Perl, continuation

e%Zabo%

Contents:

- intro to functional programming in Perl|
- references

- locale

- POD (plain old documentation)
- intro to modules

F‘ Functional programming

computation as evaluation functions
avoid states

higher order functions: function takes another function
as an argument

one of the programming paradigms, contrasting
imperative programming style

in Perl: the actual solution is procedural, even though it a
simulates functional solution

good candidates for FP style: sorting, filtering, array
transformations (no iteration code needed)

bad candidates for FP: functions with side effects

\‘

i! Array transformations: map

B Returns an array in which each element underwent a
transformation

map {BLOCK} @original array

. " Example:

print (join “ %, map { $ **2 } (1..10));

=

| o List selection: grep

Returns an array of elements which fulfil certain condition
(similarly to unix grep)

grep {BLOCK} (@original array;

Example:
print (join “ %, grep {$ ** 2 > 50} (1..10);

e 3§

E’ List sorting: sort

¥ Sorting array elements according to a sorting function
— default lexicographic sort:

sort (@array

— customized sort:
sort {COMPARING CODE} (@array
* predefined variables $a and $b

® Example:

print joiln ,
sort { abs(Sa) <=> abs(Sb) } (-5..5);

e 3§

i’ Use "pipelines” (like on
! m command line)

map {“The price of § 1is Sprice{$ }." }
sort {S$price{Sb}<=>Sprice{sal}

grep {Sprice{S } > 10}
keys %Sprice;

" Exercise 1. for a given sentence, print its words longer
than three letters sorted according to their length; print
its length after each word

e 3§

E' Best practices

" Avoid changing $_ in map/grep/sort
" Avoid using variables called $a and $b

EE' References in Perl

" When you need references in Perl|

— Complex data structures (arrays of arrays, hashes of
arrays, cyclic structures etc.)

— Passing arguments to functions

B Reference is a scalar that refers to another scalar, hash
or array, or subroutine

" type of reference:
— ref($reference);
— values SCALAR, HASH, ARRAY, CODE, REF, GLOB

e 3§

=

Creating references

® two ways to create a reference:
— reference to an existing variable using backslash:

*my $h ref = \%myhash;

*my @a ref = \Q@myarray;

— creating an anonymous structure
* anonymous array:
my Sa ref = [1,2,3,4];
* anonymous hash:
my Sh ref = {keyl=>10, key2=>20};
* anonymous function:
my Sc ref = sub {CODE};

e 3§

.%' Dereferencing

" tfwo notations:
— 1) use the reference as if it was the variable's name

my @array = @Sarray ref;

my %hash = %Shash ref;

my $scal = $$scalar ref;

my Sarray elem = ${Sarray ref}[5];

my Shash value = ${Shash ref}{Skey};
— 2) arrow operator

Selement = Sarray ref->[1];

$value = Shash ref->{Skey};

" Exercise 2:

— Create a function that takes a hash reference as its
- argument and prints all its key-value pairs;
e 3§

ii' Best practices for
! m|references

¥ use anonymous hashes to pass arguments to functions
with long or variable set of arguments

" if possible, dereference with arrows (not with $%...)
¥ use weaken to prevent circular data (memory leaks)

Perl locale

5 recall locale: set of parameters specifying user's
language and country because of

— lexicographic ordering
— character classes in regular expressions
— case-modification functions, number formatting, etc.

use locale;

use POSIX gw(locale h);

setlocale (LC ALL,gw(en US));

print ((join " ", sort gw(cihla chleba)) ."\n");
setlocale LC ALL,qgw(cs Cz.UTFES8);

print ((join " ", sort gw(cihla chleba)) ."\n");

POD

Plain Old Documentation is used for most documentation
in Perl world

very simple markup language for writing script/module’s
documentation directly into the Perl code

available formatters to plain text, html, man pages etc.

POD directive comes at the beginning of a line and starts
with ‘=", such as =headl, =head?2, zitem

see a sample at

http://en.wikipedia.org/wiki/Plain_Old_Documentation

E’ POD best practices

" use standard templates (boilerplates) for POD: NAME,
VERSION, SYNOPSIS, DESCRIPTION, ..., AUTHOR

" you can use module-starter

" place POD at a single place in the file, if possible at its
end

Per|l modules

Perl module = a self-contained piece of reusable code,
can be included into other Perl scripts or modules

in Perl, package=module
two purposes of modules in Perl

— modularity, encapsulation: modules allow to have
separate spaces for variable and function names, so
that they are not mixed on a single heap

— OOP: modules correspond to classes
each module has a name; the name should be unique
all variables and functions belong to some package

— either to the package main
— or in a package defined by the keyword package

Perl modules, cont.

typically, one module corresponds to one .pm file,

modules are searched for in the directories listed in the
PERL5LIB environment variable (separated by colon)

alternatively, you can
use 1lib '/path'; unshift @INC, '/path';

modules can be nested: MainModule: :NestedModule
nesting is represented by subdirectories:
Module/NestedModule.pm

in OO Perl, if modules correspond to classes, then
nesting can correspond to class hierarchy

Perl modules, simple example

" module file Greetings.pm
package Greetings;

sub hi {print “Hi!\n”};

¥ usage:

S perl -e 'use Greetings; Greetings::hi;'

" modules can exist without being in separate files
perl -e 'package A;sub hi{print"hi\n"}; package B; A::hi’

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

