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Deep Learning in NLP

• NLP tasks learn end-to-end using deep learning — the number-one approach in current
research

• State of the art in POS tagging, parsing, named-entity recognition, machine translation,
…

• Good news: training without almost any linguistic insight
• Bad news: requires enormous amount of training data and really big computational

power
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What is deep learning?

• Buzzword for machine learning using neural networks with many layers using
back-propagation

• Learning of a real-valued function with millions of parameters that solves a particular
problem

• Learning more and more abstract representation of the input data until we reach such a
suitable representation for our problem
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Neural Network

𝑥
↓ ↑ ↓ ↑

ℎ1 = 𝑓(𝑊1𝑥 + 𝑏1)
↓ ↑ ↓ ↑

ℎ2 = 𝑓(𝑊2ℎ1 + 𝑏2)
↓ ↑ ↓ ↑
⋮ ⋮

↓ ↑ ↓ ↑
ℎ𝑛 = 𝑓(𝑊𝑛ℎ𝑛−1 + 𝑏𝑛)

↓ ↑ ↓ ↑
𝑜 = 𝑔(𝑊𝑜ℎ𝑛 + 𝑏𝑜) ∂𝐸

∂𝑊𝑜
= ∂𝐸

∂𝑜 ⋅ ∂𝑜
∂𝑊𝑜

↓ ↓ ↑
𝐸 = 𝑒(𝑜, 𝑡) → ∂𝐸

∂𝑜
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Implementation

Logistic regression:

𝑦 = 𝜎 (𝑊𝑥 + 𝑏) (1)

Computation graph:

𝑥

𝑊
×

𝑏

+ 𝜎ℎ

forward graph

loss

𝑦∗

𝑜 𝜎′𝑜′
+

𝑏′

ℎ′
×

𝑊 ′

backward graph
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Frameworks for Deep Learning

research and prototyping in Python

• graph statically constructed,
symbolic computation

• computation happens in a session
• allows graph export and running as a

binary

• computations written dynamically as
normal procedural code

• easy debugging: inspecting variables
at any time of the computation
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Language Modeling

• estimate probability of a next word in a text

P(𝑤𝑖|𝑤𝑖−1, 𝑤𝑖−2, … , 𝑤1)

• standard approach: 𝑛-gram models with Markov assumption

≈ P(𝑤𝑖|𝑤𝑖−1, 𝑤𝑖−2, … , 𝑤𝑖−𝑛) ≈
𝑛

∑
𝑗=0

𝜆𝑗
𝑐(𝑤𝑖|𝑤𝑖−1, … , 𝑤𝑖−𝑗)

𝑐(𝑤𝑖|𝑤𝑖−1, … , 𝑤𝑖−𝑗+1)
• Let’s simulate it with a neural network:

… ≈ 𝐹(𝑤𝑖−1, … , 𝑤𝑖−𝑛|𝜃)
𝜃 is a set of trainable parameters.
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Simple Neural Language Model

1𝑤𝑛−3

⋅𝑊𝑒

1𝑤𝑛−2

⋅𝑊𝑒

1𝑤𝑛−1

⋅𝑊𝑒

tanh

⋅𝑉3 ⋅𝑉2 ⋅𝑉1 + 𝑏ℎ

softmax

⋅𝑊 + 𝑏

P(𝑤𝑛|𝑤𝑛−1, 𝑤𝑛−2, 𝑤𝑛−3)

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. A neural probabilistic language model. The Journal of Machine Learning Research, 3
(Feb):1137–1155, 2003. ISSN 1532-4435

Deep Learning for Natural Language Processing 11/90



Neural LM: Word Representation

• limited vocabulary (hundred thousands words): indexed set of words

• words are initially represented as one-hot-vectors 1𝑤 = (0, … , 0, 1, 0, … 0)
• projection 1𝑤 ⋅ 𝑉 corresponds to selecting one row from matrix 𝑉
• 𝑉 : is a table of learned word vector representations

so-called word embeddings
• dimension typically 100 — 300

The first hidden layer is then:

ℎ1 = 𝑉𝑤𝑖−𝑛
⊕ 𝑉𝑤𝑖−𝑛+1

⊕ … ⊕ 𝑉𝑤𝑖−1

Matrix 𝑉 is shared for all words.
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Neural LM: Next Word Estimation

• optionally add extra hidden layer:

ℎ2 = 𝑓(ℎ1𝑊1 + 𝑏1)

• last layer: probability distribution over vocabulary

𝑦 = softmax(ℎ2𝑊2 + 𝑏2) = exp(ℎ2𝑊2 + 𝑏2)
∑ exp(ℎ2𝑊2 + 𝑏2)

• training objective: cross-entropy between the true (i.e., one-hot) distribution and
estimated distribution

𝐸 = − ∑
𝑖

𝑝true(𝑤𝑖) log 𝑦(𝑤𝑖) = ∑
𝑖

− log 𝑦(𝑤𝑖)

• learned by error back-propagation
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Learned Representations

• word embeddings from LMs have interesting properties

• cluster according to POS & meaning similarity

Table taken from Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu, and Pavel Kuksa. Natural language processing

(almost) from scratch. The Journal of Machine Learning Research, 12(Aug):2493–2537, 2011. ISSN 1533-7928

• in IR: query expansion by nearest neighbors
• in deep learning models: embeddings initialization speeds up training / allows complex

model with less data
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Implementation in PyTorch I

import torch
import torch.nn as nn

class LanguageModel(nn.Module):
def __init__(self, vocab_size, embedding_dim, hidden_dim):

super().__init__()

self.embedding = nn.Embedding(vocab_size, embedding_dim)
self.hidden_layer = nn.Linear(3 * embedding_dim, hidden_dim)
self.output_layer = nn.Linear(hidden_dim, vocab_size)
self.loss_function = nn.CrossEntropyLoss()

def forward(self, word_1, word_2, word_3, target=None):
embedded_1 = self.embedding(word_1)
embedded_2 = self.embedding(word_2)
embedded_3 = self.embedding(word_3)
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Implementation in PyTorch II

hidden = torch.tanh(self.hidden_layer(
torch.cat(embedded_1, embedded_2, embedded_3)))

logits = self.output_layer(hidden)

loss = None
if target is not None:

loss = self.loss_function(logits, targets)

return logits, loss
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Implementation in TensorFlow I

import tensorfow as tf

input_words = [tf.placeholder(tf.int32, shape=[None]) for _ in range(3)]
target_word = tf.placeholder(tf.int32, shape[None])

embeddings = tf.get_variable(tf.float32, shape=[vocab_size, emb_dim])
embedded_words = tf.concat([tf.nn.embedding_lookup(w) for w in input_words])

hidden_layer = tf.layers.dense(embedded_words, hidden_size, activation=tf.tanh)
output_layer = tf.layers.dense(hidden_layer, vocab_size, activation=None)
output_probabilities = tf.nn.softmax(output_layer)

loss = tf.nn.cross_entropy_with_logits(output_layer, target_words)

optimizer = tf.optimizers.AdamOptimizers()
train_op = optimizer.minimize(loss)
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Implementation in TensorFlow II

session = tf.Session()
# initialize variables

Training given batch

_, loss_value = session.run([train_op, loss], feed_dict={
input_words[0]: ..., input_words[1]: ..., input_words[2]: ...,
target_word: ...

})

Inference given batch

probs = session.run(output_probabilities, feed_dict={
input_words[0]: ..., input_words[1]: ..., input_words[2]: ...,

})
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Representing Sequences

Recurrent Networks



Recurrent Networks (RNNs)

…the default choice for sequence labeling

• inputs: 𝑥, … , 𝑥𝑇

• initial state ℎ0 = 0, a result of previous
computation, trainable parameter

• recurrent computation: ℎ𝑡 = 𝐴(ℎ𝑡−1, 𝑥𝑡)
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RNN as Imperative Code

def rnn(initial_state, inputs):
prev_state = initial_state
for x in inputs:
new_state, output = rnn_cell(x, prev_state)
prev_state = new_state
yield output
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RNN as a Fancy Image
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Vanilla RNN

ℎ𝑡 = tanh (𝑊[ℎ𝑡−1; 𝑥𝑡] + 𝑏)

• cannot propagate long-distance relations
• vanishing gradient problem
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Vanishing Gradient Problem (1)

tanh 𝑥 = 1 − 𝑒−2𝑥

1 + 𝑒−2𝑥

-1.0

-0.5

0.0
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1
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X

𝑦

𝑥

dtanh 𝑥
d𝑥 = 1 − tanh2 𝑥 ∈ (0, 1]

0.0
0.2
0.4
0.6
0.8
1.0

−6 −4 −2 0 2 4 6

𝑦

𝑥

Weight initialized ∼ 𝒩(0, 1) to have gradients further from zero.
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Vanishing Gradient Problem (2)

∂𝐸𝑡+1
∂𝑏 = ∂𝐸𝑡+1

∂ℎ𝑡+1
⋅ ∂ℎ𝑡+1

∂𝑏 (chain rule)
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Vanishing Gradient Problem (3)

∂ℎ𝑡
∂𝑏 =

∂ tanh
=𝑧𝑡 (activation)

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞(𝑊ℎℎ𝑡−1 + 𝑊𝑥𝑥𝑡 + 𝑏)
∂𝑏 (tanh′ is derivative of tanh)

= tanh′(𝑧𝑡) ⋅ ⎛⎜⎜
⎝

∂𝑊ℎℎ𝑡−1
∂𝑏 + ∂𝑊𝑥𝑥𝑡

∂𝑏⏟
=0

+ ∂𝑏
∂𝑏⏟
=1

⎞⎟⎟
⎠

= 𝑊ℎ⏟
∼𝒩(0,1)

tanh′(𝑧𝑡)⏟⏟⏟⏟⏟
∈(0;1]

∂ℎ𝑡−1
∂𝑏 + tanh′(𝑧𝑡)
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Long Short-Term Memory Networks

LSTM = Long short-term memory
Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation, 9(8):1735–1780, 1997. ISSN 0899-7667

Control the gradient flow by explicitly gating:

• what to use from input,
• what to use from hidden state,
• what to put on output
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LSTM: Hidden State

• two types of hidden states

• ℎ𝑡 — “public” hidden state, used an output
• 𝑐𝑡 — “private” memory, no non-linearities on the way
• direct flow of gradients (without multiplying by ≤ 1 derivatives)
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LSTM: Forget Gate

𝑓𝑡 = 𝜎 (𝑊𝑓[ℎ𝑡−1; 𝑥𝑡] + 𝑏𝑓)

• based on input and previous state, decide what to forget from the memory
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LSTM: Input Gate

𝑖𝑡 = 𝜎 (𝑊𝑖 ⋅ [ℎ𝑡−1; 𝑥𝑡] + 𝑏𝑖)

̃𝐶𝑡 = tanh (𝑊𝑐 ⋅ [ℎ𝑡−1; 𝑥𝑡] + 𝑏𝐶)

• ̃𝐶 — candidate what may want to add to the memory
• 𝑖𝑡 — decide how much of the information we want to store
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LSTM: Cell State Update

𝐶𝑡 = 𝑓𝑡 ⊙ 𝐶𝑡−1 + 𝑖𝑡 ⊙ ̃𝐶𝑡
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LSTM: Output Gate

𝑜𝑡 = 𝜎 (𝑊𝑜 ⋅ [ℎ𝑡−1; 𝑥𝑡] + 𝑏𝑜)

ℎ𝑡 = 𝑜𝑡 ⊙ tanh 𝐶𝑡

Deep Learning for Natural Language Processing 32/90



Here we are, LSTM!

𝑓𝑡 = 𝜎 (𝑊𝑓[ℎ𝑡−1; 𝑥𝑡] + 𝑏𝑓)
𝑖𝑡 = 𝜎 (𝑊𝑖 ⋅ [ℎ𝑡−1; 𝑥𝑡] + 𝑏𝑖)
𝑜𝑡 = 𝜎 (𝑊𝑜 ⋅ [ℎ𝑡−1; 𝑥𝑡] + 𝑏𝑜)

̃𝐶𝑡 = tanh (𝑊𝑐 ⋅ [ℎ𝑡−1; 𝑥𝑡] + 𝑏𝐶)
𝐶𝑡 = 𝑓𝑡 ⊙ 𝐶𝑡−1 + 𝑖𝑡 ⊙ ̃𝐶𝑡
ℎ𝑡 = 𝑜𝑡 ⊙ tanh 𝐶𝑡

Question How would you implement it efficiently?
Compute all gates in a single matrix multiplication.
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Gated Recurrent Units
update gate 𝑧𝑡 = 𝜎(𝑥𝑡𝑊𝑧 + ℎ𝑡−1𝑈𝑧 + 𝑏𝑧) ∈ (0, 1)
remember gate 𝑟𝑡 = 𝜎(𝑥𝑡𝑊𝑟 + ℎ𝑡−1𝑈𝑟 + 𝑏𝑟) ∈ (0, 1)
candidate hidden state ̃ℎ𝑡 = tanh (𝑥𝑡𝑊ℎ + (𝑟𝑡 ⊙ ℎ𝑡−1)𝑈ℎ) ∈ (−1, 1)
hidden state ℎ𝑡 = (1 − 𝑧𝑡) ⊙ ℎ𝑡−1 + 𝑧𝑡 ⋅ ℎ̃𝑡
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LSTM vs. GRU

• GRU is smaller and therefore faster

• performance similar, task dependent
• theoretical limitation: GRU accepts regular languages, LSTM can simulate counter

machine

Junyoung Chung, Çaglar Gülçehre, Kyunghyun Cho, and Yoshua Bengio. Empirical evaluation of gated recurrent neural networks on sequence modeling. CoRR,
abs/1412.3555, 2014. ISSN 2331-8422;
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RNN in PyTorch

rnn = nn.LSTM(input_dim, hidden_dim=512, num_layers=1,
bidirectional=True, dropout=0.8)

output, (hidden, cell) = self.rnn(x)

https://pytorch.org/docs/stable/nn.html?highlight=lstm#torch.nn.LSTM
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RNN in TensorFlow

inputs = ... # float tf.Tensor of shape [batch, length, dim]
lengths = ... # int tf.Tensor of shape [batch]

# Cell objects are templates
fw_cell = tf.nn.rnn_cell.LSTMCell(512, name="fw_cell")
bw_cell = tf.nn.rnn_cell.LSTMCell(512, name="bw_cell")

outputs, states = tf.nn.bidirectional_dynamic_rnn(
cell_fw, cell_bw, inputs, sequence_length=lengths)

https://www.tensorflow.org/api_docs/python/tf/nn/bidirectional_dynamic_rnn
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Bidirectional Networks

• simple trick to improve performance

• run one RNN forward, second one backward and concatenate outputs

Image from: http://colah.github.io/posts/2015-09-NN-Types-FP/

• state of the art in tagging, crucial for neural machine translation
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Representing Sequences

Convolutional Networks



1-D Convolution

≈ sliding window over the sequence

embeddings x = (𝑥1, … , 𝑥𝑁)

𝑥0 = ⃗0 𝑥𝑁 = ⃗0

ℎ1 = 𝑓 (𝑊[𝑥0; 𝑥1; 𝑥2] + 𝑏)
ℎ𝑖 = 𝑓 (𝑊 [𝑥𝑖−1; 𝑥𝑖; 𝑥𝑖+1] + 𝑏)

pad with 0s if we want to keep sequence length
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1-D Convolution: Pseudocode

xs = ... # input sequnce

kernel_size = 3 # window size
filters = 300 # output dimensions
strides=1 # step size

W = trained_parameter(xs.shape[2] * kernel_size, filters)
b = trained_parameter(filters)
window = kernel_size // 2

outputs = []
for i in range(window, xs.shape[1] - window):

h = np.mul(W, xs[i - window:i + window]) + b
outputs.append(h)

return np.array(h)
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1-D Convolution: Frameworks

TensorFlow

h = tf.layers.conv1d(x, filters=300 kernel_size=3,
strides=1, padding='same')

https://www.tensorflow.org/api_docs/python/tf/layers/conv1d

PyTorch

conv = nn.Conv1d(in_channels, out_channels=300, kernel_size=3, stride=1,
padding=0, dilation=1, groups=1, bias=True)

h = conv(x)

https://pytorch.org/docs/stable/nn.html#torch.nn.Conv1d
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Rectified Linear Units

ReLU:

0.0
1.0
2.0
3.0
4.0
5.0
6.0

−6 −4 −2 0 2 4 6

𝑦

𝑥

Derivative of ReLU:

0.0
0.2
0.4
0.6
0.8
1.0

−6 −4 −2 0 2 4 6

𝑦

𝑥
faster, suffer less with vanishing gradient

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines. In Proceedings of the 27th International Conference on
Machine Learning, pages 807–814, Haifa, Israel, June 2010. JMLR.org

Deep Learning for Natural Language Processing 42/90



Residual Connections

embeddings x = (𝑥1, … , 𝑥𝑁)𝑥0 = ⃗0 𝑥𝑁 = ⃗0

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

ℎ𝑖 = 𝑓 (𝑊 [𝑥𝑖−1; 𝑥𝑖; 𝑥𝑖+1] + 𝑏)

Allows training deeper networks.

Why do you think it helps?
Better gradient flow – the same as in RNNs.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In Conference on Computer Vision and Pattern
Recognition (CVPR), pages 770–778, Las Vegas, NV, USA, June 2016. IEEE Computer Society. ISBN 9781467388511
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⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

ℎ𝑖 = 𝑓 (𝑊 [𝑥𝑖−1; 𝑥𝑖; 𝑥𝑖+1] + 𝑏) + 𝑥𝑖

Allows training deeper networks.
Why do you think it helps?

Better gradient flow – the same as in RNNs.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In Conference on Computer Vision and Pattern
Recognition (CVPR), pages 770–778, Las Vegas, NV, USA, June 2016. IEEE Computer Society. ISBN 9781467388511
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Residual Connections: Numerical Stability
Numerically unstable, we need activation to be in similar scale ⇒ layer normalization.
Activation before non-linearity is normalized:

𝑎𝑖 = 𝑔𝑖
𝜎𝑖

(𝑎𝑖 − 𝜇𝑖)

…𝑔 is a trainable parameter, 𝜇, 𝜎 estimated from data.

𝜇 = 1
𝐻

𝐻
∑
𝑖=1

𝑎𝑖

𝜎 =
√√√
⎷

1
𝐻

𝐻
∑
𝑖=1

(𝑎𝑖 − 𝜇)2

Lei Jimmy Ba, Ryan Kiros, and Geoffrey E Hinton. Layer normalization. CoRR, abs/1607.06450, 2016. ISSN 2331-8422
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Receptive Field

embeddings x = (𝑥1, … , 𝑥𝑁)𝑥0 = ⃗0 𝑥𝑁 = ⃗0
Can be enlarged by dilated convolutions.
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Convolutional architectures

+
• extremely computationally efficient

–
• limited context
• by default no aware of 𝑛-gram order

• max-pooling over the hidden states = element-wise maximum over sequence

• can be understood as an ∃ operator over the feature extractors
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Representing Sequences

Self-attentive Networks



Self-attentive Networks

• In some layers: states are linear combination of previous layer states

• Originally for the Transformer model for machine translation

• similarity matrix between all pairs of states
• 𝑂(𝑛2) memory, 𝑂(1) time (when paralelized)
• next layer: sum by rows

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In
Advances in Neural Information Processing Systems 30, pages 6000–6010, Long Beach, CA, USA, December 2017. Curran Associates, Inc
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Multi-head scaled dot-product attention

Single-head setup

Attn(𝑄, 𝐾, 𝑉 ) = softmax (𝑄𝐾⊤
√

𝑑
) 𝑉

ℎ𝑖+1 = ∑ softmax (ℎ𝑖ℎ⊤
𝑖√

𝑑
)

Multi-head setup

Multihead(𝑄, 𝑉 ) = (𝐻1 ⊕ ⋯ ⊕ 𝐻ℎ)𝑊 𝑂

𝐻𝑖 = Attn(𝑄𝑊 𝑄
𝑖 , 𝑉 𝑊 𝐾

𝑖 , 𝑉 𝑊 𝑉
𝑖 )

keys & values queries

linear linear linear

split split split

concat

scaled dot-product attentionscaled dot-product attentionscaled dot-product attentionscaled dot-product attentionscaled dot-product attention
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Dot-Product Attention in PyTorch

def attention(query, key, value, mask=None):
d_k = query.size(-1)
scores = torch.matmul(query, key.transpose(-2, -1)) \

/ math.sqrt(d_k)
p_attn = F.softmax(scores, dim = -1)
return torch.matmul(p_attn, value), p_attn
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Dot-Product Attention in TensorFlow

def scaled_dot_product(self, queries, keys, values):
o1 = tf.matmul(queries, keys, transpose_b=True)
o2 = o1 / (dim**0.5)

o3 = tf.nn.softmax(o2)
return tf.matmul(o3, values)
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Position Encoding

Model is not aware of the position in the sequence.

pos(𝑖) =
⎧{
⎨{⎩

sin ( 𝑡
104

𝑖
𝑑 ) , if 𝑖 mod 2 = 0

cos ( 𝑡
104

𝑖−1
𝑑 ) , otherwise
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Stacking self-attentive Layers

input embeddings

⊕position
encoding

self-attentive
sublayer

multihead
attention

keys &
values

queries

⊕

layer normalization

feed-forward
sublayer

non-linear layer

linear layer

⊕

layer normalization

𝑁×

• several layers (original paper 6)

• each layer: 2 sub-layers: self-attention and
feed-forward layer

• everything inter-connected with residual
connections
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Architectures Comparison

computation sequential operations memory
Recurrent 𝑂(𝑛 ⋅ 𝑑2) 𝑂(𝑛) 𝑂(𝑛 ⋅ 𝑑)
Convolutional 𝑂(𝑘 ⋅ 𝑛 ⋅ 𝑑2) 𝑂(1) 𝑂(𝑛 ⋅ 𝑑)
Self-attentive 𝑂(𝑛2 ⋅ 𝑑) 𝑂(1) 𝑂(𝑛2 ⋅ 𝑑)

𝑑 model dimension, 𝑛 sequence length, 𝑘 convolutional kernel
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Classification and Labeling



Classification and Labeling

Neural Networks Basics
Representing Words
Representing Sequences

Recurrent Networks
Convolutional Networks
Self-attentive Networks

Classification and Labeling
Generating Sequences
Pre-training Representations

Word2Vec
ELMo
BERT

Deep Learning for Natural Language Processing 54/90



Sequence Classification

• tasks like sentiment analysis, genre classification

• need to get one vector from sequence → average or max pooling
• optionally hidden layers, at the end softmax for probability distribution over classes
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Softmax & Cross-Entropy

Output layer with softmax (with parameters 𝑊 , 𝑏):

𝑃𝑦 = softmax(x) = P(𝑦 = 𝑗 ∣ x) = expx⊤𝑊 + 𝑏
∑ expx⊤𝑊 + 𝑏

Network error = cross-entropy between estimated distribution and one-hot ground-truth
distribution 𝑇 = 1(𝑦∗):

𝐿(𝑃𝑦, 𝑦∗) = 𝐻(𝑃 , 𝑇 ) = −𝔼𝑖∼𝑇 log 𝑃 (𝑖)
= − ∑

𝑖
𝑇 (𝑖) log 𝑃(𝑖)

= − log 𝑃(𝑦∗)
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Derivative of Cross-Entropy

Let 𝑙 = x⊤𝑊 + 𝑏, 𝑙𝑦∗ corresponds to the correct one.

∂𝐿(𝑃𝑦, 𝑦∗)
∂𝑙 = − ∂

∂𝑙 log exp 𝑙𝑦∗

∑𝑗 exp 𝑙𝑗
= − ∂

∂𝑙𝑙𝑦∗ − log ∑ exp 𝑙

= 1𝑦∗ + ∂
∂𝑙 − log ∑ exp 𝑙 = 1𝑦∗ − ∑1𝑦∗ exp 𝑙

∑ exp 𝑙 =

= 1𝑦∗ − 𝑃𝑦(𝑦∗)

Interpretation: Reinforce the correct logit, suppress the rest.
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Sequence Labeling

• assign value / probability distribution to every token in a sequence

• morphological tagging, named-entity recognition, LM with unlimited history, answer
span selection

• every state is classified independently with a classifier
• during training, error babckpropagate form all classifiers

Lab next time: i/y spelling as sequence labeling
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Generating Sequences



Sequence-to-sequence Learning

• target sequence is of different length than source

• non-trivial (= not monotonic) correspondence of source and target
• tasks like: machine translation, text summarization, image captioning
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Neural Language Model

input symbol
one-hot vectors

embedding lookup

RNN cell
(more layers)

RNN state

normalization
distribution for
the next symbol

<s>

embed

RNN

ℎ0

softmax

𝑃(𝑤1|<s>)

𝑤1

embed

RNN

ℎ1

softmax

𝑃(𝑤1| …)

𝑤2

embed

RNN

ℎ2

softmax

𝑃 (𝑤2| …)

⋯

• estimate probability of a sentence using the chain rule

• output distributions can be used for sampling
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Sampling from a LM

embed

RNN

ℎ0

softmax

P(𝑤1|<s>)

argmax

embed

RNN

ℎ1

softmax

P(𝑤1| …)

argmax

embed

RNN

ℎ2

softmax

P(𝑤2| …)

argmax

embed

RNN

ℎ3

softmax

P(𝑤3| …)

argmax

<s>

⋯

when conditioned on input → autoregressive decoder

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural networks. In Advances in Neural Information Processing Systems 27,
pages 3104–3112, Montreal, Canada, December 2014. Curran Associates, Inc
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Autoregressive Decoding: Pseudocode

last_w = "<s>"
while last_w != "</s>":

last_w_embeding = target_embeddings[last_w]
state, dec_output = dec_cell(state,

last_w_embeding)
logits = output_projection(dec_output)
last_w = np.argmax(logits)
yield last_w
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Architectures in the Decoder

• RNN – original sequence-to-sequence learning (2015)

• principle known since 2014 (University of Montreal)
• made usable in 2016 (University of Edinburgh)

• CNN – convolution sequence-to-sequence by Facebook (2017)
• Self-attention (so called Transformer) by Google (2017)

More on the topic in the MT class.
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Implementation: Runtime vs. training

runtime: ̂𝑦𝑗 (decoded) × training: 𝑦𝑗 (ground truth)

<s>

~y1 ~y2 ~y3 ~y4 ~y5

<s> x1 x2 x3 x4

<s>
y1 y2 y3 y4

loss
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Attention Model

<s> x1 x2 x3 x4

~yi ~yi+1

h1h0 h2 h3 h4

...

+

×
α0

×
α1

×
α2

×
α3

×
α4

sisi-1 si+1

+
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Attention Model in Equations (1)
Inputs:
decoder state 𝑠𝑖
encoder states ℎ𝑗 = [ ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗ℎ𝑗; ⃖⃖⃖ ⃖⃖ ⃖⃖ ⃖ℎ𝑗] ∀𝑖 = 1 … 𝑇𝑥

Attention energies:

𝑒𝑖𝑗 = 𝑣⊤
𝑎 tanh (𝑊𝑎𝑠𝑖−1 + 𝑈𝑎ℎ𝑗 + 𝑏𝑎)

Attention distribution:

𝛼𝑖𝑗 = exp (𝑒𝑖𝑗)
∑𝑇𝑥

𝑘=1 exp (𝑒𝑖𝑘)

Context vector:

𝑐𝑖 =
𝑇𝑥

∑
𝑗=1

𝛼𝑖𝑗ℎ𝑗

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly learning to align and translate. CoRR, abs/1409.0473, 2014.
ISSN 2331-8422
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Attention Model in Equations (1)
Inputs:
decoder state 𝑠𝑖
encoder states ℎ𝑗 = [ ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗ℎ𝑗; ⃖⃖⃖ ⃖⃖ ⃖⃖ ⃖ℎ𝑗] ∀𝑖 = 1 … 𝑇𝑥
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Attention Model in Equations (2)

Output projection:

𝑡𝑖 = MLP (𝑈𝑜𝑠𝑖−1 + 𝑉𝑜𝐸𝑦𝑖−1 + 𝐶𝑜𝑐𝑖 + 𝑏𝑜)

…attention is mixed with the hidden state

Output distribution:

𝑝 (𝑦𝑖 = 𝑘|𝑠𝑖, 𝑦𝑖−1, 𝑐𝑖) ∝ exp (𝑊𝑜𝑡𝑖)𝑘 + 𝑏𝑘
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Transformer Decoder

input embeddings

⊕position
encoding

self-attentive
sublayer

multihead
attention

keys &
values

queries

⊕

layer normalization

cross-attention
sublayer

multihead
attention

keys &
values

queries

⊕

layer normalization

encoder

feed-forward
sublayer

non-linear layer

linear layer

⊕

layer normalization

𝑁×

linear

softmax

output symbol probabilities

• similar to encoder, additional layer with
attention to the encoder

• in every steps self-attention over
complete history ⇒ 𝑂(𝑛2) complexity

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need.
In Advances in Neural Information Processing Systems 30, pages 6000–6010,
Long Beach, CA, USA, December 2017. Curran Associates, Inc

Deep Learning for Natural Language Processing 68/90



Transfomer Decoder: Non-autoregressive training

𝑣1
𝑣2
𝑣3

…

𝑣𝑀

𝑞1 𝑞2 𝑞3

…

𝑞𝑁

…
…
…

… …

Queries 𝑄
Va

lu
es

𝑉

−∞

• analogical to encoder

• target is known at training: don’t need to
wait until it’s generated

• self attention can be parallelized via
matrix multiplication

• prevent attentding the future using a
mask

Question 1: What if the matrix was diagonal?
Question 2: How such a matrix look like for convolutional architecture?
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Pre-training Representations



Pre-training Representations

Neural Networks Basics
Representing Words
Representing Sequences

Recurrent Networks
Convolutional Networks
Self-attentive Networks

Classification and Labeling
Generating Sequences
Pre-training Representations

Word2Vec
ELMo
BERT

Deep Learning for Natural Language Processing 70/90



Pre-trained Representations

• representations that emerge in models seem to carry a lot of information about the
language

• representations pre-trained on large data can be re-used on tasks with smaller training
data
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Pre-training Representations

Word2Vec



Word2Vec
• way to learn word embeddings without training the complete LM

CBOW Skip-gram

∑ 𝑤3

𝑤1

𝑤2

𝑤4

𝑤5

⋮

𝑤3

𝑤1

𝑤2

𝑤4

𝑤5

⋮

• CBOW: minimize cross-entropy of the middle word of a sliding windows
• skip-gram: minimize cross-entropy of a bag of words around a word (LM other way

round)

Tomáš Mikolov, Wen-tau Yih, and Geoffrey Zweig. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 746–751, Atlanta, GA, USA, June 2013.
Association for Computational Linguistics
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Word2Vec: sampling

1. All human beings are born free and equal in dignity … → (All, humans)
(All, beings)

2. All human beings are born free and equal in dignity … →
(human, All)

(human, beings)
(human, are)

3. All human beings are born free and equal in dignity … →
(beings, All)

(beings, human)
(beings, are)

(beings, born)

4. All human beings are born free and equal in dignity … →
(are, human)
(are, beings)
(are, born)
(are, free)
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Word2Vec: Formulas

• Training objective:

1
𝑇

𝑇
∑
𝑡=1

∑
𝑗∼(−𝑐,𝑐)

log 𝑝(𝑤𝑡+𝑐|𝑤𝑡)

• Probability estimation:

𝑝(𝑤𝑂|𝑤𝐼) =
exp (𝑉 ′⊤

𝑤𝑂
𝑉𝑤𝐼

)
∑𝑤 exp (𝑉 ′⊤

𝑤𝑉𝑤𝑖
)

where 𝑉 is input (embedding) matrix, 𝑉 ′ output matrix

Equations 1, 2. Tomáš Mikolov, Wen-tau Yih, and Geoffrey Zweig. Linguistic regularities in continuous space word representations. In Proceedings of the 2013
Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 746–751, Atlanta, GA,
USA, June 2013. Association for Computational Linguistics
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Word2Vec: Training using Negative Sampling

The summation in denominator is slow, use noise contrastive estimation:

log 𝜎 (𝑉 ′⊤
𝑤𝑂

𝑉𝑤𝐼
) +

𝑘
∑
𝑖=1

𝐸𝑤𝑖∼𝑃𝑛(𝑤) [log 𝜎 (−𝑉 ′⊤
𝑤𝑖

𝑉𝑤𝐼
)]

Main idea: classify independently by logistic regression the positive and few sampled
negative examples.

Equations 1, 3. Tomáš Mikolov, Wen-tau Yih, and Geoffrey Zweig. Linguistic regularities in continuous space word representations. In Proceedings of the 2013
Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 746–751, Atlanta, GA,

USA, June 2013. Association for Computational Linguistics
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Word2Vec: Vector Arithmetics

man

woman

uncle

aunt

king

queen

kings

queens

king

queen

Image originally from Tomáš Mikolov, Wen-tau Yih, and Geoffrey Zweig. Linguistic regularities in continuous space word representations. In Proceedings of the

2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 746–751, Atlanta,

GA, USA, June 2013. Association for Computational Linguistics
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Few More Notes on Embeddings

• many method for pre-trained words embeddings (most popluar GloVe)

• embeddings capturing character-level properties
• multilingual embeddings
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Training models

FastText – Word2Vec model implementation by Facebook
https://github.com/facebookresearch/fastText

./fasttext skipgram -input data.txt -output model

Deep Learning for Natural Language Processing 78/90
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Pre-training Representations

ELMo



What is ELMo?

• pre-trained large language model

• “nothing special” – combines all
known tricks, trained on extremely
large data

• improves almost all NLP tasks
• published in June 2018

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and Luke Zettlemoyer. Deep contextualized word representations.
In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies,
Volume 1 (Long Papers), pages 2227–2237, New Orleans, LA, USA, June 2018. Association for Computational Linguistics
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ELMo Architecture: Input

character embeddings of size 16

1D-convolution to 2,048 dimensions
+ max-pool

window filters
1 32
2 32
3 64
4 128
5 256
6 512
7 1024

2× highway layer (2,048 dimensions)

linear projection to 512 dimensions
• input tokenized, treated on character

level

• 2,048 𝑛-gram filters + max-pooling
(∼ soft search for learned 𝑛-grams)

• 2 highway layers:

𝑔𝑙+1 = 𝜎 (𝑊𝑔ℎ𝑙 + 𝑏𝑔)
ℎ𝑙+1 = (1 − 𝑔𝑙+1) ⊙ ℎ𝑙+

𝑔𝑙+1 ⊙ ReLu (𝑊ℎ𝑙 + 𝑏)

contain gates that contol if
projection is needed
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ELMo Architecture: Language Models

• token representations input for 2 language models: forward and backward

• both LMs 2 layers with 4,096 dimensions with layer normalization and residual
connections

• output classifier shared (only used in training, does not have to be good)

Learned layer combination for downstream tasks:

ELMotask
𝑘 = 𝛾task ∑

layer𝐿
𝑠task

𝐿 ℎ(𝐿)
𝑘

𝛾task, 𝑠task
𝐿 trainable parameters.
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Task where ELMo helps

Answer Span Selection
Find an answer to a question in a
unstructured text.

Semantic Role Labeling
Detect who did what to whom in
sentences.

Natural Language Inference
Decide whether two sentences are in
agreement, contradict each other, or have
nothing to do with each other.

Named Entity Recognition
Detect and classify names people,
locations, organization, numbers with
units, email addresses, URLs, phone
numbers …

Coreference Resolution
Detect what entities pronouns refer to.

Semantic Similarity
Measure how similar meaning two
sentences have. (Think of clustering
similar question on StackOverflow or
detecting plagiarism.)
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Improvements by Elmo
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How to use it

• implemetned in AllenNLP
framework (uses PyTorch)

• pre-trained English models
available

from allennlp.modules.elmo import Elmo,
batch_to_ids

options_file = ...
weight_file = ...

elmo = Elmo(options_file, weight_file, 2,
dropout=0)

sentences = [['First', 'sentence', '.'],
['Another', '.']]

character_ids = batch_to_ids(sentences)

embeddings = elmo(character_ids)

https://github.com/allenai/allennlp/blob/master/tutorials/how_to/elmo.md
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Pre-training Representations

BERT



What is BERT

• another way of pretraining sentence
representations

• uses Transformer architecture and
slightly different training objective

• even beeter than ELMo
• done by Google, published in

November 2018

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
Bert: Pre-training of deep bidirectional transformers for language
understanding. CoRR, abs/1810.04805, 2018. ISSN 2331-8422
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Achitecture Comparison
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Masked Language Model

All human being are born free and equal in dignity and rights

1. Randomly sample a word → free
2. With 80% change replace with special MASK token.
3. With 10% change replace with random token → hairy
4. With 10% change keep as is → free

Then a classifier should predict the missing/replaced word free
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Additional Objective: Next Sentence Prediction

• trained in the multi-task learning setup

• secondary objective: next sentences prediction
• decide for a pair of consecuitve sentences whether they follow each other
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Performance of BERT

Tables 1 and 2. Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional transformers for language
understanding. CoRR, abs/1810.04805, 2018. ISSN 2331-8422
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Deep Learning for Natural Language Processing

Summary
1. Discrete symbols → continuous representation with trained

embeddings

2. Architectures to get suitable representation: recurrent,
convolutional, self-attentive

3. Output: classification, sequence labeling, autoregressive
decoding

4. Representations pretrained on large data helps on downstream
tasks

http://ufal.cz/courses/npfl124
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