Feature Engineering
in Machine Learning

Zden&k Zabokrtsky

Institute of Formal and Applied Linguistics,
Charles University in Prague

Used resources

http://www.cs.princeton.edu/courses/archive/spring10/cos424 /slides/18-feat.pdf
http://stackoverflow.com/questions/2674430/how-to-engineer-features-for-machine-learning
https://facwiki.cs.byu.edu/cs479/index.php/Feature_engineering

documentation of scikit-learn

wikipedia

Human's role when applying Machine Learning

@ Machine learning provides you with extremely powerful tools
for decision making ...

@ ... but until a breakthrough in Al, the role of the developer’s
decision will still be crucial.
Your responsibility:

@ setting up the correct problem to be optimized (it's far from
straightforward in the real world)

@ choosing a model
@ choosing a learning algorithm (or a family of algorithms)
e finding relevant data

@ designing features, feature representation, feature selection . ..

a feature - a piece of information that is potentially useful for
prediction

Feature engineering

o feature engineering - not a formally defined term, just a
vaguely agreed space of tasks related to designing feature sets
for ML applications

@ two components:

o first, understanding the properties of the task you're trying to
solve and how they might interact with the strengths and
limitations of the model you are going to use

e second, experimental work were you test your expectations and
find out what actually works and what doesn't.

Feature engineering in real life

Typically a cycle
@ design a set of features

@ run an experiment and analyze the results on a validation
dataset

© change the feature set
Q gotostepl

Don't expect any elegant answers today.

Causes of feature explosion

o Feature templates: When designing a feature set, you
usually quickly turn from coding individual features (such as
"this word is predeced by a preposition and a determiner’) to
implementing feature templates (such as 'the two preceding
POSs are X a Y')

@ Feature combination: linear models cannot handle some
dependencies between features (e.g. XOR with binary
operations, polynomial dependencies with real-valued
features) - feature combinations might work better.

@ Both lead to quick growth of the number of features.

Stop the explosion

There must be some limits, because

@ Given the limited size of training data, the number of features
that can be efficiently used is hardly unbounded (overfitting).

@ Sooner or later speed becomes a problem.

Possible solutions to avoid the explosion

o feature selection
@ regularization

@ kernels

Feature selection

@ Central assumption: we can identify features that are
redundant or irrelevant.

@ Let's just use the best-working subset: arg maxs acc(f), where
acc(f) evaluates prediction quality on held-out data

@ Rings a bell? Yes, there's a set-of-all-subsets problem (NP
hard), exhaustive search clearly intractable.

@ (The former implicitly used e.g. in top-down-induced of
decision trees.)

@ A side effect of feature reduction: improved model
interpretability.

Feature selection

Basic approaches:

@ wrapper - search through the space of subsets, train a model

for current subset, evaluate it on held-out data, iterate...
simple greedy search heuristics:

o forward selection - start with an empty set, gradually add the
“strongest” features

o backward selection - start with the full set, gradually remove
the “weakest" features

computationally expensive
o filter - use N most promissing features according to ranking
resulting from a proxy measure, e.g. from
e mutual information
e Pearson correlation coefficient
@ embedded methods - feature selection is a part of model
construction

Regularisation

regularisation = introducing penalty for complexity
the more features matter in the model, the bigger complexity

@ in other words, try to concentrate the weight mass, don't
scatter it too much

application of Occam’s razor: the model should be simple

Bayesian view: regularization = imposing this prior knowledge
(“the world is simple”) on parameters

Regularisation

In practice, regularisation is enforced by adding a factor that has
high values for complex parameter settings to the cost function,
typically to negative log-likelihood:

cost(f) = —I(f) + regularizer(f)

Lo norm: ... + Acount(w;j # 0) - minimize the number of
features with non-zero weight, the less the better

@ Ly norm: ...+ A|lw| - minimize the sum of all weights

@ Ly norm: ...+ Al|w|| - minimize the lenght of the weight
vector

@ Ly norm: ... —i—)\\/m

o L

Experimenting with features in scikit-learn

Encoding categorical features

Turning (a dictionary of)) categorical features to a fixed-lenght
vector:

@ estimators can be fed only with numbers, not with strings
@ turn a categorical feature to one-of-K vector of features

@ preprocessing.0OneHotEncoder for one feature after
another

@ or sklearn.feature_extraction.DictVectorizer for the
whole dataset at once, two steps: fit_transform and
transform

Feature binarization

@ thresholding numerical features to get boolean values

@ preprocessing.Binarizer

Feature Discretization

@ converting continuous features to discrete features

@ Typically data is discretized into partitions of K equal
lengths/width (equal intervals) or K% of the total data (equal
frequencies).

@ 7 in sklearn?

Dataset standardization

@ some estimators might work badly if distributions of values of
different features are radically different (e.g. in the order of
magnitude)

@ solution: transform the data by moving the center (toward
zero mean) and scaling (towards unit variance)

@ preprocessing.scale

Vector normalization

@ Normalization is the process of scaling individual samples to
have unit norm.

@ solution: transform the data by moving the center (toward
zero mean) and scaling (towards unit variance)

@ preprocessing.normalize

Feature selection

Scikit-learn exposes feature selection routines as objects that
implement the transform method:
@ SelectKBest removes all but the k highest scoring features

@ SelectPercentile removes all but a user-specified highest
scoring percentile of features

@ using common univariate statistical tests for each feature:
false positive rate SelectFpr, false discovery rate SelectFdr, or
family wise error SelectFwe.

These objects take as input a scoring function that returns
univariate p-values:
@ For regression: f_regression

@ For classification: chi2 or f_classif

