table 2: Spearman rank correlation coefficients: Italic
and underlined values are statistically significant with
p < 0.05 and p < 0.01, respectively.

Encoder To know what the impact of embedding
modifications is at the encoder output level, we take
the MAX pooling of the encoder output and compute
the cosine similarity between the output from the
encoder before and after making modifications to
the model input.

Decoder We also study the impact of the changes
in the input on translation. Following Fadaee and
Monz (2020), we use the Levenshtein distance
(Levenshtein et al., 1966) for evaluating the transla-
tion of the distorted input compared to the original
translation. The computation of the Levenshtein
distance is based on a set of editing operations com-
prising insertion, deletion, and substitution.

5.2.2 Encoder Results
SCALE The effects of embedding down-scaling on
the encoder output are displayed in Figure 6. We
can see that the curves differ across language pairs:
French, Czech, and German seem to be more sen-
sitive to this type of modification, Chinese, on the
other hand, is minimally influenced up to the scal-
ing factor of 0.4. In other words, ‘graying out’ an
English source word affects the encoder in en→zh
faster than other languages: the cosine similarity
starts to decrease at around α of 0.7 and at already
0.5 reaches its lowest level (0.985). German also
exposes an anomaly: the curve is not monotone.
Overall, we conclude that the information stored
in contextualized embeddings is differently dis-
tributed among languages, although in absolute
terms, the max-pooled contextualized embeddings
are not affected much when one word in the sen-
tence is fully ‘grayed out’.

BINARY In Figure 7, we can see in more detail
the impact of zeroing some embeddings from the
encoder on the encoder output. We observe that
the cosine similarity in Chinese is generally lower
than in other languages. The results also show
that nouns are the most important in the encoder
representation and numbers are the least, which is
consistent for all target languages.

https://lindat.mff.cuni.cz/services/udpipe/
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Figure 6: The cosine similarity of the encoder output after MAX pooling given the original and modified input. The
scaling factor is sampled with step 0.05.
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Figure 7: The cosine similarity of the encoder output after MAX pooling given the original and fully-zeroed input.

Cosine similarity
Pooling en→fr en→cs en→de en→zh
MAX 0.95±0.01 0.95±0.01 0.97±0.01 0.94±0.01
MEAN 0.87±0.22 0.95±0.05 0.89±0.17 0.92±0.12

Table 3: The cosine similarity of two random sentences
when performing the MAX or MEAN pooling.

Even though the absolute values for POS cate-
gories are different across languages, we notice that
the relative ordering is remarkably similar. There-
fore, we compute the Spearman rank correlation
for each pair of models and display the results in
Table 2. We observe strong correlations between
all models except the pair of models en→fr and
en→zh. These findings confirm that encoders learn
features of the source language more or less inde-
pendently of the target language.

Figure 6 and Figure 7 suggest that the word em-
bedding space is very narrow: The change in one
word does not influence the sentence representation
by a lot. To confirm this, we examine the cosine
similarity of two random sentences. We perform
the MAX and MEAN pooling on the encoder output.

Table 3 presents the results. We observe three
properties. First, the MAX pooling makes the space
extremely narrow: The similarity of two random
sentences ranges from 0.94 (Chinese) to 0.97 (Ger-
man), with a low variance everywhere. This ob-
servation is remarkably consistent across all four
target languages. Second, the MEAN pooling reaches
different values in different languages, ranging

from 0.87 for French to 0.95 for Czech. Third,
the difference between MAX and MEAN varies across
languages: French exhibits a bigger difference than
Czech. This observation is interesting since Czech
is a language with richer morphology.

5.3 Decoder Results

SCALE Fadaee and Monz (2020) show that mak-
ing minor changes to the input sentence causes
major differences in the translation. We test how
many times the model changes the prediction dur-
ing down-scaling of word embeddings. For this
experiment, we gradually apply the scaling factor
α ∈ {0, 0.01, ..., 0.99, 1.0} and count the number
of different translations given two adjacent scaling
factors. In other words, we count how many times
the output changes with the scaling factor α on the
path from zero to one with step 0.01.

Table 4 displays the average and standard de-
viation of these counts. Changes in embeddings
of nouns and verbs influence the translation the
most, which is intuitive. Pronouns, numbers, and
adverbs have the slightest impact. Interestingly,
however, altering embeddings of determiners (arti-
cles) is almost as influential as content-rich words
such as adjectives. Additionally, there are more
than 20 changes when modifying nouns out of 100
different translations for all languages. This indi-
cates that down-scaling embeddings to zero is not
smooth: It critically affects the translation. This
non-smoothness is striking in en→zh while gray-



Number of changes
Direction NOUN VERB ADJ ADV PRON NUM ADP DET
en→fr 22.48±13.12 13.38±12.82 8.35±10.00 5.36±7.32 4.51±5.24 5.01±5.21 11.41±10.76 8.24±8.26
en→cs 27.65±17.57 15.77±15.78 10.12±12.54 6.10±7.39 6.30±7.16 5.25±6.11 11.71±12.72 8.21±9.56
en→de 21.96±14.68 13.59±13.35 8.17±9.75 5.79±6.67 5.65±6.61 5.18±4.79 12.16±11.54 7.87±8.27
en→zh 41.95±20.43 24.70±20.33 16.34±17.95 10.00±11.45 9.09±10.08 9.90±9.67 22.10±19.69 15.24±15.82

Table 4: Each cell contains the mean ± standard deviation of the number of translation pairs for which the translation
differs, taking the pairs with scaling factors α1, α2 where |α1 − α2| = 0.01.

Levenshtein distance on words
Direction NOUN VERB ADJ ADV PRON NUM ADP DET
en→fr 4.77±3.20 3.50±2.55 3.27±2.30 3.34±2.47 3.34±2.51 3.19±2.40 3.52±2.80 3.30±4.05
en→cs 3.92±2.68 3.81±13.31 2.83±2.26 3.35±2.76 3.62±2.84 3.39±2.44 3.65±3.54 2.22±2.74
en→de 4.69±15.39 3.55±2.62 3.10±2.49 3.18±2.72 3.92±2.69 3.12±2.77 3.72±3.14 3.69±2.98

Levenshtein distance on characters
Direction NOUN VERB ADJ ADV PRON NUM ADP DET
en→fr 21.26±14.91 15.48±10.91 15.64±9.96 14.04±10.61 12.86±10.82 11.65±9.80 14.13±12.06 12.85±18.61
en→cs 15.79±10.75 14.74±28.06 13.31±8.85 13.72±11.84 13.74±11.47 12.46±9.98 12.80±16.56 9.13±11.03
en→de 20.64±65.36 15.03±11.09 14.64±10.98 13.77±11.70 15.32±11.34 12.49±11.23 13.83±12.32 13.68±12.50
en→zh 15.00±43.46 9.27±8.49 10.91±23.90 10.87±26.36 9.37±19.88 10.26±18.64 10.07±22.70 8.52±14.07

Table 5: The word (upper table) and character (lower table) Levenshtein distance of the original translation and the
translation when zeroing embeddings. Each cell presents mean ± standard deviation.

ing out a noun in the sentence: in 100 steps, there
are on average 40 changes of the target sentence.

BINARY We compute the word and character Lev-
enshtein distances and display statistics in Table 5.
The results suggest that masking embeddings al-
most equally affects the number of changed words
in the translation, even for the least meaning-
bearing words such as determiners. Specifically,
zeroing out one word in the source leads to an edit
distance of 3–4 on average. We observe the trans-
lation fluctuation is less noticeable for Czech for
both measures. Furthermore, we notice a very high
variance in the word distance for nouns in German
and verbs in Czech. While we assumed that this
could have been caused by reordering in the rela-
tively free word order languages, an inspection of
the data revealed that the model began to generate
repeated tokens.

6 Conclusion

In this thesis proposal, we provide an overview
of the current state of the research in this field:
Transfer learning methods, model interpretability
techniques and two selected problems, shortening
machine translation and gender bias in machine
translation, and their description. We present an
innovative way how to train models for tasks with
constraints. We anticipate training two models: a
constraining model that learns the constraint fea-
tures of the task, and a general model that learns
general features of the task. We suppose that an-
alyzing the constraining model by an attribution

method we obtain scores that correlate well with
constraint features learn by this model. We then use
these score and apply them to the general model.

In our experiments, we show that importance
scores that we acquire have desired and meaning-
ful properties: Content words are more important,
scores are context-dependent and words closer to
the root in its sentence syntactic tree are more im-
portant on average. We then show the analysis
of downscaling word embeddings of Transformer-
based translation models and we observe models’
behavior on two levels: the encoder and decoder
output. For the encoder, we show that continuous
scaling of embeddings affects different language
pairs slightly differently but the relations between
POS categories are similar, showing strong Spear-
man rank correlation. For the decoder, we observe
that gradual transition of embeddings affects the
translation in a not very smooth way (we see many
changes for every language), and that graying out
even the least meaning-bearing words can have a
significant impact on the translation.

Future Work First, we anticipate finishing the
task of shortening in NMT. We explore different
ways to use the scores as described in Section 3.3:
(a) We either implement a pipeline that removes
low-scored tokens and the output is recovered using
models trained on noisy input; Or (b) we use the
scores directly as additional model’s input. We
describe the overall approach in Section 4.1.

Second, we aim at using the proposed method
to address gender bias in machine translation as



presented in Section 4.2. We train the constraining
model for coreference classification and analyze it
with an interpreter. We use the word that achieves
the highest score for the subsequent MT model
which is pretrained in a way that accepts such in-
formation. We believe that this approach can help
mitigate gender bias in machine translation since
we elevate the importance of certain words on the
input which are usually ignored because such situ-
ations are not frequent enough for the MT model
to learn.

Note that the choice of the constraining and pri-
mary task is not always trivial and requires the
knowledge about the available datasets and the re-
lations between them in terms of constraints.
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Loïc Barrault, Ondřej Bojar, Marta R. Costa-jussà,
Christian Federmann, Mark Fishel, Yvette Gra-
ham, Barry Haddow, Matthias Huck, Philipp Koehn,
Shervin Malmasi, Christof Monz, Mathias Müller,
Santanu Pal, Matt Post, and Marcos Zampieri. 2019.
Findings of the 2019 conference on machine trans-
lation (WMT19). In Proceedings of the Fourth Con-
ference on Machine Translation (Volume 2: Shared
Task Papers, Day 1), pages 1–61, Florence, Italy. As-
sociation for Computational Linguistics.

Yonatan Belinkov, Sebastian Gehrmann, and Ellie
Pavlick. 2020. Interpretability and analysis in neural
NLP. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics: Tu-
torial Abstracts, pages 1–5, Online. Association for
Computational Linguistics.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large anno-
tated corpus for learning natural language inference.
In Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing, pages
632–642, Lisbon, Portugal. Association for Compu-
tational Linguistics.

Stevo Bozinovski and Ante Fulgosi. 1976. The influ-
ence of pattern similarity and transfer learning upon
training of a base perceptron b2. In Proceedings of
Symposium Informatica, volume 3, pages 121–126.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Kevin Clark, Urvashi Khandelwal, Omer Levy, and
Christopher D. Manning. 2019. What does BERT
look at? an analysis of BERT’s attention. In Pro-
ceedings of the 2019 ACL Workshop BlackboxNLP:
Analyzing and Interpreting Neural Networks for NLP,
pages 276–286, Florence, Italy. Association for Com-
putational Linguistics.

James Clarke and Mirella Lapata. 2008. Global infer-
ence for sentence compression: An integer linear
programming approach. Journal of Artificial Intelli-
gence Research, 31:399–429.

Trevor Cohn and Mirella Lapata. 2013. An abstractive
approach to sentence compression. ACM Transac-
tions on Intelligent Systems and Technology (TIST),
4(3):1–35.

Alexis Conneau, Douwe Kiela, Holger Schwenk, Loïc
Barrault, and Antoine Bordes. 2017. Supervised
learning of universal sentence representations from
natural language inference data. In Proceedings of
the 2017 Conference on Empirical Methods in Nat-
ural Language Processing, pages 670–680, Copen-
hagen, Denmark. Association for Computational Lin-
guistics.

https://aclanthology.org/2023.iwslt-1.1
https://aclanthology.org/2023.iwslt-1.1
https://aclanthology.org/2020.lrec-1.6
https://aclanthology.org/2020.lrec-1.6
https://doi.org/10.18653/v1/W19-5301
https://doi.org/10.18653/v1/W19-5301
https://doi.org/10.18653/v1/2020.acl-tutorials.1
https://doi.org/10.18653/v1/2020.acl-tutorials.1
https://doi.org/10.18653/v1/D15-1075
https://doi.org/10.18653/v1/D15-1075
https://doi.org/10.18653/v1/W19-4828
https://doi.org/10.18653/v1/W19-4828
https://doi.org/10.18653/v1/D17-1070
https://doi.org/10.18653/v1/D17-1070
https://doi.org/10.18653/v1/D17-1070


Alexis Conneau, German Kruszewski, Guillaume Lam-
ple, Loïc Barrault, and Marco Baroni. 2018. What
you can cram into a single $&!#* vector: Probing
sentence embeddings for linguistic properties. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 2126–2136, Melbourne, Aus-
tralia. Association for Computational Linguistics.

Nicola De Cao, Michael Sejr Schlichtkrull, Wilker Aziz,
and Ivan Titov. 2020. How do decisions emerge
across layers in neural models? interpretation with
differentiable masking. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 3243–3255, On-
line. Association for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Marzieh Fadaee and Christof Monz. 2020. The un-
reasonable volatility of neural machine translation
models. In Proceedings of the Fourth Workshop on
Neural Generation and Translation, pages 88–96,
Online. Association for Computational Linguistics.

Katja Filippova and Yasemin Altun. 2013. Overcom-
ing the lack of parallel data in sentence compression.
In Proceedings of the 2013 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1481–1491, Seattle, Washington, USA. Association
for Computational Linguistics.

Ismael Garrido-Muñoz, Arturo Montejo-Ráez, Fer-
nando Martínez-Santiago, L Alfonso Ureña-López,
and José Ignacio Abreu Salas. 2021. A survey on bias
in deep nlp. Applied Sciences (2076-3417), 11(7).

Kim Gerdes, Bruno Guillaume, Sylvain Kahane, and
Guy Perrier. 2018. SUD or surface-syntactic Uni-
versal Dependencies: An annotation scheme near-
isomorphic to UD. In Proceedings of the Second
Workshop on Universal Dependencies (UDW 2018),
pages 66–74, Brussels, Belgium. Association for
Computational Linguistics.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza,
Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. 2020. Generative
adversarial networks. Communications of the ACM,
63(11):139–144.

Jiatao Gu, Yong Wang, Yun Chen, Victor O. K. Li,
and Kyunghyun Cho. 2018. Meta-learning for low-
resource neural machine translation. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 3622–3631,
Brussels, Belgium. Association for Computational
Linguistics.

Chaoyu Guan, Xiting Wang, Quanshi Zhang, Runjin
Chen, Di He, and Xing Xie. 2019. Towards a deep
and unified understanding of deep neural models in
nlp. In International conference on machine learning,
pages 2454–2463. PMLR.

Timothy Hospedales, Antreas Antoniou, Paul Micaelli,
and Amos Storkey. 2021. Meta-learning in neural
networks: A survey. IEEE transactions on pattern
analysis and machine intelligence, 44(9):5149–5169.

Dirk Hovy and Shrimai Prabhumoye. 2021. Five
sources of bias in natural language processing. Lan-
guage and Linguistics Compass, 15(8):e12432.

Dirk Hovy and Shannon L. Spruit. 2016. The social
impact of natural language processing. In Proceed-
ings of the 54th Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Pa-
pers), pages 591–598, Berlin, Germany. Association
for Computational Linguistics.

Jeremy Howard and Sebastian Ruder. 2018. Universal
language model fine-tuning for text classification.
In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume 1:
Long Papers), pages 328–339, Melbourne, Australia.
Association for Computational Linguistics.

Julia Ive and François Yvon. 2016. Parallel sentence
compression. In Proceedings of COLING 2016, the
26th International Conference on Computational Lin-
guistics: Technical Papers, page 1503–1513, Osaka,
Japan.

Aashi Jain and Taylor Berg-Kirkpatrick. 2021. An em-
pirical study of extrapolation in text generation with
scalar control. arXiv preprint arXiv:2104.07910.

Dávid Javorský, Ondřej Bojar, and François Yvon. 2023.
Assessing word importance using models trained for
semantic tasks. In Findings of the Association for
Computational Linguistics: ACL 2023, pages 8846–
8856, Toronto, Canada. Association for Computa-
tional Linguistics.

Alina Karakanta, Matteo Negri, and Marco Turchi. 2020.
Is 42 the answer to everything in subtitling-oriented
speech translation? In Proceedings of the 17th Inter-
national Conference on Spoken Language Transla-
tion, pages 209–219, Online. Association for Com-
putational Linguistics.

Yuta Kikuchi, Graham Neubig, Ryohei Sasano, Hiroya
Takamura, and Manabu Okumura. 2016. Controlling
output length in neural encoder-decoders. In Pro-
ceedings of the 2016 Conference on Empirical Meth-
ods in Natural Language Processing, pages 1328–
1338, Austin, Texas. Association for Computational
Linguistics.

Tom Kocmi, Tomasz Limisiewicz, and Gabriel
Stanovsky. 2020. Gender coreference and bias eval-
uation at WMT 2020. In Proceedings of the Fifth
Conference on Machine Translation, pages 357–364,
Online. Association for Computational Linguistics.

https://doi.org/10.18653/v1/P18-1198
https://doi.org/10.18653/v1/P18-1198
https://doi.org/10.18653/v1/P18-1198
https://doi.org/10.18653/v1/2020.emnlp-main.262
https://doi.org/10.18653/v1/2020.emnlp-main.262
https://doi.org/10.18653/v1/2020.emnlp-main.262
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2020.ngt-1.10
https://doi.org/10.18653/v1/2020.ngt-1.10
https://doi.org/10.18653/v1/2020.ngt-1.10
https://aclanthology.org/D13-1155
https://aclanthology.org/D13-1155
https://doi.org/10.18653/v1/W18-6008
https://doi.org/10.18653/v1/W18-6008
https://doi.org/10.18653/v1/W18-6008
https://doi.org/10.18653/v1/D18-1398
https://doi.org/10.18653/v1/D18-1398
https://doi.org/10.18653/v1/P16-2096
https://doi.org/10.18653/v1/P16-2096
https://doi.org/10.18653/v1/P18-1031
https://doi.org/10.18653/v1/P18-1031
https://aclanthology.org/C16-1142/
https://aclanthology.org/C16-1142/
https://aclanthology.org/2023.findings-acl.563
https://aclanthology.org/2023.findings-acl.563
https://doi.org/10.18653/v1/2020.iwslt-1.26
https://doi.org/10.18653/v1/2020.iwslt-1.26
https://doi.org/10.18653/v1/D16-1140
https://doi.org/10.18653/v1/D16-1140
https://aclanthology.org/2020.wmt-1.39
https://aclanthology.org/2020.wmt-1.39


Surafel Melaku Lakew, Mattia Di Gangi, and Marcello
Federico. 2019. Controlling the output length of neu-
ral machine translation. In Proceedings of the 16th
International Conference on Spoken Language Trans-
lation, Hong Kong. Association for Computational
Linguistics.

Guillaume Lample, Neil Zeghidour, Nicolas Usunier,
Antoine Bordes, Ludovic Denoyer, and Marc’Aurelio
Ranzato. 2017. Fader networks: manipulating im-
ages by sliding attributes. In Proceedings of the 31st
International Conference on Neural Information Pro-
cessing Systems, pages 5969–5978.

Vladimir I Levenshtein et al. 1966. Binary codes capa-
ble of correcting deletions, insertions, and reversals.
In Soviet physics doklady, volume 10, pages 707–710.
Soviet Union.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7871–7880, Online. Association for Computa-
tional Linguistics.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

Tsung-Yi Lin, Michael Maire, Serge J. Belongie,
Lubomir D. Bourdev, Ross B. Girshick, James Hays,
Pietro Perona, Deva Ramanan, Piotr Doll’a r, and
C. Lawrence Zitnick. 2014. Microsoft COCO: com-
mon objects in context. CoRR, abs/1405.0312.

Dayiheng Liu, Jie Fu, Yidan Zhang, Chris Pal, and
Jiancheng Lv. 2020a. Revision in continuous space:
Unsupervised text style transfer without adversarial
learning. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 34, pages 8376–8383.

Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey
Edunov, Marjan Ghazvininejad, Mike Lewis, and
Luke Zettlemoyer. 2020b. Multilingual denoising
pre-training for neural machine translation. Transac-
tions of the Association for Computational Linguis-
tics, 8:726–742.

Markéta Lopatková, Martin Plátek, and Vladislav
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Dominik Macháček, Matúš Žilinec, and Ondřej Bojar.
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