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Motivation

(credit: https://serpstat.com/blog/how-to-set-the-site-encoding-correctly/)
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Hello world

01001000 01100101 01101100 01101100 01101111 00100000
01010111 01101111 01110010 01101100 01100100
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Exercise

• Recall the binary and hexadecimal system and convert first few binary octets to their
hexadecimal representation.
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Introduction



Outline

• ASCII
• 8-bit extensions
• Unicode
• and some related topics:

• end of line
• byte-order mark
• alternative solution to character encoding – escaping
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Problem statement

• Today’s computers use binary digits
• No natural relation between numbers and characters of an alphabet ⟹ convention

needed
• No convention ⟹ chaos
• Too many conventions ⟹ chaos
• (recall A. S. Tanenbaum: The nice thing about standards is that you have so many to

choose from.)
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Btw why binary computers?

• the answer is actually not that straightforward
• three distinct voltage values certainly possible too (experimental ternary computers

assembled in 1950s), as well as any other higher base
• mostly physical and electro-technical reasons, rather than mathematical or

information-theoretical reasons:
• two voltage values technically very easy to distinguish – basically just charge vs. no charge

opposition on a transistor’s gate (and hence it is fast)
• only very simple circuitry needed for two-valued logic (and hence it is fast)
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Basic notions – Character

a character
• is an abstract notion, not something tangible
• has no numerical representation nor graphical form
• e.g. “capital A with grave accent”
• you need an encoding to associate a character with a numerical representation
• you need a font to associate a character with a concrete visual realization
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Basic notions – Character set

a character set (or a character repertoire)
• a set of logically distinct characters
• relevant for a certain purpose (e.g., used in a given language or in group of languages)
• not neccessarily related to computers

a coded character set:
• a unique number (typically non-negative integer) assigned to each character: code point
• relevant for a certain purpose (e.g., used in a given language or in group of languages)
• not neccessarily related to computers
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Basic notions – Glyph and Font

• a glyph – a visual representation of a character
• a font – a set of glyphs of characters
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Basic notions – Character encoding

character encoding
• the way how (coded) characters are mapped to (sequences of) bytes
• both in the declarative and procedural sense

• a conversion table
• a conversion process
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8-bit encodings



ASCII

• In the beginning there was the Word. And the Word was encoded in 7-bit ASCII. (well,
if we ignore the history before 1950’s)
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ASCII

• ASCII = American Standard Code for Information Interchange (1963)
• 7 bits (0–127)
• 33 control characters (0–31,127) such as Escape, Line Feed, Bell
• the remaining 95 characters (32–126): printable characters such as space, numerals, upper

and lower case characters.
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ASCII, cont.
• now with decimal and octal codes (credit: www.pragimtech.com)

Introduction 8-bit encodings Unicode Misc 13/ 37



Exercise

Given that A’s code point in ASCII is 65, and a’s code point is 97.
• What is the binary representation of ’A’ in ASCII? (and what’s its hexadecimal

representation)
• What is the binary representation of ’a’ in ASCII?

Is it clear now why there are the special characters inserted between upper and lower case
letters?
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ASCII, cont.

• ASCII’s main advantage – simplicity: one character – one byte
• ASCII’s main disadvantage – no way to represent national alphabets
• Anyway, ASCII is one of the most successful software standards ever developed!
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How to represent the end of line

• “newline” == “end of line” == “EOL”
• ASCII symbols LF (line feed, 0x0A) and/or CR (carriage return, 0x0D), depending on

the operation system:
• LF is used in UNIX systems
• CR+LF used in Microsoft Windows
• CR used in Mac OS
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A ”how-many” question

• ASCII is clearly not enough for Czech
• but how many additional characters do we actually need for Czech?
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Another ”how-many” question

How many questions would be needed if we want to keep several languages in the same code
space?

• find pieces of text from the following languages: Czech, French, German, Spanish,
Greek, Icelandic, Russian (at least a few paras for each)

• store them into plain text files
• count how many different signs in total appear in the files
• try to solve it using only a bash command pipeline (hint: you may use e.g. ’grep -o .’

or sed 's/./&\n/g')
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8-bit encodings

• Supersets of ASCII, using octets 128–255 (still keeping the 1 character – 1 byte relation)
• International Standard Organisation: ISO 8859 (1980’s)
• West European Languages: ISO 8859-1 (ISO Latin 1)
• For Czech and other Central/East European languages: anarchy

• ISO 8859-2 (ISO Latin 2)
• Windows 1250
• KOI-8
• Brothers Kamenický
• other proprietary “standards” by IBM, Apple etc.
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How to inspect the raw content of a file?

• The encoding of a text file must be known in order to display the text correctly.
• Is there an encoding-less way to view a file?
• Yes, you can view the hexadecimal codes of characters: hexdump -C
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Unicode



Unicode

• The Unicode Consortium (1991)
• the Unicode standard defined as ISO 40646
• nowadays: all the world’s living languages
• highly different writing systems: Arabic, Sanscrit, Chinese, Japanese, Korean
• ambition: 250 writing systems for hundreds of languages
• Unicode assigns each character a unique code point
• example: “LATIN CAPITAL LETTER A WITH ACUTE” goes to U+00C1
• Unicode defines a character set as well as several encodings
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Common Unicode encodings

• UTF-32
• 4 bytes for any character

• UTF-16
• 2 bytes for each character in Basic Multilingual Plane
• other characters 4 bytes

• UTF-8
• 1-6 bytes per character
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UTF-8 and ASCII

• a killer feature of UTF-8: an ASCII-encoded text is encoded in UTF-8 at the same time!
• the actual solution:

• the number of leading 1’s in the first byte determines the number of bytes in the following
way:

• zero ones (i.e., 0xxxxxxx): a single byte needed for the character (i.e., identical with ASCII)
• two or more ones: the total number of bytes needed for the character

• continuation bytes: 10xxxxxx
• a reasonable space-time trade-off
• but above all: this trick radically facilitated the spread of Unicode
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UTF-8 and Czech

• We are lucky with Czech: characters of the Czech alphabet consume at most 2 bytes
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Exercise: does this or that character exist in Unicode?

• check http://shapecatcher.com/
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What if you want to remove accents from text

• sometimes you need to work with both accented and non-accented characters
• no ad-hoc mapping dict from accented to non-accented chars is needed
• a standard solution:

import unidecode
print(unidecode.unidecode("žšč"))

zsc
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Working with more exotic scripts

• Example: if you need to debug a code that works with a script that you cannot read,
even very simple tasks (such as visual checking whether two strings are identical)
become uneasy

• a possible solution: use Unicode descriptions of characters for ”reading” them

import unicodedata as ucd
test = "žšč" # try to insert e.g. some Georgian or Malayalam or so
"for cha in test:

print(f"character: {cha}\tdescription: {ucd.name(cha,'unknown')}")

character: ž description: LATIN SMALL LETTER Z WITH CARON
character: š description: LATIN SMALL LETTER S WITH CARON
character: č description: LATIN SMALL LETTER C WITH CARON
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Misc



Byte order mark (BOM)

• BOM = a Unicode character: U+FEFF
• a special Unicode character, possibly located at the very beginning of a text stream
• optional
• used for several different purposes:

• specifies byte order – endianess (little or big endian)
• specifies (with a high level of confidence) that the text stream is encoded in one of the

Unicode encodings
• distinguishes Unicode encodings

• BOM in the individual encodings:
• UTF-8: 0xEF,0xBB,0xBF
• UTF-16: 0xFE followed by 0xFF for big endian, the other way round for little endian
• UTF-32 – rarely used
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If you can’t recall endianess

• Little and big endian are two ways of storing multibyte data-types ( int, float, etc).
• In little endian machines, last byte of binary representation of the multibyte data-type is

stored first.
• suppose an integer stored in 4 bytes:

CREDIT: https://www.geeksforgeeks.org/
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Exercise

• using any text editor, store the Czech word žlutý into a text file in UTF-8
• using the iconv command, convert this file into four files corresponding the these

encodings:
• cp1250
• iso-8859-2
• utf-16
• utf-32

• look at the size of these 5 files (using e.g. ls * -l) and explain all size differences
• use hexdump to show the hexadecimal (“encoding-less”) content of the files
• check out what the file command guesses
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Exercise on character identity

• Create a UTF-8 encoded file containing the Latin letter ”A”, the Greek letter ”A”, and
the Cyrilic letter ”A”, and view the file using hexdump -C.

• This might be a source of confusion when working with multilingual data.
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Some myths and misunderstandings about character encoding

The following statements are wrong:
• ASCII is an 8-bit encoding.
• Unicode is a character encoding.
• Unicode can only support 65,536 characters.
• UTF-16 encodes all characters with 2 bytes.
• Case mappings are 1-1.
• This is just a plain text file, no encoding.
• This file is encoded in Unicode.
• It is the filesystem who knows the encoding of this file.
• File encoding can be absolutely reliably detected by this utility.
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Detection of a file’s encoding

• 100% accuracy impossible
• e.g. the following looks perfectly OK unless you have some knowledge of Czech:

But
• in some situations some encodings can be rejected with certainty

• e.g. Unicode encodings do not allow some byte sequences
• if you have a prior knowledge (or expectation distribution) concerning the language of

the text, then some encodings might be highly improbable
• e.g. ISO-8859-1 improbable for Czech

• BOM can help too
• rule of thumb: many modern solutions default to UTF-8 if no encoding is specified
• the file command works reasonably well in most cases
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Specification of a file’s encoding – encoding declaration
• however, “reasonably well” is not enough, we need certainty
• for most plain-text-based file formats (including source codes of programming

languages) there are clear rules how encodings should be specified
• HTML4 vs HTML5

<meta http-equiv="Content-Type" content="text/html;charset=ISO-8859-2">

<meta charset="iso-8859-2">

(btw notice the misnomer: “charset” stands for an encoding here, not for a character set
(explain why))

• XML

<?xml version="1.0" encoding="UTF-8"?>

• LATEX

\usepackage[utf8]{inputenc}
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Encoding declaration, cont.

• some editors have their own encoding declaration style, such Emacs’s
# -*- coding: <encoding-name> -*-
or VIM’s
# vim:fileencoding=<encoding-name>
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Exercise

Try to fool the file command
• try to construct a file whose encoding is detected incorrectly by file
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Character Encoding

Summary
1. In spite of some relicts of chaos in the real world, the problem of

character encoding has been solved almost exhaustively, esp.
compared to the previous 8-bit solutions.

2. However, some new complexity has been induced (more or less
inevitably), such as more a complex notion of character
equivalence – Latin vs. Greek Vs. Cyrilic capital letter A.

3. Whenever possible, try to stick to Unicode (with UTF-8 being
its prominent encoding).

4. Make sure you perfectly understand how Unicode is handled in
your favourite programming languages and in your editors.

https://ufal.cz/courses/npfl124
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