
Feature Engineering

in Machine Learning

Zdeněk Žabokrtský
Institute of Formal and Applied Linguistics,

Charles University in Prague

Used resources

http://www.cs.princeton.edu/courses/archive/spring10/cos424/slides/18-feat.pdf

http://stackoverflow.com/questions/2674430/how-to-engineer-features-for-machine-learning

https://facwiki.cs.byu.edu/cs479/index.php/Feature engineering

documentation of scikit-learn

wikipedia

Human’s role when applying Machine Learning

Machine learning provides you with extremely powerful tools
for decision making ...

... but until a breakthrough in AI, the role of the developer’s
decision will still be crucial.

Your responsibility:

setting up the correct problem to be optimized (it’s far from
straightforward in the real world)

choosing a model

choosing a learning algorithm (or a family of algorithms)

finding relevant data

designing features, feature representation, feature selection . . .

Feature

a feature - a piece of information that is potentially useful for
prediction

Feature engineering

feature engineering - not a formally defined term, just a
vaguely agreed space of tasks related to designing feature sets
for ML applications

two components:

first, understanding the properties of the task you’re trying to
solve and how they might interact with the strengths and
limitations of the model you are going to use
second, experimental work were you test your expectations and
find out what actually works and what doesn’t.

Feature engineering in real life

Typically a cycle

1 design a set of features

2 run an experiment and analyze the results on a validation
dataset

3 change the feature set

4 go to step 1

Don’t expect any elegant answers today.

Causes of feature explosion

Feature templates: When designing a feature set, you
usually quickly turn from coding individual features (such as
’this word is predeced by a preposition and a determiner’) to
implementing feature templates (such as ’the two preceding
POSs are X a Y’)

Feature combination: linear models cannot handle some
dependencies between features (e.g. XOR with binary
operations, polynomial dependencies with real-valued
features) - feature combinations might work better.

Both lead to quick growth of the number of features.

Stop the explosion

There must be some limits, because

Given the limited size of training data, the number of features
that can be efficiently used is hardly unbounded (overfitting).

Sooner or later speed becomes a problem.

Possible solutions to avoid the explosion

feature selection

regularization

kernels

Feature selection

Central assumption: we can identify features that are
redundant or irrelevant.

Let’s just use the best-working subset: arg maxf acc(f), where
acc(f) evaluates prediction quality on held-out data

Rings a bell? Yes, there’s a set-of-all-subsets problem (NP
hard), exhaustive search clearly intractable.

(The former implicitly used e.g. in top-down-induced of
decision trees.)

A side effect of feature reduction: improved model
interpretability.

Feature selection

Basic approaches:

wrapper - search through the space of subsets, train a model
for current subset, evaluate it on held-out data, iterate...
simple greedy search heuristics:

forward selection - start with an empty set, gradually add the
“strongest” features
backward selection - start with the full set, gradually remove
the “weakest” features

computationally expensive

filter - use N most promissing features according to ranking
resulting from a proxy measure, e.g. from

mutual information
Pearson correlation coefficient

embedded methods - feature selection is a part of model
construction

Regularisation

regularisation = introducing penalty for complexity

the more features matter in the model, the bigger complexity

in other words, try to concentrate the weight mass, don’t
scatter it too much

application of Occam’s razor: the model should be simple

Bayesian view: regularization = imposing this prior knowledge
(“the world is simple”) on parameters

Regularisation

In practice, regularisation is enforced by adding a factor that has
high values for complex parameter settings to the cost function,
typically to negative log-likelihood:

cost(f) = −l(f) + regularizer(f)

L0 norm: ...+ λcount(wj 6= 0) - minimize the number of
features with non-zero weight, the less the better

L1 norm: ...+ λ|w | - minimize the sum of all weights

L2 norm: ...+ λ||w || - minimize the lenght of the weight
vector

L1/2 norm: ...+ λ
√
||w ||

L∞

Experimenting with features in scikit-learn

Encoding categorical features

Turning (a dictionary of) categorical features to a fixed-lenght
vector:

estimators can be fed only with numbers, not with strings

turn a categorical feature to one-of-K vector of features

preprocessing.OneHotEncoder for one feature after
another

or sklearn.feature extraction.DictVectorizer for the
whole dataset at once, two steps: fit transform and
transform

Feature binarization

thresholding numerical features to get boolean values

preprocessing.Binarizer

Feature Discretization

converting continuous features to discrete features

Typically data is discretized into partitions of K equal
lengths/width (equal intervals) or K% of the total data (equal
frequencies).

? in sklearn?

Dataset standardization

some estimators might work badly if distributions of values of
different features are radically different (e.g. in the order of
magnitude)

solution: transform the data by moving the center (toward
zero mean) and scaling (towards unit variance)

preprocessing.scale

Vector normalization

Normalization is the process of scaling individual samples to
have unit norm.

solution: transform the data by moving the center (toward
zero mean) and scaling (towards unit variance)

preprocessing.normalize

Feature selection

Scikit-learn exposes feature selection routines as objects that
implement the transform method:

SelectKBest removes all but the k highest scoring features

SelectPercentile removes all but a user-specified highest
scoring percentile of features

using common univariate statistical tests for each feature:
false positive rate SelectFpr, false discovery rate SelectFdr, or
family wise error SelectFwe.

These objects take as input a scoring function that returns
univariate p-values:

For regression: f regression

For classification: chi2 or f classif

