
Character Encoding
Zdeněk Žabokrtský, Rudolf Rosa

February 18, 2023

NPFL125 Introduction to Language Technologies

Charles University
Faculty of Mathematics and Physics
Institute of Formal and Applied Linguistics unless otherwise stated

Motivation

(credit: https://serpstat.com/blog/how-to-set-the-site-encoding-correctly/)

Introduction 8-bit encodings Unicode Misc 1/ 37

Hello world

01001000 01100101 01101100 01101100 01101111 00100000
01010111 01101111 01110010 01101100 01100100

Introduction 8-bit encodings Unicode Misc 2/ 37

Exercise

• Recall the binary and hexadecimal system and convert first few binary octets to their
hexadecimal representation.

Introduction 8-bit encodings Unicode Misc 3/ 37

Introduction

Outline

• ASCII
• 8-bit extensions
• Unicode
• and some related topics:

• end of line
• byte-order mark
• alternative solution to character encoding – escaping

Introduction 8-bit encodings Unicode Misc 4/ 37

Problem statement

• Today’s computers use binary digits
• No natural relation between numbers and characters of an alphabet ⟹ convention

needed
• No convention ⟹ chaos
• Too many conventions ⟹ chaos
• (recall A. S. Tanenbaum: The nice thing about standards is that you have so many to

choose from.)

Introduction 8-bit encodings Unicode Misc 5/ 37

Btw why binary computers?

• the answer is actually not that straightforward
• three distinct voltage values certainly possible too (experimental ternary computers

assembled in 1950s), as well as any other higher base
• mostly physical and electro-technical reasons, rather than mathematical or

information-theoretical reasons:
• two voltage values technically very easy to distinguish – basically just charge vs. no charge

opposition on a transistor’s gate (and hence it is fast)
• only very simple circuitry needed for two-valued logic (and hence it is fast)

Introduction 8-bit encodings Unicode Misc 6/ 37

Basic notions – Character

a character
• is an abstract notion, not something tangible
• has no numerical representation nor graphical form
• e.g. “capital A with grave accent”
• you need an encoding to associate a character with a numerical representation
• you need a font to associate a character with a concrete visual realization

Introduction 8-bit encodings Unicode Misc 7/ 37

Basic notions – Character set

a character set (or a character repertoire)
• a set of logically distinct characters
• relevant for a certain purpose (e.g., used in a given language or in group of languages)
• not neccessarily related to computers

a coded character set:
• a unique number (typically non-negative integer) assigned to each character: code point
• relevant for a certain purpose (e.g., used in a given language or in group of languages)
• not neccessarily related to computers

Introduction 8-bit encodings Unicode Misc 8/ 37

Basic notions – Glyph and Font

• a glyph – a visual representation of a character
• a font – a set of glyphs of characters

Introduction 8-bit encodings Unicode Misc 9/ 37

Basic notions – Character encoding

character encoding
• the way how (coded) characters are mapped to (sequences of) bytes
• both in the declarative and procedural sense

• a conversion table
• a conversion process

Introduction 8-bit encodings Unicode Misc 10/ 37

8-bit encodings

ASCII

• In the beginning there was the Word. And the Word was encoded in 7-bit ASCII. (well,
if we ignore the history before 1950’s)

Introduction 8-bit encodings Unicode Misc 11/ 37

ASCII

• ASCII = American Standard Code for Information Interchange (1963)
• 7 bits (0–127)
• 33 control characters (0–31,127) such as Escape, Line Feed, Bell
• the remaining 95 characters (32–126): printable characters such as space, numerals, upper

and lower case characters.

Introduction 8-bit encodings Unicode Misc 12/ 37

ASCII, cont.
• now with decimal and octal codes (credit: www.pragimtech.com)

Introduction 8-bit encodings Unicode Misc 13/ 37

Exercise

Given that A’s code point in ASCII is 65, and a’s code point is 97.
• What is the binary representation of ’A’ in ASCII? (and what’s its hexadecimal

representation)
• What is the binary representation of ’a’ in ASCII?

Is it clear now why there are the special characters inserted between upper and lower case
letters?

Introduction 8-bit encodings Unicode Misc 14/ 37

ASCII, cont.

• ASCII’s main advantage – simplicity: one character – one byte
• ASCII’s main disadvantage – no way to represent national alphabets
• Anyway, ASCII is one of the most successful software standards ever developed!

Introduction 8-bit encodings Unicode Misc 15/ 37

How to represent the end of line

• “newline” == “end of line” == “EOL”
• ASCII symbols LF (line feed, 0x0A) and/or CR (carriage return, 0x0D), depending on

the operation system:
• LF is used in UNIX systems
• CR+LF used in Microsoft Windows
• CR used in Mac OS

Introduction 8-bit encodings Unicode Misc 16/ 37

A ”how-many” question

• ASCII is clearly not enough for Czech
• but how many additional characters do we actually need for Czech?

Introduction 8-bit encodings Unicode Misc 17/ 37

Another ”how-many” question

How many questions would be needed if we want to keep several languages in the same code
space?

• find pieces of text from the following languages: Czech, French, German, Spanish,
Greek, Icelandic, Russian (at least a few paras for each)

• store them into plain text files
• count how many different signs in total appear in the files
• try to solve it using only a bash command pipeline (hint: you may use e.g. ’grep -o .’

or sed 's/./&\n/g')

Introduction 8-bit encodings Unicode Misc 18/ 37

8-bit encodings

• Supersets of ASCII, using octets 128–255 (still keeping the 1 character – 1 byte relation)
• International Standard Organisation: ISO 8859 (1980’s)
• West European Languages: ISO 8859-1 (ISO Latin 1)
• For Czech and other Central/East European languages: anarchy

• ISO 8859-2 (ISO Latin 2)
• Windows 1250
• KOI-8
• Brothers Kamenický
• other proprietary “standards” by IBM, Apple etc.

Introduction 8-bit encodings Unicode Misc 19/ 37

How to inspect the raw content of a file?

• The encoding of a text file must be known in order to display the text correctly.
• Is there an encoding-less way to view a file?
• Yes, you can view the hexadecimal codes of characters: hexdump -C

Introduction 8-bit encodings Unicode Misc 20/ 37

Unicode

Unicode

• The Unicode Consortium (1991)
• the Unicode standard defined as ISO 40646
• nowadays: all the world’s living languages
• highly different writing systems: Arabic, Sanscrit, Chinese, Japanese, Korean
• ambition: 250 writing systems for hundreds of languages
• Unicode assigns each character a unique code point
• example: “LATIN CAPITAL LETTER A WITH ACUTE” goes to U+00C1
• Unicode defines a character set as well as several encodings

Introduction 8-bit encodings Unicode Misc 21/ 37

Common Unicode encodings

• UTF-32
• 4 bytes for any character

• UTF-16
• 2 bytes for each character in Basic Multilingual Plane
• other characters 4 bytes

• UTF-8
• 1-6 bytes per character

Introduction 8-bit encodings Unicode Misc 22/ 37

UTF-8 and ASCII

• a killer feature of UTF-8: an ASCII-encoded text is encoded in UTF-8 at the same time!
• the actual solution:

• the number of leading 1’s in the first byte determines the number of bytes in the following
way:

• zero ones (i.e., 0xxxxxxx): a single byte needed for the character (i.e., identical with ASCII)
• two or more ones: the total number of bytes needed for the character

• continuation bytes: 10xxxxxx
• a reasonable space-time trade-off
• but above all: this trick radically facilitated the spread of Unicode

Introduction 8-bit encodings Unicode Misc 23/ 37

UTF-8 and Czech

• We are lucky with Czech: characters of the Czech alphabet consume at most 2 bytes

Introduction 8-bit encodings Unicode Misc 24/ 37

Exercise: does this or that character exist in Unicode?

• check http://shapecatcher.com/

Introduction 8-bit encodings Unicode Misc 25/ 37

What if you want to remove accents from text

• sometimes you need to work with both accented and non-accented characters
• no ad-hoc mapping dict from accented to non-accented chars is needed
• a standard solution:

import unidecode
print(unidecode.unidecode("žšč"))

zsc

Introduction 8-bit encodings Unicode Misc 26/ 37

Working with more exotic scripts

• Example: if you need to debug a code that works with a script that you cannot read,
even very simple tasks (such as visual checking whether two strings are identical)
become uneasy

• a possible solution: use Unicode descriptions of characters for ”reading” them

import unicodedata as ucd
test = "žšč" # try to insert e.g. some Georgian or Malayalam or so
"for cha in test:

print(f"character: {cha}\tdescription: {ucd.name(cha,'unknown')}")

character: ž description: LATIN SMALL LETTER Z WITH CARON
character: š description: LATIN SMALL LETTER S WITH CARON
character: č description: LATIN SMALL LETTER C WITH CARON

Introduction 8-bit encodings Unicode Misc 27/ 37

Misc

Byte order mark (BOM)

• BOM = a Unicode character: U+FEFF
• a special Unicode character, possibly located at the very beginning of a text stream
• optional
• used for several different purposes:

• specifies byte order – endianess (little or big endian)
• specifies (with a high level of confidence) that the text stream is encoded in one of the

Unicode encodings
• distinguishes Unicode encodings

• BOM in the individual encodings:
• UTF-8: 0xEF,0xBB,0xBF
• UTF-16: 0xFE followed by 0xFF for big endian, the other way round for little endian
• UTF-32 – rarely used

Introduction 8-bit encodings Unicode Misc 28/ 37

If you can’t recall endianess

• Little and big endian are two ways of storing multibyte data-types (int, float, etc).
• In little endian machines, last byte of binary representation of the multibyte data-type is

stored first.
• suppose an integer stored in 4 bytes:

CREDIT: https://www.geeksforgeeks.org/

Introduction 8-bit encodings Unicode Misc 29/ 37

Exercise

• using any text editor, store the Czech word žlutý into a text file in UTF-8
• using the iconv command, convert this file into four files corresponding the these

encodings:
• cp1250
• iso-8859-2
• utf-16
• utf-32

• look at the size of these 5 files (using e.g. ls * -l) and explain all size differences
• use hexdump to show the hexadecimal (“encoding-less”) content of the files
• check out what the file command guesses

Introduction 8-bit encodings Unicode Misc 30/ 37

Exercise on character identity

• Create a UTF-8 encoded file containing the Latin letter ”A”, the Greek letter ”A”, and
the Cyrilic letter ”A”, and view the file using hexdump -C.

• This might be a source of confusion when working with multilingual data.

Introduction 8-bit encodings Unicode Misc 31/ 37

Some myths and misunderstandings about character encoding

The following statements are wrong:
• ASCII is an 8-bit encoding.
• Unicode is a character encoding.
• Unicode can only support 65,536 characters.
• UTF-16 encodes all characters with 2 bytes.
• Case mappings are 1-1.
• This is just a plain text file, no encoding.
• This file is encoded in Unicode.
• It is the filesystem who knows the encoding of this file.
• File encoding can be absolutely reliably detected by this utility.

Introduction 8-bit encodings Unicode Misc 32/ 37

Detection of a file’s encoding

• 100% accuracy impossible
• e.g. the following looks perfectly OK unless you have some knowledge of Czech:

But
• in some situations some encodings can be rejected with certainty

• e.g. Unicode encodings do not allow some byte sequences
• if you have a prior knowledge (or expectation distribution) concerning the language of

the text, then some encodings might be highly improbable
• e.g. ISO-8859-1 improbable for Czech

• BOM can help too
• rule of thumb: many modern solutions default to UTF-8 if no encoding is specified
• the file command works reasonably well in most cases

Introduction 8-bit encodings Unicode Misc 33/ 37

Specification of a file’s encoding – encoding declaration
• however, “reasonably well” is not enough, we need certainty
• for most plain-text-based file formats (including source codes of programming

languages) there are clear rules how encodings should be specified
• HTML4 vs HTML5

<meta http-equiv="Content-Type" content="text/html;charset=ISO-8859-2">

<meta charset="iso-8859-2">

(btw notice the misnomer: “charset” stands for an encoding here, not for a character set
(explain why))

• XML

<?xml version="1.0" encoding="UTF-8"?>

• LATEX

\usepackage[utf8]{inputenc}
Introduction 8-bit encodings Unicode Misc 34/ 37

Encoding declaration, cont.

• some editors have their own encoding declaration style, such Emacs’s
-*- coding: <encoding-name> -*-
or VIM’s
vim:fileencoding=<encoding-name>

Introduction 8-bit encodings Unicode Misc 35/ 37

Exercise

Try to fool the file command
• try to construct a file whose encoding is detected incorrectly by file

Introduction 8-bit encodings Unicode Misc 36/ 37

Character Encoding

Summary
1. In spite of some relicts of chaos in the real world, the problem of

character encoding has been solved almost exhaustively, esp.
compared to the previous 8-bit solutions.

2. However, some new complexity has been induced (more or less
inevitably), such as more a complex notion of character
equivalence – Latin vs. Greek Vs. Cyrilic capital letter A.

3. Whenever possible, try to stick to Unicode (with UTF-8 being
its prominent encoding).

4. Make sure you perfectly understand how Unicode is handled in
your favourite programming languages and in your editors.

https://ufal.cz/courses/npfl124

https://ufal.cz/courses/npfl124

	Introduction
	8-bit encodings
	Unicode
	Misc

