Assignment 1:
 Word-alignment IBM Model1 using Gibbs sampling

1 Task definition

Download the English-Czech sentence-aligned corpus english-czech.tsv from the course web pages. Your task is to infer a word-alignment, where each English word is aligned with just one Czech word. A Czech word can be aligned with zero, one, or more English words.

Figure 1: English-to-Czech asymetric word-alignment

Implement the IBM Model1, which models a probability of an aligned English word e_{i} conditioned by a Czech word c_{j}. Assume a categorical distribution

$$
p\left(e_{i} \mid c_{j}\right) \sim \operatorname{Categorical}\left(\theta^{(c)}\right)
$$

For a model with $|C|$ possible Czech words, each of the translation distributions $\theta^{(c)}$ has $|E|$ components. Assume a symmetric Dirichlet prior for the distributions $\theta^{(c)}$.

$$
\theta^{(c)} \sim \operatorname{Dirichlet}(\boldsymbol{\alpha}), \quad \boldsymbol{\alpha}=(\alpha, \ldots, \alpha)
$$

2 Gibbs sampling

2.1 Initialization

At the beginning, initialize the word alignment randomly. Align each English word in the corpus with a randomly selected word from the respective Czech sentence.

2.2 Sampling

Go through all the English words in a random order. For each such word e_{i} :

1. Compute the alignment probabilities for all possible Czech counterparts $c_{j} \in\left\{c_{1} \ldots c_{n}\right\}$, based on all other alignment links that are currently in the corpus. Let's denote them as D_{-i}. The predictive probability for a new alignment link $\left[e_{i}, c_{j}\right]$ is computed as follows:

$$
p\left(\left[e_{i}, c_{j}\right] \mid D_{-i}\right)=\int p\left(e_{i} \mid c_{j}, \theta\right) p\left(\theta \mid D_{-i}\right) d \theta=\frac{\operatorname{count}\left(\left[e_{i}, c_{j}\right]\right)+\alpha}{\operatorname{count}\left(\left[*, c_{j}\right]\right)+\alpha|E|},
$$

where $\operatorname{count}\left(\left[e_{i}, c_{j}\right]\right)$ is the number of alignment links between the words e_{i} and c_{j} in the data $D_{-i}, \operatorname{count}\left(\left[*, c_{j}\right]\right)$ is number of alignment links going from the words c_{j} in D_{-i}, and $|E|$ is a number of distinct English words.
2. Choose one Czech word c_{j} randomly according to the probability distribution $p\left(\left[e_{i}, c_{j}\right] \mid D_{-i}\right)$ and change the alignment link of e_{i} to c_{j}. Note that the newly chosen word can be the same as before.

Repeat the process in 20 iterations (20 passes through the data).

2.3 Results

- Display the current word-alignment after the 20 th iteration in a suitable format, for example

- Based on the counts collected on the last 10 iterations, generate the English-Czech dictionary with the word pairs sorted according to $p\left(e_{i} \mid c_{j}\right)$. Do not include Czech words that occure less than five times in the data.
- Try different values of α. How does it affect the inference? What happens if $\alpha=0$?
- Suggest a better prior distribution than symmetric. For example, boost the probability of alignment links between the equal words (e.g. proper names or numbers).

