
Data Intensive Computing – Handout 3

Training Cluster

You can login to the training cluster dlrc via machine ufallab.ms.mff.cuni.cz and port
11422, i.e., using ssh -p 11422 ufallab.ms.mff.cuni.cz.

All machines in the cluster use same architecture and share /dlrc_share directory.
The cluster consists of master dlrc and 5 nodes dlrc-node1 to dlrc-node5. Each node

has 2 cores and 4GB ram, but four SGE jobs are allowed to run simultaneously (only because
otherwise there would be too little slots; the slot number may be even increased later).

Running Browser with Proxy to the Cluster

To run a browser, which can access master and the cluster nodes, run:
(chromium --proxy-server=socks://localhost:2020& \

ssh -ND 2020 -p 11422 ufallab.ms.mff.cuni.cz)

HDFS Distributed Filesystem

The distributed filesystem HDFS is installed on the cluster.
You can browse the filesystem using dlrc:50070.
The HDFS filesystem can be manipulated using hadoop fs command, which you can

shorten to dfs. It prints nice usage when executed without arguments, some simple commands
are:

• dfs -ls /

• dfs -mkdir /home/straka/test

• dfs -put .bashrc /home/straka/test

• dfs -get /home/straka/test .

• dfs -rm -r /home/straka/test

Every user has directory /home/username which they can write to.

Wikipedia Data

Compressed and structured Wikipedia data is available in the HDFS:

• /data/wiki/cs: Czech Wikipedia data (Sep 2009), 124k articles.

• /data/wiki/cs-medium: Subset of Czech Wikipedia data, 5307 articles.

• /data/wiki/cs-small: Subset of Czech Wikipedia data, 13 articles.

• /data/wiki/en: English Wikipedia data (Sep 2009), 2.9M articles.

All files are so called sequence files, every record is a pair (article name, article text).

1

DataFrames API of Apache Spark

DataFrame API is high-level API on top of RDDs.

Python Example

dataframes.py� �
#!/ usr / b in /python

Create DataFrame from RDD
wik i = sc . t e x tF i l e (” . . . ”)
df = sqlContext . createDataFrame (wiki , [’ a r t i c l e ’ , ’ t ex t ’])

Create DataFrame from Hive t a b l e
use r s = sqlContext . t ab l e (” u s e r s ”)

Load from f i l e
va l people = sqlContext . read . j son (path)

DataFrame opera t i ons
employees

. j o i n (dept , employees . dept I t == dept . id)

. where (employees . gender == ” female ”)

. groupBy (dept . id , dept . name)

. count ()

df . s e l e c t (”name”) . show ()
df . s e l e c t (df . name , df . age + 1) . show ()
df . f i l t e r (df . age > 21) . show ()
df . groupBy (df . age) . count () . show ()

Create RDD from DataFrame
employees .map(lambda row : row . name)

Use SQL
va l people = sqlContext . read . j son (” . . . ”)
people . registerTempTable (” people ”)
t e enage r s = sqlContext . s q l (”SELECT name FROM people WHERE age >= 13 AND age <= 19”)� �

The example is available in /home/straka/examples.

Tasks

When needing to split given text into words (called tokens), use function wordpunct_tokenize

from nltk.tokenize package.

2

Task Points Description

spark_unique_words 2

Create a list of unique words used in the articles using Spark.
Convert them to lowercase to ignore case.
Use HDFS /data/wiki/{cs,en} as input and either
/dlrc_share/data/wiki/tokenizer/{cs,en}_tokenizer

or nltk.tokenize.wordpunct_tokenize as a tokenizer.

anagrams 2

Two words are anagrams if one is a letter permutation of the
other (ignoring case).
For a given input, find all anagram classes that contain at
least A words. Output each anagram class on a separate
line.
Use HDFS /data/wiki/{cs,en} as input and either
/dlrc_share/data/wiki/tokenizer/{cs,en}_tokenizer

or nltk.tokenize.wordpunct_tokenize as a tokenizer.

sort 3

You are given data consisting of (31-bit integer, string data)
pairs. These are available in plain text format:

• /dlrc_share/data/numbers-txt/numbers-small:
3MB

• /dlrc_share/data/numbers-txt/numbers-medium:
184MB

• /dlrc_share/data/numbers-txt/numbers-large:
916MB

You can assume that the integers are uniformly distributed.
Your task is to sort these data, comparing the key numerically
and not lexicographically. The lines in the output must be
the same as in the input, only in different order.
Your solution should work for TBs of data. For that reason,
you must use multiple machines. If your job is executed using
m machines, the output consists of m files, which when con-
catenated would produce sorted (key, value) pairs. In other
words, each of the output files contains sorted (integer, data)
pairs and all keys in one file are either smaller or larger than
in other file. Your solution should work for any number of
machines specified.
Obviously, do not use sort nor sortByKey method in your
solution.

3

Task Points Description

nonuniform_sort 4

Improve the sort task to handle nonuniform data. You can
use the following exponentially distributed data:

• /dlrc_share/data/numbers-txt/nonuniform-small:
3MB

• /dlrc_share/data/numbers-txt/nonuniform-medium:
160MB

• /dlrc_share/data/numbers-txt/nonuniform-large:
797MB

Assume we want to produce m output files. One of the solu-
tions is the following:

• Go through the data and sample only a small fraction
of the keys. As there are not so many of them, they can
fit in one reducer.

• Find best m− 1 separators using the sampled data.

• Run the second pass using the computed separators.

spark_inverted_index 2

Compute inverted index in Spark – for every lowercased word
from the articles, compute (article name, ascending positions
of occurrences as word indices) pairs.
The output should be a file with one word on a line in the
following format:
word \t article name \t space separated occurrences

\t article name \t space separated occurences ...

You will get 2 additional points if the articles will be num-
bered using consecutive integers. In that case, the output
is ascending (article id, ascending positions of occurrences as
word indices) pairs, together with a file containing list of ar-
ticles representing this mapping (the article on line i is the
article with id i).
Use HDFS /data/wiki/{cs,en} as input and either
/dlrc_share/data/wiki/tokenizer/{cs,en}_tokenizer

or nltk.tokenize.wordpunct_tokenize as a tokenizer.

no_references 3

An article A is said to reference article B, if it contains B as
a token (ignoring case).
Run a Spark job which for each article B counts how many
references for article B there exist in the whole wiki (summing
references in a single article).
Use HDFS /data/wiki/{cs,en} as input and either
/dlrc_share/data/wiki/tokenizer/{cs,en}_tokenizer

or nltk.tokenize.wordpunct_tokenize as a tokenizer.

4

Task Points Description

spark_wordsim_index 3

In order to implement word similarity search, compute for
each form with at least three occurrences all contexts in which
it occurs, including their number of occurrences. List the con-
texts in ascending order.
Given N (either 1, 2, 3), the context of a form occurrence
is N forms preceding this occurrence and N forms following
this occurrence (ignore sentence boundaries, use empty words
when article boundaries are reached).
The output should be a file with one form on a line in the
following format:
form \t context \t counts \t context \t counts ...

Use HDFS /data/wiki/{cs,en} as input and either
/dlrc_share/data/wiki/tokenizer/{cs,en}_tokenizer

or nltk.tokenize.wordpunct_tokenize as a tokenizer.

spark_wordsim_find 3

Let S be given natural number. Using the index created
in spark_wordsim_index, find for each form S most similar
forms. List only forms with non-zero similarity. The similarity
of two forms is computed using cosine similarity as CA·CB

|CA|·|CB |
,

where CF is a vector of occurrences of form F contexts.
The output should be a file with one form on a line in the
following format:
lemma \t most similar lemma \t cosine similarity

\t 2. most similar lemma \t cosine similarity ...

kmeans 6

Implement K-means clustering algorithm as described
on http://en.wikipedia.org/wiki/K-means_clustering#

Standard_algorithm.
The user specifies number of iterations and the program run
specified number of K-means clustering algorithm iterations.
You can use the following training data. Each line contains
space separated coordinates of one points. The coordinates in
one input naturally have the same dimension.

Path in /dlrc_share Points Dimension Clusters
/data/points-txt/small 10000 50 50
/data/points-txt/medium 100000 100 100
/data/points-txt/large 500000 200 200

You will get 2 additional points if the algorithm stops when
none of the centroid positions change more than given ε.

5

