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Abstract

We describe a transition-based, non-projective dependency parser which uses

a neural network classifier for prediction and requires no feature engineering.

We propose a new, search-based oracle, which improves parsing accuracy

similarly to a dynamic oracle, but is applicable to any transition system, such

as the fully non-projective swap system, contrary to dynamic oracles, which

are specific for each transition system and usually quite complex. The parser

has excellent parsing speed, compact models, and achieves high accuracy

without requiring any additional resources such as raw corpora. We tested it

on all 37 treebanks of the Universal Dependencies project. The C++ imple-

mentation of the parser is being released as an open-source tool.

1 Introduction

Transition-based systems were proposed by Yamada and Matsumoto [28] and Nivre

[16]. Greedy transition-based parsers are very efficient while achieving reasonably

high accuracy, allowing to parse large volumes of data.1

An oracle is used at training time to map parser configurations to optimal tran-

sitions given a gold tree. A classifier is then trained to emulate the oracle predic-

tions.

Initially, transition-based parsers used static oracles, which are defined only

for configurations from which the complete gold tree can be reached. Recently,

Goldberg and Nivre [9, 10], Goldberg et al. [11], Gómez-Rodríguez et al. [13] and

Gómez-Rodríguez and Fernández-González [12] improved accuracy of transition-

based parsers by utilizing a dynamic oracle, which is defined for any parser config-

uration and predicts transitions leading to a tree most similar to the gold one. Such

a dynamic oracle affects only the training speed, not parsing speed. However, a

1Beam search can improve parsing accuracy but at a substantially lower speed, cf. e.g. Zhang

and Nivre [31].



dynamic oracle is usually more complicated than a static one; for example, the dy-

namic oracle of Gómez-Rodríguez et al. [13] for a restricted non-projective system

has O(n8) complexity.

In this paper we consider a new search-based oracle, which resembles the dy-

namic oracle in terms of predicting transitions from any parser configuration. How-

ever, a search-based oracle utilizes only the classifier being trained, which makes it

applicable to any transition system with a static oracle only. Still, parsing accuracy

of a search-based oracle is comparable to the dynamic oracle.

Inspired by recent success of distributed word representations in NLP, e.g. in

POS tagging (Collobert et al. [3]), machine translation (Devlin et al. [6]), con-

stituency parsing Socher et al. [26] and projective dependency parsing (Chen and

Manning [2]), we train a neural network (NN) classifier predicting transitions in a

transition-based parser. We utilize the search-based oracle allowing the swap oper-

ation and thus more accurate fully non-projective parsing. We train our parser on

all 37 Universal Dependencies (UD) treebanks version 1.2, showing that high ac-

curacy can be achieved by the new search-based oracle and using a neural network

classifier even without additional raw corpora.

The main contributions of this work are:

• a novel search-based oracle which can be used with any transition system,

improving the parsing results considerably, comparably to using a dynamic

oracle (Sect. 4):
– notably, the search-based oracle can be applied to the non-projective

transition system with the swap operation, which enables fully non-

projective parsing;

– the search-based oracle can be used even on top of a dynamic oracle,

further improving accuracy;

• a NN-based parser with better accuracy for most of the UD treebanks and

substantially improved speed for all of them, while keeping models compact

(Sect. 3);

• an open-source C++ parser implementation2 and parsing models for all 37

treebanks of Universal Dependencies 1.2 [21].

2 Transition-based Dependency Parsing

Transition-based dependency parsing computes the dependency tree for a sentence

by starting in an initial configuration and performing a sequence of transitions

reaching some terminal configuration.

One of the most popular transition systems is the projective stack-based arc-

standard system by Nivre [17], which we denote as stack. This system employs

three types of transitions: left_arcl and right_arcl , which add a dependency arc

with label l, and shift, which adds the next input word.

There are also several transition systems that allow parsing of non-projective

trees. Attardi [1] introduced transitions to the stack system adding dependency

2http://hdl.handle.net/11234/1-1573

http://hdl.handle.net/11234/1-1573


arcs between non-adjacent subtrees. Here we consider a restriction of the original

Attardi parser described for example in Gómez-Rodríguez et al. [13], which we

denote as arc2. The arc2 system extends the stack system by adding transitions

left_arc_2l and right_arc_2l which add dependency arcs between non-adjacent

nodes. Although only some non-projective trees can be obtained by such tran-

sitions, Attardi in [1] notes that the arc2 system is sufficient to handle almost all

cases of non-projectivity in the training data.

The truly non-projective transition system which we call swapwas proposed by

Nivre [18]. It extends the stack system by adding the swap transition for reorder-

ing two nodes. Nivre et al. [20] show that any non-projective tree can be reached

while keeping the expected time linear.

3 Neural Network Classifier

The architecture of the neural network classifier is similar to that described in Chen

and Manning [2].

The input to the network consists of several nodes representing words in the

tree being built. Following Zhang and Nivre [31] and Chen and Manning [2], we

use a rich set of up to 18 nodes as input: top 3 nodes on the stack, top 3 nodes on

the buffer, the first and second leftmost/rightmost children of the top 2 nodes on

the stack, and leftmost of leftmost and rightmost of rightmost children of the top 2

nodes on the stack.

Each node is represented using distributed representations of its form, its POS

tag and its arc label; the latter only if it has already been assigned.

In the Universal Dependency treebanks, there are three token fields connected

to part-of-speech: UPOSTAG (universal part-of-speech tag), XPOSTAG (language-

specific part-of-speech tag, which is not present in many treebanks) and FEATS

(list of morphological features further refining the universal part-of-speech tag).

We use both UPOSTAG and FEATS fields, which improves results considerably,

compared to using only UPOSTAG.

The input layer is connected to a hidden layer with tanh activation. The output

layer has a node for every transition and uses softmax activation.

3.1 Distributed Word Representations

POS-tag, FEATS and arc-label embeddings are initialized randomly and trained

together with the network. Form embeddings are pre-trained using word2vec

(Mikolov et al. [14]), employing the Skip-gram model with negative sampling.3

We pre-train the embeddings only on the treebank data, to show that the result-

ing parser works with high accuracy without additional resources, which might be

hard to obtain for some languages. Because all form embeddings are currently in

3The exact options for word2vec were the following: -cbow 0 -size 50 -window 10

-negative 5 -hs 0 -sample 1e-1 -iter 15 -min-count 2



the training data, we train them further together with the network, yielding a small

accuracy improvement.

All forms appearing only once in the training data are replaced by a unique

unknown-word token. Its embedding is then used for OOVs during parsing.

3.2 Training the Classifier

We train the neural network by stochastic gradient descent (Robbins and Monro

[23]) with mini-batches of size 10, minimizing cross-entropy loss with L2-regular-

ization. We employ exponential learning-rate decay. For all treebanks, we use

form embeddings of dimension 50, POS tag, FEATS and arc label embeddings of

dimension 20, and a 200-node hidden layer. Other hyperparameters4 are deter-

mined based on the development portion of the treebanks and the best combination

is used.

We would like to note that although we tried several advanced neural network

training techniques, notably AdaGrad (Duchi et al. [7]), dropout (Srivastava et al.

[27]), cube activation function (reported to improve performance by Chen and

Manning [2]), or AdaDelta (Zeiler [29]), none helped and the best accuracy was

obtained by the basic mini-batched SGD.

3.3 Improving Classification Speed

We have used several techniques to improve the transition classification speed,

which in turn directly determines parsing speed. Similar to Devlin et al. [6], we

pre-computed the hidden layer increments for all embeddings and all input layer

positions. We also compute the tanh using table lookup (except during training in

order to obtain accurate gradients) and we do not normalize the output layer during

parsing.

4 Search-based Oracle

When training the classifier using a static oracle, the same sequence of transitions

is always used for every sentence. In other words, the classifier is trained only on

transition sequences which do not contain any incorrect transitions. If the classifier

is then used to parse a sentence and makes an error, it is difficult for it to recover

from this error, because the classifier never encountered such situation in training

data.

The dynamic oracle (Goldberg and Nivre [9]) improves the situation by being

able to provide the best transition from an arbitrary configuration, even if some

incorrect transitions have already been performed. When training with a dynamic

oracle, usually an exploration policy parametrized by k and p is used to determine

4To be specific, the hyperparameters are: number of training iterations (between 5 and 10), ini-

tial learning rate (between 0.01 and 0.02), final learning rate (between 0.001 and 0.005) and L2-

regularization (between 0.1 and 0.5).



which transition to follow: during the first k iterations the oracle transition is always

chosen (as with the static oracle), but later the oracle transition is chosen only

with probability 1− p, using the (possibly incorrect) classifier prediction otherwise.

Consequently, the classifier is being trained on sequences of transitions which it

predicts itself.

The main idea behind our search-based oracle is to approximate the dynamic

oracle by the current state of the classifier being trained. This approach is inspired

by the Searn algorithm of Daumé III et al. [4], a method for reducing error propa-

gation during structured prediction.

Specifically, when determining the transition to follow for a given parser con-

figuration with the search-based oracle, we perform every applicable transition in

sequence and for such transition we use the classifier being trained to parse the rest

of the tree (by following the predicted transition in every step). We then choose

such transition from the original configuration which results in a dependency tree

with the highest attachment score.

As many transitions differ only in the label of the arc being added, to improve

oracle speed, we employ the following heuristic: when choosing a transition to fol-

low, we consider only those arc-adding transitions that assign the label appearing

in the gold tree. This effectively reduces the number of possible transitions from

tens to at most five (e.g., from 96 to 4 transitions in the swap system for English).

When training with the search-based oracle, we have to make sure that the

original oracle is employed frequently enough, because the original oracle is the

only way of utilizing gold data. Therefore, unlike with the dynamic oracle, where

the exploration policy alternates between the dynamic oracle prediction and clas-

sifier prediction on every transition, we use the following policy: after training on

interval sentences with the static oracle, we train one sentence with the search-

based oracle. The interval becomes another hyperparameter of our system tuned

on the development part of the treebank (we consider interval between 8 and 10).

The training time of a search-based oracle is naturally higher than the training

time of a static oracle, because one prediction of a search-based oracle takes time

linear in the size of the sentence being parsed. For the values of interval used, the

training time of a search-based oracle is 2-3 times worse than training time of a

static oracle alone. This is comparable to a dynamic oracle for the stack system,

which is reported to have training time slower by a factor of 2.3 when using a

dynamic oracle instead of a static one. Also note that this slowdown applies only

to training, parsing speed of the trained classifier is exactly the same for static,

search-based and dynamic oracles.

Interestingly, our search-based oracle can be combined not only with a static

oracle, but also with a dynamic oracle, yielding accuracy improvements for the

dynamic oracle, too.



5 Experiments

We evaluate parser accuracy on treebanks from the Universal Dependencies project,

which seeks to develop cross-linguistically consistent treebank annotation for many

languages. The annotation scheme is based on the universal Stanford dependen-

cies (de Marneffe et al. [5]), the Google universal part-of-speech tags (Petrov et al.

[22]), and the Interset interlingua for morphosyntactic features (Zeman [30]).

Namely, we use 37 dependency treebanks of Universal Dependencies 1.2 [21].

Four basic statistics of each treebank are presented in columns 2 and 3 of Table 1.

The results of our parser with the stack, swap and arc2 systems are presented

in the rest of Table 1. We report unlabeled attachment scores (UAS) and labeled

attachment scores (LAS), excluding punctuation, computed using MaltEval (Nils-

son and Nivre [15]). We show the results with a static oracle only and using our

search-based oracle. For comparison, we also present results of a dynamic oracle

(we implemented the dynamic oracle for the stack system from Goldberg et al.

[11] and used it with the same classifier as the search-based oracle) and results of

a search-based oracle used on top of a dynamic one.5

We also report results of MaltParser (Nivre et al. [19]), a greedy transition-

based parser using liblinear (Fan et al. [8]) for optimization. We used MaltParser

version 1.8.1. with default options and feature templates, changing the transition

system (using stackproj and stacklazy as stack and swap, respectively), num-

ber of iterations (computed using treebank size), and passing a concatenation of

UPOSTAG and FEATS fields as POS tags to use. We used MaltParser because

it is a transition-based parser that implements many transition systems (including

non-projective) which we wanted to compare with, and is very fast. It is therefore

similar to our parser, in contrast to a slow parser achieving higher accuracy.

We also report parsing speed and model size of the swap parser. Parsing speed

was measured on an Intel Pentium G850 2.9GHz CPU with 4GB RAM and it does

not include model loading time.

5.1 Results

Comparing our static-oracle-only parser to MaltParser, our parser has better accu-

racy, achieving on average 6.2% relative error reduction in UAS and 6.7% in LAS.

Our parser produces models on average half the size of MaltParser’s (with models

4-5 times smaller for Czech, Ancient Greek, and Latin), and it is faster (20-30k

words/s, on average 3.6 times faster than MaltParser).

The search-based oracle parser is clearly superior to the static oracle parser,

achieving additional 4.3% relative error reduction in UAS and 3.6% relative error

reduction in LAS.

5We did not implement any other dynamic oracle, because the dynamic oracle for the arc2 system

is very complicated with its O(n8) complexity, no dynamic oracle for the swap system is known to

the best of our knowledge, and the recent dynamic oracle for the fully non-projective Covington

parser of Gómez-Rodríguez and Fernández-González [12] uses a quite different transition system.



Language

Size Non-proj. Static oracle Search-based oracle DynO SB+DO MaltParser

Words
Non-proj. Stack Swap Arc2 Stack Swap Arc2 Stack Stack Stack Swap

edges UAS UAS UAS UAS UAS UAS UAS UAS UAS UAS

Sentences
Non-proj. Stack Swap Arc2 Stack Swap Arc2 Stack Stack Stack Swap

sentences LAS LAS LAS LAS LAS LAS LAS LAS LAS LAS

Ancient 244 993 9.78% 58.6 66.2 66.5 64.2 69.3 68.5 66.4 67.7 55.1 65.3

Greek 16 221 63.22% 53.0 60.6 60.9 58.5 63.9 62.8 60.5 62.0 49.4 59.4

Ancient 206 966 5.95% 72.3 75.7 74.8 74.4 76.1 75.5 75.8 75.9 69.7 73.4

Greek–PROIEL 16 633 39.48% 67.0 70.6 69.6 69.2 71.3 70.5 70.7 71.0 64.5 68.7

Arabic
282 384 0.33% 79.9 79.8 80.2 80.4 80.6 80.7 78.2 79.4 80.1 79.7

7 664 8.19% 74.6 74.7 75.3 75.5 75.8 75.7 73.4 74.7 74.6 74.3

Basque
121 443 4.95% 77.0 78.3 78.4 78.2 79.2 79.6 79.9 80.6 74.7 77.3

8 993 33.74% 71.9 73.1 73.2 73.5 74.3 74.5 75.2 76.0 68.9 71.5

Bulgarian
156 319 0.21% 90.2 90.7 90.9 91.1 91.2 91.5 90.5 91.2 89.2 89.5

11 138 2.83% 84.8 85.5 85.7 86.0 86.1 86.2 85.3 86.0 83.2 83.6

Croatian
87 765 0.46% 81.1 80.8 80.2 82.1 82.4 81.3 82.7 82.0 77.4 78.5

3 957 7.48% 73.9 73.6 72.5 75.2 75.3 74.4 74.8 74.7 69.7 70.9

Czech
1 506 490 0.93% 86.7 87.9 87.8 87.7 88.0 88.2 87.2 87.5 85.2 86.3

87 913 12.58% 83.2 84.3 84.4 84.3 84.7 84.8 83.8 84.1 81.3 82.4

Danish
100 733 1.97% 81.8 82.5 82.9 82.7 82.8 83.3 82.6 83.3 80.1 81.4

5 512 22.84% 78.0 79.1 79.3 79.2 79.2 80.0 78.8 79.6 75.5 76.8

Dutch
200 654 4.10% 74.6 75.8 76.2 76.0 77.5 77.1 76.0 75.7 71.9 75.8

13 735 30.87% 70.8 72.0 71.8 72.0 73.8 73.1 72.1 72.3 67.9 71.2

English
254 830 0.48% 86.7 86.5 86.9 87.4 87.2 87.3 87.3 87.7 86.3 86.5

16 622 4.96% 84.2 83.8 84.2 84.7 84.5 84.5 84.5 84.7 82.9 83.2

Estonian
9 491 0.08% 85.0 85.3 86.0 87.4 86.5 86.3 86.4 86.2 86.4 88.1

1 315 0.61% 81.7 81.9 83.0 83.2 82.8 83.1 83.1 83.0 83.8 85.7

Finnish
181 022 0.74% 80.4 81.2 81.1 81.5 81.7 81.6 82.7 83.5 81.0 80.8

13 581 7.68% 77.0 77.9 77.6 78.2 78.3 78.6 79.2 80.2 76.9 77.0

Finnish–FTB
159 829 1.09% 80.3 80.1 80.0 81.3 81.0 80.4 81.6 82.3 79.6 80.1

18 792 6.78% 77.2 76.9 76.6 78.1 78.0 77.3 78.0 79.1 75.8 76.3

French
401 491 0.83% 84.2 85.0 84.7 85.2 85.5 85.2 84.5 85.0 83.3 83.4

16 446 12.45% 80.4 81.2 81.1 81.5 81.7 81.4 80.6 81.2 78.8 78.8

German
298 242 0.90% 82.3 82.6 83.0 83.3 83.3 83.1 83.2 84.4 81.3 82.2

15 894 12.08% 76.9 77.1 77.6 78.0 78.0 77.6 77.6 78.8 75.2 75.8

Gothic
56 128 3.86% 76.2 76.1 76.2 78.3 77.4 77.9 78.0 78.5 75.2 76.2

5 450 23.85% 70.5 70.4 70.7 72.2 71.4 72.4 72.1 73.0 69.1 70.5

Greek
59 156 1.95% 81.3 81.7 82.5 82.9 82.5 82.9 82.2 82.8 79.0 80.6

2 411 27.87% 78.4 78.4 79.2 79.3 79.1 79.6 79.0 79.8 75.2 77.1

Hebrew
158 855 0.00% 85.1 86.0 85.9 86.0 86.2 86.1 85.6 85.8 83.2 83.1

6 216 0.00% 80.6 81.1 81.3 81.6 81.9 81.4 81.2 81.8 78.5 78.4

Hindi
351 704 0.76% 92.5 93.3 93.0 93.3 93.7 93.6 93.8 93.9 89.4 89.5

16 647 13.60% 89.3 90.0 89.7 90.1 90.5 90.3 90.6 90.6 84.5 84.6

Hungarian
26 538 2.09% 79.9 80.3 79.0 80.4 80.6 81.2 81.3 81.9 78.2 79.1

1 299 25.17% 74.2 74.3 72.9 75.1 75.5 75.6 75.8 77.5 72.7 74.0

Indonesian
121 923 0.13% 83.1 83.1 83.3 83.3 83.3 83.3 82.1 82.4 81.7 81.8

5 593 1.93% 77.8 77.6 78.0 77.9 78.2 77.9 76.7 77.0 75.8 75.9

Irish
23 686 0.81% 74.6 74.2 73.6 75.2 75.2 75.1 74.4 74.6 75.4 73.8

1 020 12.84% 67.4 66.8 66.7 68.1 68.5 67.5 68.0 67.7 67.6 66.4

Italian
271 180 0.32% 90.1 90.0 90.3 90.6 90.6 90.8 89.8 90.6 89.0 88.8

12 677 3.94% 87.7 87.5 87.8 88.0 88.1 88.4 87.3 88.2 86.4 86.2

Japanese–KTC
267 631 0.00% 85.1 85.2 84.9 85.5 85.7 85.7 85.1 85.3 84.2 84.1

9 995 0.00% 75.1 75.0 74.8 75.5 75.3 75.3 75.1 75.2 72.9 73.3

Latin
47 303 7.13% 58.2 57.2 57.9 59.2 59.2 58.3 61.1 60.7 58.1 57.2

3 269 46.22% 49.8 50.4 50.6 51.7 52.0 51.0 53.6 53.9 50.2 50.1

Latin–ITT
259 684 3.45% 77.2 80.5 79.0 77.8 80.8 79.3 79.8 79.5 72.4 76.3

15 295 37.20% 73.8 77.5 75.7 74.6 77.9 76.2 76.5 76.6 68.3 72.3

Latin–PROIEL
165 201 5.22% 73.4 74.3 75.2 74.6 75.2 76.1 76.1 76.6 70.0 72.5

14 982 30.09% 68.3 69.3 70.1 69.5 70.3 71.0 70.8 71.5 64.8 67.7

Norwegian
311 277 0.60% 89.2 89.2 89.7 89.8 90.0 90.1 89.7 90.1 88.9 88.9

20 045 7.70% 86.8 86.8 87.4 87.7 87.7 87.8 87.3 87.8 85.8 86.0

Old Church 57 507 3.71% 81.0 82.6 82.2 82.1 83.3 83.0 82.6 82.8 80.1 82.0

Slavonic 6 346 21.57% 75.4 77.8 76.9 77.0 78.0 77.9 77.5 77.9 75.0 77.2

Persian
152 871 0.38% 83.8 83.1 83.5 84.5 84.2 84.6 84.8 85.0 80.8 80.8

5 997 5.14% 80.2 79.8 80.0 81.1 80.8 81.2 81.3 81.5 77.2 77.2

Polish
83 571 0.04% 88.3 88.7 88.2 89.0 89.0 89.3 89.8 89.5 87.7 87.3

8 227 0.32% 84.1 84.6 83.8 84.8 84.5 85.2 85.5 85.2 83.1 82.8

Portuguese
212 545 1.27% 85.8 87.6 87.5 87.5 88.4 88.1 86.9 87.5 84.5 85.5

9 359 18.44% 82.7 84.6 83.9 84.5 85.4 85.0 83.8 84.3 80.5 81.5

Romanian
12 094 0.89% 75.4 74.5 76.3 76.7 76.9 77.4 75.5 76.3 72.8 73.1

633 11.37% 61.9 60.9 62.1 62.7 63.2 63.2 62.2 62.2 59.5 59.6

Slovenian
140 418 1.11% 86.5 87.3 87.5 87.6 88.9 88.1 88.2 88.2 84.3 85.7

7 996 13.61% 84.5 85.4 85.4 85.8 87.0 86.0 86.1 86.4 81.9 83.4

Spanish
431 587 0.30% 86.8 86.9 87.1 87.6 87.2 87.4 85.7 86.4 85.4 85.2

16 013 6.05% 83.6 83.7 83.7 84.4 84.1 84.0 82.5 83.4 81.2 81.2

Swedish
96 819 0.19% 85.3 85.7 85.7 85.9 86.1 86.1 86.2 86.2 84.7 84.7

6 026 2.77% 81.4 81.9 82.0 82.3 82.5 82.5 82.4 82.4 80.3 80.5

Tamil
9 581 0.29% 75.8 76.3 76.2 76.6 77.1 75.7 78.4 78.0 78.3 78.3

600 2.17% 67.1 68.5 67.5 67.9 68.7 67.3 69.6 69.5 69.7 69.4

Table 1: Parsing accuracy on all treebanks of Universal Dependencies version 1.2.

DynO stands for dynamic oracle, SB+DO for search-based and dynamic oracle.



Language

Size Swap system MaltParser

Words Sentences
Speed Model Speed Model

kw/s MB kw/s MB

Ancient Greek 244 993 16 221 27.7 3.9 9.5 23.2

Ancient Greek–PROIEL 206 966 16 633 25.9 3.4 8.7 21.2

Arabic 282 384 7 664 26.4 4.3 12.0 10.4

Basque 121 443 8 993 26.9 2.6 7.7 7.7

Bulgarian 156 319 11 138 27.5 3.2 10.6 6.8

Croatian 87 765 3 957 23.8 2.7 8.5 7.4

Czech 1 506 490 87 913 22.9 12.1 18.2 56.8

Danish 100 733 5 512 24.3 2.5 9.1 5.6

Dutch 200 654 13 735 26.4 3.2 11.8 9.2

English 254 830 16 622 21.8 3.2 12.5 6.3

Estonian 9 491 1 315 32.7 1.6 2.5 0.8

Finnish 181 022 13 581 22.9 4.1 9.5 14.5

Finnish–FTB 159 829 18 792 31.3 3.4 9.9 11.2

French 401 491 16 446 25.1 4.4 16.8 4.1

German 298 242 15 894 27.2 4.3 15.5 4.9

Gothic 56 128 5 450 27.6 2.0 6.7 6.0

Greek 59 156 2 411 28.3 2.1 6.4 4.5

Hebrew 158 855 6 216 22.7 2.9 11.3 8.1

Hindi 351 704 16 647 27.7 3.2 12.7 9.6

Hungarian 26 538 1 299 20.5 1.8 3.9 3.1

Indonesian 121 923 5 593 28.3 2.7 13.0 2.8

Irish 23 686 1 020 25.7 1.7 3.2 2.6

Italian 271 180 12 677 24.1 3.7 12.9 7.8

Japanese–KTC 267 631 9 995 29.3 1.4 17.7 0.4

Latin 47 303 3 269 28.5 2.1 5.7 7.3

Latin–ITT 259 684 15 295 26.7 2.6 11.3 15.8

Latin–PROIEL 165 201 14 982 25.7 3.1 8.0 18.2

Norwegian 311 277 20 045 25.9 3.6 12.9 7.6

Old Church Slavonic 57 507 6 346 28.1 2.1 6.6 5.6

Persian 152 871 5 997 25.2 2.7 12.2 3.9

Polish 83 571 8 227 30.2 2.5 8.2 6.3

Portuguese 212 545 9 359 27.4 3.4 12.4 8.2

Romanian 12 094 633 21.5 1.6 2.2 1.9

Slovenian 140 418 7 996 27.0 3.1 9.4 9.7

Spanish 431 587 16 013 26.9 4.8 13.6 12.0

Swedish 96 819 6 026 24.9 2.3 8.5 4.3

Tamil 9 581 600 31.1 1.6 2.3 0.9

Table 2: Parsing speed and model size measured on Universal Dependencies 1.2,

using the swap transition system.

The dynamic oracle for the stack system has very similar results to the search-

based oracle for the stack system (relative error reduction compared to static or-

acle is slightly higher for a search-based oracle than for a dynamic oracle), with

the search-based oracle being simpler and applicable for any transition-based sys-

tem. Additionally, the search-based oracle can be used together with the dynamic

oracle, yielding further improvement of 2.2% relative error reduction in UAS and

2.3% relative error reduction in LAS on average over the UD 1.2 dataset.



6 Related Work

A neural network based dependency parser was proposed by Chen and Manning

[2]. The architecture of our parser is quite similar. However, our parser implements

two non-projective transition systems, it utilizes the search-based oracle, and we

evaluate performance on 37 treebanks and without form embeddings computed on

a large raw corpus.

Since parsing is a structured prediction problem, methods developed to han-

dle error propagation during structured prediction like Searn (Daumé III et al. [4]),

SMILe (Ross and Bagnell [24]) or DAgger (Ross et al. [25]) might improve parsing

accuracy. The search-based oracle resembles Searn to some extent, as Searn com-

putes the regret of an action by executing the current policy to gain a full sequence

of predictions and computing its loss, which is similar to how optimal transitions

in the search-based oracle are obtained. On the other hand, the rest of the training

with the search-based oracle can be viewed as an approximation of the DAgger

algorithm, similarly to the dynamic oracle (Goldberg and Nivre [9]).

Search-based oracle used with the swap transition system enables fully non-

projective transition based parsing, for which no dynamic oracle existed for a long

time. Recently, a dynamic oracle with O(n) complexity for fully non-projective

Covington parser was devised by Gómez-Rodríguez and Fernández-González [12].

The Covington parser can be implemented under the transition-based parsing frame-

work (Nivre [17]), but it uses multiple lists of partially processed words and has

quadratic worst-case complexity.

7 Conclusions

We have described a non-projective, neural-network based dependency parser Par-

sito6 employing a novel, efficient search-based oracle. It has been evaluated on

all 37 Universal Dependency treebanks, showing improvements in accuracy and

especially in speed. We are releasing the parser and the models as open-source.7

The new search-based oracle improves parsing accuracy similarly to a dynamic

one (over a static oracle), but it can work with the swap system for non-projective

parsing (or any other transition system). Even when a polynomial-time dynamic

oracle is known, the search-based oracle requires much less effort to implement,

and there is still room for improvement (e.g., in the frequency of its use during

training). Alternatively, the search-based oracle can be used together with the dy-

namic oracle to improve parsing accuracy even further.

Our future work includes utilizing character-level embeddings and/or comput-

ing word embeddings using large additional corpora. Furthermore, we will exper-

iment with beam search for decoding as an option to improve parsing accuracy at

the expense of parsing speed.

6Project homepage: http://ufal.mff.cuni.cz/parsito
7http://hdl.handle.net/11234/1-1573

http://ufal.mff.cuni.cz/parsito
http://hdl.handle.net/11234/1-1573
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