
Deep Learning – NPFL114 – Exam Topics

Generally, only the topics covered on the lecture are part of the exam (i.e., you should be able

to tell me what I told you). The references are to Deep Learning Book, unless stated otherwise.

• Computation model of neural networks

– acyclic graph with nodes and edges

– evaluation (forward propagation) (Algorithm 6.1)

– activation functions (tanh and ReLU, including equations)

– output functions (σ and softmax, including equations (3.30 and 6.29); you should

also know how softmax is implemented to avoid overflows)

• Backpropagation algorithm (Algorithm 6.2) (Algorithms 6.5 and 6.6 are used in practise,

i.e., during tf.train.Optimizer.compute gradients, so you should understand the

idea behind them, but you do not have to understand the notation of op.bprop etc.)

• Gradient descent and stochastic gradient descent algorithm (Section 5.9)

• Maximum likelihood estimation (MLE) principle (Section 5.5, excluding 5.5.2)

– negative log likelihood as a loss derived by MLE

– mean square error loss derived by MLE from Gaussian prior (Equations (5.64)-

(5.66))

• In addition to have theoretical knowledge of the above, you should be able to perform all

of it on practical examples – i.e., if you get a network with one hidden layer, a loss and

a learning rate, you should perform the forward propagation, compute the loss, perform

backpropagation and update weights using SGD. In order to do so, you should be able to

derivate softmax with NLL, sigmoid with NLL and linear output with MSE.

• Stochastic gradient descent algorithm improvements (you should be able to write the al-

gorithms down and ideally understand motivations behind them):

– learning-rate decay

– SGD with momentum (Section 8.3.2 and Algorithm 8.2)

– SGD with Nestorov Momentum (and how it is different from normal momentum)

(Section 8.3.3 and Algorithm 8.3)

– AdaGrad (Section 8.5.1 and Algorithm 8.4)

– RMSProp (and why is it a generalization of AdaGrad) (Section 8.5.2 and Algorithm

8.5)

– Adam (and why the bias-correction terms (1 − βt) are there) (Section 8.5.3 and

Algorithm 8.7)

• Gradient clipping (Section 10.11.1)

• Regularization methods:

– Early stopping (Section 7.8, without the How early stopping acts as a regu-

larizer part)

– L2 regularization (First paragraph of 7.1.1 and Equation (7.5))

– L1 regularization (Section 7.1.2 up to Equation (7.20))

– Dropout (just the description of the algorithm)

– Batch normalization (Section 8.7.1)

1



• Convolutional networks:

– Basic convolution and cross-correlation operation (Equations (9.5) and (9.6))

– Differences compared to a fully connected layer (Section 9.2 and Figure 9.6)

– Multiple channels in a convolution (Equation (9.7))

– Stride and padding schemes (Section 9.5 up to page 349, notably Equation (9.8))

– Max pooling and average pooling (Section 9.3)

– AlexNet (general architecture, without knowing specific constants, i.e., the following

image which is taken from Alex Krizhevsky et al.: ImageNet Classification

with Deep Convolutional Neural Networks https://papers.nips.cc/paper/

4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf)

– ResNet (only the important ideas and overall architecture of ResNet 151, without

specific constants; the following is taken from Kaiming He et al.: Deep Resid-

ual Learning for Image Recognition https://arxiv.org/abs/1512.03385)

3x3, 64

1x1, 64
relu

1x1, 256
relu

relu

256-d layer name output size 18-layer 34-layer 50-layer 101-layer 152-layer
conv1 112×112 7×7, 64, stride 2

conv2 x 56×56

3×3 max pool, stride 2

3×3, 64
3×3, 64

×2 3×3, 64
3×3, 64

×3




1×1, 64
3×3, 64

1×1, 256



 ×3




1×1, 64
3×3, 64

1×1, 256



 ×3




1×1, 64
3×3, 64

1×1, 256



 ×3

conv3 x 28×28 3×3, 128
3×3, 128

×2 3×3, 128
3×3, 128

×4




1×1, 128
3×3, 128
1×1, 512



 ×4




1×1, 128
3×3, 128
1×1, 512



 ×4




1×1, 128
3×3, 128
1×1, 512



 ×8

conv4 x 14×14 3×3, 256
3×3, 256

×2 3×3, 256
3×3, 256

×6




1×1, 256
3×3, 256
1×1, 1024



 ×6




1×1, 256
3×3, 256
1×1, 1024



 ×23




1×1, 256
3×3, 256

1×1, 1024



 ×36

conv5 x 7×7 3×3, 512
3×3, 512

×2 3×3, 512
3×3, 512

×3




1×1, 512
3×3, 512
1×1, 2048



 ×3




1×1, 512
3×3, 512

1×1, 2048



 ×3




1×1, 512
3×3, 512
1×1, 2048



 ×3

1×1 average pool, 1000-d fc, softmax
FLOPs 1.8×109 3.6×109 3.8×109 7.6×109 11.3×109

• Recurrent networks:

– Using RNNs to represent sequences (Figure 10.2 with h as output; Chapter 10 and

Section 10.1)

– Using RNNs to classify every sequence element (Figure 10.3; details in Section 10.2

excluding Sections 10.2.1-10.2.4)

– Bidirectional RNNs (Section 10.3)

– Encoder-decoder sequence-to-sequence RNNs (Section 10.4; note that you should

know how the network is trained and also how it is later used to predict sequences)

– Stacked (or multi-layer) LSTM (Figure 10.13a of Section 10.10.5; more details (not

required for the exam) can be found in Alex Graves: Generating Sequences

With Recurrent Neural Networks https://arxiv.org/abs/1308.0850)

– The problem of vanishing and exploding gradient (Section 10.7)

– Long Shoft-Term Memory (LSTM) (Section 10.10.1)

– Gated Recurrent Unit (GRU) (Section 10.10.2)

2

https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1308.0850


• Word representations (in all cases, you should be able to describe the algorithm for com-

puting the embedding, and how the backpropagation works [there is usually nothing special,

but if I ask what happens if a word occurs multiple time in a sentence, you should be able

answer]):

– The word2vec word embeddings

∗ CBOW and Skip-gram models (Tomas Mikolov, Kai Chen, Greg Cor-

rado, Jeffrey Dean: Efficient Estimation of Word Representations

in Vector Space https://arxiv.org/abs/1301.3781)

∗ Hierarchical softmax (Section 12.4.3.2, or Section 2.1 of the following paper)

∗ Negative sampling (Section 2.2 of Tomas Mikolov, Ilya Sutskever, Kai

Chen, Greg Corrado, Jeffrey Dean: Distributed Representations of

Words and Phrases and their Compositionality https://arxiv.org/

abs/1310.4546; note that negative sampling is a simplification of Importance

sampling described in Section 12.4.3.3, with wi = 1; the proposal distribution in

word2vec being unigram distribution to the power of 3/4)

– Character-level embeddings using RNNs (C2W model from Wang Ling, Tiago

Lus, Lus Marujo, Ramn Fernandez Astudillo, Silvio Amir, Chris Dyer,

Alan W. Black, Isabel Trancoso: Finding Function in Form: Compo-

sitional Character Models for Open Vocabulary Word Representation

http://arxiv.org/abs/1508.02096)

– Character-level embeddings using CNNs (CharCNN from Yoon Kim, Yacine

Jernite, David Sontag, Alexander M. Rush: Character-Aware Neural

Language Models https://arxiv.org/abs/1508.06615)

– Character-level embeddings using character n-grams (described simultaneously in

several papers, read for example Piotr Bojanowski, Edouard Grave, Armand

Joulin, Tomas Mikolov: Enriching Word Vectors with Subword Infor-

mation https://arxiv.org/abs/1607.04606)

• Machine Translation

– Translation using encoder-decoder (also called sequence-to-sequence) architecture

(Sections 10.4 and Section 12.4.5)

– Attention mechanism in NMT (Section 12.4.5.1, but you should also know the equa-

tions for the attention, notably Equations (4), (5), (6) and (A.1.2) of Dzmitry

Bahdanau, Kyunghyun Cho, Yoshua Bengio: Neural Machine Trans-

lation by Jointly Learning to Align and Translate https://arxiv.org/abs/

1409.0473)

– Subword units (The BPE algorithm from Section 3.2 of Rico Sennrich, Barry

Haddow, Alexandra Birch: Neural Machine Translation of Rare Words

with Subword Units https://arxiv.org/abs/1508.07909)

3

https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1310.4546
https://arxiv.org/abs/1310.4546
http://arxiv.org/abs/1508.02096
https://arxiv.org/abs/1508.06615
https://arxiv.org/abs/1607.04606
https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1508.07909


• Reinforcement learning (note that proofs are not required for reinforcement learning; all

references are to the Sep 2016 draft of second edition of Reinforcement Learning:

An Introduction by Richar S. Sutton http://ufal.mff.cuni.cz/~straka/courses/

npfl114/2016/sutton-bookdraft2016sep.pdf)

– Multi-arm bandits (Chapter 2, Sections 2.1-2.3)

– General setting of reinforcement learning (agent-environment, action-state-reward,

return; Chapter 3, Sections 3.1-3.3)

– Monte Carlo reinforcement learning algorithm (Algorithm in Section 5.4)

– Q-Learning (Algorithm in Section 6.5; you should also understand Eq. (6.1) and

(6.2))

– Policy gradient methods (representing policy by the network, using softmax, Section

13.1)

∗ Policy gradient theorem. Use the following formulation:

Let π(a|s) be a policy (computes probability of an action in a given state), vπ(s)

value function (computes expected return in a given state) and qπ(s, a) action-

value function (computes expected return for a given state and action; note that

vπ(s) =
∑
a π(a|s)qπ(s, a)). Then

∂

∂θ
vπ(s0) = Es,a∼π

[
∂ log π(a|s)

∂θ
qπ(s, a)

]
,

where the expectation is computed according to probability that state s and

action a will be visited from s0 following policy π.

∗ REINFORCE algorithm (Equation (13.6) and Algorithm in 13.3, but note that

the γt in (13.6) and in the Algorithm show not be there)

∗ REINFORCE with baseline algorithm (Equation (13.9) and Algorithm in 13.4,

but note that the γt in (13.9) and in the Algorithm show not be there)

∗ Actor-critic algorithm (Equation (13.11) and One-step Actor-Critic Algorithm

in 13.5, but note that the γ on the last but one line of the Algorithm should not

be there)

• Deep generative models using differentiable generator nets (Section 20.10.2):

– Variational autoencoders (Section 20.10.3 up to page 698 (excluding), together with

Reparametrization trick from Section 20.9 (excluding Section 20.9.1))

∗ Regular autoencoders (undercomplete AE – Section 14.1, sparse AE – first two

paragraphs of Section 14.2.1, denoising AE – Section 14.2.2)

– Generative Adversarial Networks (Section 20.10.4 up to page 702 (excluding))

4

http://ufal.mff.cuni.cz/~straka/courses/npfl114/2016/sutton-bookdraft2016sep.pdf
http://ufal.mff.cuni.cz/~straka/courses/npfl114/2016/sutton-bookdraft2016sep.pdf

