
Character encoding

Zdeněk Žabokrtský, Rudolf Rosa

Institute of Formal and Applied Linguistics
Charles University, Prague

NPFL092 Technology for Natural Language Processing

Zdeněk Žabokrtský, Rudolf Rosa (ÚFAL) Character encoding Techno4NLP 1 / 19



Outline

ASCII

8-bit extensions

Unicode

related topics:
I end of line
I byte-order mark
I alternative solution to character encoding – escaping
I locale

Zdeněk Žabokrtský, Rudolf Rosa (ÚFAL) Character encoding Techno4NLP 2 / 19



Exercise

a warm-up exercise:

find pieces of text from the following languages: Czech, French,
German, Spanish, Greek, Icelandic, Russian (at least a few paras for
each)

store them into plain text files

count how many different signs in total appear in the files

try to solve it using only a bash command pipeline (hint: you may use
e.g. ’grep -o .’ or sed ’s/./&\n/g’)

Zdeněk Žabokrtský, Rudolf Rosa (ÚFAL) Character encoding Techno4NLP 3 / 19



Problem statement

Today’s computers use binary digits

No natural relation between numbers and characters of an alphabet
=⇒ convention needed

No convention =⇒ chaos

Too many conventions =⇒ chaos

(recall A. S. Tanenbaum: The nice thing about standards is that you
have so many to choose from.)

Zdeněk Žabokrtský, Rudolf Rosa (ÚFAL) Character encoding Techno4NLP 4 / 19



Basic notions – Character

a character

an abstract (Platonic) entity

no numerical representation nor graphical form

e.g. “capital A with grave accent”

Zdeněk Žabokrtský, Rudolf Rosa (ÚFAL) Character encoding Techno4NLP 5 / 19



Basic notions – Character set

a character set (or a character repertoire)

a set of logically distinct characters

relevant for a certain purpose (e.g., used in a given language or in
group of languages)

not neccessarily related to computers

a coded character set:

a unique number assigned to each character: code point

relevant for a certain purpose (e.g., used in a given language or in
group of languages)

not neccessarily related to computers

Note: the charset specification in HTML headers actually stands for an
encoding, not for a character set!

Zdeněk Žabokrtský, Rudolf Rosa (ÚFAL) Character encoding Techno4NLP 6 / 19



Basic notions – Glyph and Font

a glyph – a visual representation of a character

a font – a set of glyphs of characters

Zdeněk Žabokrtský, Rudolf Rosa (ÚFAL) Character encoding Techno4NLP 7 / 19



Basic notions – Character encoding

character encoding

the way how (coded) characters are mapped to (sequences of) bytes

both in the declarative and procedural sense

Zdeněk Žabokrtský, Rudolf Rosa (ÚFAL) Character encoding Techno4NLP 8 / 19



ASCII

At the beginning there was a word, and the word was encoded in 7-bit
ASCII. (well, if we ignore the history before 1950’s)

ASCII = American Standard Code for Information Interchange
I 7 bits (0–127)
I 0–31,127: control characters (Escape, Line Feed)
I 32–126: space, numerals, upper and lower case characters

Zdeněk Žabokrtský, Rudolf Rosa (ÚFAL) Character encoding Techno4NLP 9 / 19



Exercise

Given that A’s code point in ASCII is 65, and a’s code point is 97.

What is the binary representation of ’A’ in ASCII? (and what’s its
hexadecimal representation)

What is the binary representation of ’a’ in ASCII?

Is it clear now why there are the special characters inserted between upper
and lower case letters?

Zdeněk Žabokrtský, Rudolf Rosa (ÚFAL) Character encoding Techno4NLP 10 / 19



ASCII, cont.

ASCII’s main advantage – simplicity: one character – one byte

ASCII’s main disadvantage – no way to represent national alphabets

Anyway, ASCII is one of the most successful software standards ever
developed!

Zdeněk Žabokrtský, Rudolf Rosa (ÚFAL) Character encoding Techno4NLP 11 / 19



Intermezzo 1: how to represent the end of line

“newline” == “end of line” == “EOL”

ASCII symbols LF (line feed, 0x0A) and/or CR (carriage return,
0x0D), depending on the operation system:

I LF is used in UNIX systems
I CR+LF used in Microsoft Windows
I CR used in Mac OS

Zdeněk Žabokrtský, Rudolf Rosa (ÚFAL) Character encoding Techno4NLP 12 / 19



8-bit encodings

Supersets of ASCII, using octets 128–255 (still keeping the 1
character – 1 byte relation)

International Standard Organisation: ISO 8859 (1980’s)

West European Languages: ISO 8859-1 (ISO Latin 1)

For Czech and other Central/East European languages: anarchy
I ISO 8859-2 (ISO Latin 2)
I Windows 1250
I KOI-8
I Brothers Kamenický
I other proprietary “standards” by IBM, Apple etc.

Zdeněk Žabokrtský, Rudolf Rosa (ÚFAL) Character encoding Techno4NLP 13 / 19



Unicode

The Unicode Consortium (1991)

the Unicode standard defined as ISO 40646

nowadays: all the world’s living languages

highly different writing systems: Arabic, Sanscrit, Chinese, Japanese,
Korean

ambition: 250 writing systems for hundreds of languages

Unicode assigns each character a unique code point

example: “LATIN CAPITAL LETTER A WITH ACUTE” goes to
U+00C1

Unicode defines a character set as well as several encodings

Zdeněk Žabokrtský, Rudolf Rosa (ÚFAL) Character encoding Techno4NLP 14 / 19



Common Unicode encodings

UTF-32
I 4 bytes for any character

UTF-16
I 2 bytes for each character in Basic Multilingual Plane
I other characters 4 bytes

UTF-8
I 1-6 bytes per character

Zdeněk Žabokrtský, Rudolf Rosa (ÚFAL) Character encoding Techno4NLP 15 / 19



UTF-8 and ASCII

a killer feature of UTF-8: an ASCII-encoded text is encoded in UTF-8
at the same time!

the actual solution:
I the number of leading 1’s in the first byte determines the number of

bytes in the following way:
F zero ones (i.e., 0xxxxxxx): a single byte needed for the character (i.e.,

identical with ASCII)
F two or more ones: the total number of bytes needed for the character

I continuation bytes: 10xxxxxx

a reasonable space-time trade-off

but above all: this trick radically facilitated the spread of Unicode

We are lucky with Czech: characters of the Czech alphabet consume
at most 2 bytes

Zdeněk Žabokrtský, Rudolf Rosa (ÚFAL) Character encoding Techno4NLP 16 / 19



Intermezzo 2: Byte order mark (BOM)

BOM = a Unicode character: U+FEFF

a special Unicode character, possibly located at the very beginning of
a text stream

optional

used for several different purposes:
I specifies byte order – endianess (little or big endian)
I specifies (with a high level of confidence) that the text stream is

encoded in one of the Unicode encodings
I distinguishes Unicode encodings

BOM in the individual encodings:
I UTF-8: 0xEF,0xBB,0xBF
I UTF-16: 0xFE followed by 0xFF for big endian, the other way round

for little endian
I UTF-32 – rarely used

Zdeněk Žabokrtský, Rudolf Rosa (ÚFAL) Character encoding Techno4NLP 17 / 19



Exercise

using any text editor, store the Czech word žlutý into a text file in
UTF-8

using the iconv command, convert this file into four files
corresponding the these encodings:

I cp1250
I iso-8859-2
I utf-16
I utf-32

look at the size of these 5 files (using e.g. ls *) and explain all size
differences

use hexdump to show the hexadecimal (“encoding-less”) content of
the files

Zdeněk Žabokrtský, Rudolf Rosa (ÚFAL) Character encoding Techno4NLP 18 / 19



Some myths and misunderstandings about character
encoding

The following statements are wrong:

ASCII is an 8-bit encoding.

Unicode is a character encoding.

Unicode can only support 65,536 characters.

UTF-16 encodes all characters with 2 bytes.

Case mappings are 1-1.

This is just a plain text file, no encoding.

This file is encoded in Unicode.

It is the filesystem who knows the encoding of this file.

File encoding can be absolutely reliably detected by this utility.

Zdeněk Žabokrtský, Rudolf Rosa (ÚFAL) Character encoding Techno4NLP 19 / 19


