Introduction to Natural Language Processing

a course taught as B4M36NLP at Open Informatics

by members of the Institute of Formal and Applied Linguistics

Today: Week 2, lecture

Today's topic: Language Modelling & The Noisy Channel Model

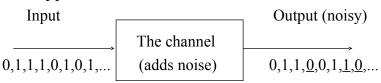
Today's teacher: Jan Hajič

E-mail: hajic@ufal.mff.cuni.cz

WWW: http://ufal.mff.cuni.cz/jan-hajic

The Noisy Channel

• Prototypical case:



- Model: probability of error (noise):
- Example: p(0|1) = .3 p(1|1) = .7 p(1|0) = .4 p(0|0) = .6
- The Task:

known: the noisy output; want to know: the input (*decoding*)

Noisy Channel Applications

- OCR
 - straightforward: text → print (adds noise), scan → image
- Handwriting recognition
 - text → neurons, muscles ("noise"), scan/digitize → image
- Speech recognition (dictation, commands, etc.)
 - text → conversion to acoustic signal ("noise") → acoustic waves
- Machine Translation
 - text in target language → translation ("noise") → source language
- Also: Part of Speech Tagging
 - sequence of tags → selection of word forms → text

Noisy Channel: The Golden Rule of ...

OCR, ASR, HR, MT, ..

• Recall:

$$p(A|B) = p(B|A) p(A) / p(B)$$
 (Bayes formula)
 $A_{best} = argmax_A p(B|A) p(A)$ (The Golden Rule)

- p(B|A): the acoustic/image/translation/lexical model
 - application-specific name
 - will explore later
- p(A): the language model

The Perfect Language Model

- Sequence of word forms [forget about tagging for the moment]
- Notation: $A \sim W = (w_1, w_2, w_3, ..., w_d)$
- The big (modeling) question:

$$p(W) = ?$$

• Well, we know (Bayes/chain rule \rightarrow):

$$p(W) = p(w_1, w_2, w_3, ..., w_d) =$$

=
$$p(w_1) \times p(w_2|w_1) \times p(w_3|w_1,w_2) \times ... \times p(w_d|w_1,w_2,...,w_{d-1})$$

• Not practical (even short W → too many parameters)

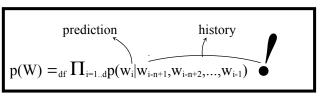
Markov Chain

- Unlimited memory (cf. previous foil):
 - for w_i , we know <u>all</u> its predecessors $w_1, w_2, w_3, ..., w_{i-1}$
- Limited memory:
 - we disregard "too old" predecessors
 - remember only k previous words: $w_{i-k}, w_{i-k+1}, ..., w_{i-1}$
 - called "kth order Markov approximation"
- + stationary character (no change over time):

$$p(W) \cong \prod_{_{i=1..d}} p(w_i|w_{_{i-k}}, w_{_{i-k+1}}, ..., w_{_{i-1}}), \, d = |W|$$

n-gram Language Models

• (n-1)th order Markov approximation \rightarrow n-gram LM:



- In particular (assume vocabulary |V| = 60k):
 - 0-gram LM: uniform model,
 - 1-gram LM: unigram model,
 - 2-gram LM: bigram model,
 - 3-gram LM: trigram model,

- p(w) = 1/|V|, 1 parameter
- p(w), 6×104 parameters
- $p(w_i|w_{i-1})$ 3.6×10° parameters
- $p(w_i|w_{i-2},w_{i-1})$ 2.16×10¹⁴ parameters

Maximum Likelihood Estimate

- MLE: Relative Frequency...
 - ...best predicts the data at hand (the "training data")
- Trigrams from Training Data T:
 - count sequences of three words in T: $c_3(w_{i-2}, w_{i-1}, w_i)$ [NB: notation: just saying that the three words follow each other]
 - count sequences of two words in T: c₂(w_{i-1},w_i):
 - either use $c_2(y,z) = \sum_w c_3(y,z,w)$
 - or count differently at the beginning (& end) of data! $p(w_i|w_{i-2},w_{i-1})$

$$=_{\text{est.}} c_3(w_{i-2}, w_{i-1}, w_i) / c_2(w_{i-2}, w_{i-1})$$

LM: an Example

Training data:

<s> <s> He can buy the can of soda.

- Unigram: $p_1(He) = p_1(buy) = p_1(the) = p_1(of) = p_1(soda) = p_1(.) = .125$ $p_1(can) = .25$
- Bigram: $p_2(He|<s>) = 1$, $p_2(can|He) = 1$, $p_2(buy|can) = .5$, $p_2(\text{oflcan}) = .5, p_2(\text{the}|\text{buy}) = 1,...$
- Trigram: $p_3(He|<s>,<s>) = 1, p_3(can|<s>,He) = 1,$ $p_3(buy|He,can) = 1$, $p_3(of|the,can) = 1$, ..., $p_3(.|of,soda) = 1$.
- Entropy: $H(p_1) = 2.75$, $H(p_2) = .25$, $H(p_3) = 0 \leftarrow Great$?!

LM: an Example (The Problem)

- Cross-entropy:
- $S = \langle s \rangle \langle s \rangle$ It was the greatest buy of all.
- Even $H_S(p_1)$ fails $(= H_S(p_2) = H_S(p_3) = \infty)$, because:
 - all unigrams but $p_1(the)$, $p_1(buy)$, $p_1(of)$ and $p_1(.)$ are 0.
 - all bigram probabilities are 0.
 - all trigram probabilities are 0.
- We want: to make all (theoretically possible*) probabilities non-zero.

^{*}in fact, all: remember our graph from day 1?

LM Smoothing (And the EM Algorithm)

Why do we need Nonzero Probs?

- To avoid infinite Cross Entropy:
 - happens when an event is found in test data which has not been seen in training data

 $H(p) = \infty$: prevents comparing data with > 0 "errors"

- To make the system more robust
 - low count estimates:
 - they typically happen for "detailed" but relatively rare appearances
 - high count estimates: reliable but less "detailed"

Eliminating the Zero Probabilities: Smoothing

- Get new p'(w) (same Ω): almost p(w) but no zeros
- Discount w for (some) p(w) > 0: new p'(w) < p(w)

$$\sum_{w \in discounted} (p(w) - p'(w)) = D$$

- Distribute D to all w; p(w) = 0: new p'(w) > p(w)- possibly also to other w with low p(w)
- For some w (possibly): p'(w) = p(w)
- Make sure $\Sigma_{w \in O}$ p'(w) = 1
- There are many ways of **smoothing**

Smoothing by Adding 1

- Simplest but not really usable:
 - Predicting words w from a vocabulary V, training data T:

$$p'(w|h) = (c(h,w) + 1) / (c(h) + |V|)$$

- for non-conditional distributions: p'(w) = (c(w) + 1) / (|T| + |V|)
- Problem if |V| > c(h) (as is often the case; even >> c(h)!)
- Example: Training data: <s> what is it what is small?
 - $V = \{ \text{ what, is, it, small, } ?, <s>, \text{ flying, birds, are, a, bird, . } \}, |V| = 12$
 - p(it)=.125, p(what)=.25, p(.)=0 $p(what is it?) = .25² × .125² <math>\approx$.001 $p(it is flying.) = .125 \times .25 \times 0^2 = 0$
 - p'(it) =.1, p'(what) =.15, p'(.)=.05 p'(what is it?) = $.15^2 \times .1^2 \simeq$.0002p'(it is flying.) = $.1 \times .15 \times .05^2 \simeq .00004$

Adding *less than* 1

- Equally simple:
 - Predicting words w from a vocabulary V, training data T:

$$p'(w|h) = (c(h,w) + \lambda) / (c(h) + \lambda|V|), \lambda < 1$$

- for non-conditional distributions: $p'(w) = (c(w) + \lambda) / (|T| + \lambda |V|)$
- Example: Training data: <s> what is it what is small?
 - $V = \{ \text{ what, is, it, small, } ?, <s>, \text{ flying, birds, are, a, bird, . } \}, |V| = 12$
 - p(it)=.125, p(what)=.25, p(.)=0 $p(what is it?) = .25² × .125² <math>\approx$ $p(it is flying.) = .125 \times .25 \times 0^2 = 0$
 - Use $\lambda = .1$:
 - p'(it) $\simeq .12$, p'(what) $\simeq .23$, p'(.) $\simeq .01$ p'(what is it?) $= .23^2 \times .12^2 \simeq .0007$ p'(it is flying.) = $.12 \times .23 \times .01^2 \simeq .000003$

Smoothing by Combination: Linear Interpolation

- Combine what?
 - · distributions of various level of detail vs. reliability
- n-gram models:
 - use (n-1)gram, (n-2)gram, ..., uniform

```
reliability
detail
```

- Simplest possible combination:
 - sum of probabilities, normalize:

•
$$p(0|0) = .8$$
, $p(1|0) = .2$, $p(0|1) = 1$, $p(1|1) = 0$, $p(0) = .4$, $p(1) = .6$:

•
$$p'(0|0) = .6$$
, $p'(1|0) = .4$, $p'(0|1) = .7$, $p'(1|1) = .3$

Typical n-gram LM Smoothing

• Weight in less detailed distributions using $\lambda = (\lambda_0, \lambda_1, \lambda_2, \lambda_3)$:

$$\begin{split} p^{*}{}_{\lambda}(w_{i}|\;w_{_{i-2}}\,,&w_{_{i-1}}) = \lambda_{\scriptscriptstyle{\parallel}}\;p_{3}(w_{i}|\;w_{_{i-2}}\,,&w_{_{i-1}}) \;+ \\ \lambda_{\scriptscriptstyle{\parallel}}\;p_{2}(w_{i}|\;w_{_{i-1}}) \;+ \lambda_{\scriptscriptstyle{\parallel}}\;p_{1}(w_{i}) \;+ \lambda_{_{0}}\;/|V| \end{split}$$

Normalize:

$$\lambda_i > 0$$
, $\Sigma_{i=0..n} \lambda_i = 1$ is sufficient ($\lambda_0 = 1 - \Sigma_{i=1..n} \lambda_i$) (n=3)

- Estimation using MLE:
 - fix the p_3 , p_2 , p_1 and |V| parameters as estimated from the training data
 - then find such $\{\lambda_i\}$ which minimizes the cross entropy (maximizes probability of data): $-(1/|D|)\sum_{i=1}^{\infty}\log_2(p'_{\lambda}(w_i|h_i))$

Held-out (Cross-validation) Data

- What data to use?
 - try the training data T: but we will always get $\lambda_3 = 1$
 - why? (let pit be an i-gram distribution estimated using r.f. from T)
 - minimizing $H_T(p'_{\lambda})$ over a vector λ , $p'_{\lambda} = \lambda_3 p_{3T} + \lambda_2 p_{2T} + \lambda_1 p_{1T} + \lambda_0 / |V|$
 - remember: $H_T(p'_{\lambda}) = H(p_{3T}) + D(p_{3T}||p'_{\lambda})$;
 - $(p_{3T} \text{ fixed} \rightarrow H(p_{3T}) \text{ fixed, best})$
 - which p'_{λ} minimizes H_T(p'_{λ})? ... a p'_{λ} for which D(p_{3T}|| p'_{λ})=0
 - ...and that's p_{3T} (because D(p||p) = 0, as we know).
 - ...and certainly $p'_{\lambda} = p_{3T}$ if $\lambda_3 = 1$ (maybe in some other cases, too).

$$(p'_{\lambda} = 1 \times p_{3T} + 0 \times p_{2T} + 0 \times p_{1T} + 0/|V|)$$

- thus: do not use the training data for estimation of λ !
 - must hold out part of the training data (heldout data, H):
 - · ...call the remaining data the (true/raw) training data, T
 - the test data S (e.g., for comparison purposes): still different data!

The Formulas

• Repeat: minimizing -(1/|H|) $\Sigma_{i=1..|H}log_2(p'_{\lambda}(w_i|h_i))$ over λ

$$p'_{\lambda}(w_{i}|h_{i}) = p'_{\lambda}(w_{i}|w_{i-2}, w_{i-1}) = \lambda_{3} p_{3}(w_{i}|w_{i-2}, w_{i-1}) + \lambda_{2} p_{2}(w_{i}|w_{i-1}) + \lambda_{1} p_{1}(w_{i}) + \lambda_{0} / |V|$$

Expected Counts (of lambdas)". j – 0...3

 $C(N_j) - Z_{i=1.|H|} (N_j p_j(w_i|\Pi_i) / p_{\lambda}(w_i|\Pi_i))$

Next λ ": i = 0.3

M-step

 $\lambda_{i,\text{next}} = c(\lambda_i) / \Sigma_{k=0..3} (c(\lambda_k))$

The (Smoothing) EM Algorithm

- 1. Start with some λ , such that $\lambda_i > 0$ for all $j \in 0..3$.
- 2. Compute "Expected Counts" for each λ_i .
- 3. Compute new set of λ_j , using the "Next λ " formula.
- 4. Start over at step 2, unless a termination condition is met.
- Termination condition: convergence of λ .
 - Simply set an ϵ , and finish if $|\lambda_j \lambda_{j,next}| < \epsilon$ for each j (step 3).
- Guaranteed to converge: follows from Jensen's inequality, plus a technical proof.

UFAL MFF UK @ FEL/Intro to Statistical NLP I/Jan Hajic

Remark on Linear Interpolation Smoothing

- "Bucketed" smoothing:
 - use several vectors of λ instead of one, based on (the frequency of) history: $\lambda(h)$
 - e.g. for h = (micrograms,per) we will have

$$\lambda(h) = (.999,.0009,.00009,.00001)$$

(because "cubic" is the only word to follow...)

 actually: not a separate set for each history, but rather a set for "similar" histories ("bucket"):

```
\lambda(b(h)), where b: V^2 \xrightarrow{\smile} N (in the case of trigrams)
```

b classifies histories according to their reliability (~ frequency)

Bucketed Smoothing: The Algorithm

- First, determine the bucketing function <u>b</u> (use heldout!):
 - decide in advance you want e.g. 1000 buckets
 - compute the total frequency of histories in 1 bucket $(f_{max}(b))$
 - gradually fill your buckets from the most frequent bigrams so that the sum of frequencies does not exceed $f_{max}(b)$ (you might end up with slightly more than 1000 buckets)
- Divide your heldout data according to buckets
- Apply the previous algorithm to each bucket and its data

Simple Example

- Raw distribution (unigram only; smooth with uniform): p(a) = .25, p(b) = .5, $p(\alpha) = 1/64$ for $\alpha \in \{c...r\}$, = 0 for the rest: s,t,u,v,w,x,y,z
- Heldout data: <u>baby</u>; use one set of λ (λ_1 : unigram, λ_0 : uniform)

• Start with
$$\lambda_1 = .5$$
; $p'_{\lambda}(b) = .5 \times .5 + .5 / 26 = .27$
 $p'_{\lambda}(a) = .5 \times .25 + .5 / 26 = .14$
 $p'_{\lambda}(y) = .5 \times 0 + .5 / 26 = .02$
 $c(\lambda_1) = .5 \times .5 / .27 + .5 \times .25 / .14 + .5 \times .5 / .27 + .5 \times 0 / .02 = 2.72$
 $c(\lambda_0) = .5 \times .04 / .27 + .5 \times .04 / .14 + .5 \times .04 / .27 + .5 \times .04 / .02 = 1.28$
Normalize: $\lambda_{1,next} = .68$, $\lambda_{0,next} = .32$.

Repeat from step 2 (recompute p'_{λ} first for efficient computation, then $c(\lambda_i)$, ...) Finish when new lambdas almost equal to the old ones (say, < 0.01 difference).