
Data Intensive Computing – Handout 1

Sun Grid Engine and others

• Since 2001, open-source.

• In 2009 Sum bought by Oracle – Oracle Grid Engine, no longer open-source.

• Two major open-source forks, one of them (Son of Grid Engine) still active.

qsub: Submits a job for execution

• -b [y|n] binary or a script; always use -b y

• -cwd keep current working directory

• -v variable[=value] defines or redefines environment variable

• -V export all environment variables

• -N name set name of the job

• -o outpath set file with the standard output of the job; default $JOB_NAME.o$JOB_ID

• -e outpath set file with the standard error of the job; default $JOB_NAME.e$JOB_ID

• -j [y|n] merge standard output and error

• -sync [y|n] wait till the job finishes

• -l mem_free=1G set required amount of memory

• -l h_vmem=1G set maximum amount of memory; stop job if exceeded

• -hold_jid comma_separated_job_list jobs that must finish before this job starts

• environmental variable JOB_ID

• environmental variable JOB_NAME

Array jobs:

• -t 1-n start array job with n jobs numbered 1 . . . n

• environmental variable SGE_TASK_ID

• output and error files $JOB_NAME.[eo]$JOB_ID.$TASK_ID

• -t m-n[:s] start array job with jobs m,m + s, ..., n

• environmental variables SGE_TASK_FIRST, SGE_TASK_LAST, SGE_TASK_STEPSIZE

• -tc j run at most j jobs simultaneously

• -hold_jid_ad comma_separated_job_list array jobs that must finish before this job
starts; task i depends only on task i of specified jobs

qstat: List of running jobs

Detailed information about a job can be obtained using qstat -j job_id.

qdel: Stops jobs with given ids

qrsh: Starts interactive shell – think ssh

1

Training Cluster

You can login to the training cluster dlrc via machine ufallab.ms.mff.cuni.cz and port
11422, i.e., using ssh -p 11422 ufallab.ms.mff.cuni.cz.

All machines in the cluster use same architecture and share /dlrc_share directory.
The cluster consists of master dlrc and 5 nodes dlrc-node1 to dlrc-node5. Each node

has 2 cores and 4GB ram, but four SGE jobs are allowed to run simultaneously (only because
otherwise there would be too little slots; the slot number may be even increased later).

Splitting Large Files on Lines

To help you with splitting large files on lines, you can use supplied split_file.py script from
/dlrc_share/data/wiki/split/ directory. When executed as

split_file.py input_file start_offset length

only lines in the file part starting at offset greater than start_offset and less than start_offset

+ length are printed (allowing the last line to end outside the file part).
The split_file.py and also split_file.pm can be used also as modules in your Python

and Perl scripts. In that case, you can use the method

next_line(file, start_offset, length)

which sequentially returns lines in the file part (including newline characters), returning empty
string at the end.

Exercises for using Sun Grid Engine

Wikipedia Data

In the /dlrc_share/data/wiki/ there are following data:

• cs-text/cswiki.txt: Czech Wikipedia data (Sep 2009), file size 195MB, 124k articles.

• en-text/enwiki.txt: English Wikipedia data (Sep 2009), File size 4.9BG, 1.7M articles.

Both files are encoded in UTF-8 and contain one particle per line. Article name is separated
by \t character from the article content.

For testing, medium and small variants of the Czech Wikipedia data is also available:

• /dlrc_share/data/wiki/cs-text-medium/cswiki-medium.txt: 16MB, 5307 articles

• /dlrc_share/data/wiki/cs-text-small/cswiki-small.txt: 72kB, 13 articles

Example Solution of a Simple Distributed Task using Bash

Consider simple example of producing sorted list of article names. The example solution consists
of two sources. Both are available in the /dlrc_share/data/wiki/example directory.

2

The source articles.sh is the main driver for distributing work and collecting results:� �
#!/ bin / bash

set −e

Parse arguments
[”$#” −ge 3] | | { echo Usage : ”$0 input outd i r ta sk s [conc ta sk s] ” >&2;exit 1 ;}
i n p u t f i l e=”$1”
output d i r=”$2”
ta sk s=”$3”
conc ta sk s=”$4”

Check t ha t input f i l e e x i s t s and ge t i t s s i z e
[−f ” $ i n p u t f i l e ”] | | { echo F i l e $ i n p u t f i l e does not e x i s t >&2; exit 1 ; }
i n p u t s i z e =‘ s t a t −c%s ” $ i n p u t f i l e ” ‘

Check t ha t output d i r does not e x i s t and c rea t e i t
[−d ” $output d i r ”] && { echo Direc tory $output d i r a l r eady e x i s t s >&2; exit 1 ;}
mkdir −p ” $output d i r ”

Compute f i l e s p l i t s i z e s
s p l i t s i z e=$ ((1 + ($ i npu t s i z e / $tasks)))

Run d i s t r i b u t e d computat ions
qsub −cwd −b y −sync y −o ” $output d i r ” −e ” $output d i r ” −V \
−t 1−” $tasks ” ${ conc ta sk s :+−tc $ concu r r en t ta sk s } \
. / a r t i c l e s d i s t r i b u t e d . sh ” $ i n p u t f i l e ” ” $ s p l i t s i z e ” ” $output d i r ”/ a r t i c l e s . txt

Merge a l l r e s u l t s
s o r t −m ‘ seq −f ” $output d i r / a r t i c l e s . txt .%g” 1 ” $tasks ” ‘ \
> ” $output d i r ”/ a r t i c l e s . txt

rm ‘ seq −f ” $output d i r / a r t i c l e s . txt .%g” 1 ” $tasks ” ‘� �
The source articles_distributed.sh is the helper script executed distributively on the nodes:� �
#!/ bin / bash

set −e

Parse arguments
[”$#” −ge 3] | | { echo Usage : $0 input s p l i t l e n g t h o u t p u t f i l e >&2; exit 1 ;}
i n p u t f i l e=”$1”
s p l i t l e n g t h=”$2”
o u t p u t f i l e=”$3”

Parse SGE TASK ID and compute f i l e o f f s e t
[−n ”$SGE TASK ID”] | | { echo Var iab le SGE TASK ID i s not set >&2; exit 1 ; }
task=”$SGE TASK ID”
i n p u t o f f s e t=$ ((($task − 1) ∗ $ s p l i t l e n g t h))
o u t p u t f i l e=” $ o u t p u t f i l e . $task ”

Run computation ou t pu t t i n g to temporary f i l e
tmp f i l e=” ‘mktemp ‘ ”
trap ”rm −f \” $ tmp f i l e \”” EXIT

/ d l r c s h a r e /data/wik i / s p l i t / s p l i t f i l e . py ” $ i n p u t f i l e ” ” $ i n p u t o f f s e t ” \
” $ s p l i t l e n g t h ” | cut −f 1 | s o r t > ” $ tmp f i l e ”

On succe s s move temporary f i l e to output
mv ” $ tmp f i l e ” ” $ o u t p u t f i l e ”� �

3

Tasks

Solve the following tasks. Solution for each task is a source code processing the Wikipedia source
data and producing required results, while utilizing distributed computation. The solution does
not need to recover when one of the computation fails, but it should fail as a whole.

Task Points Description

unique_words 3

Create a list of unique words used in the articles. Convert
them to lowercase to ignore case.
Because the article data is not tokenized, use provided
/dlrc_share/data/wiki/tokenizer/{cs,en}_tokenizer,
which reads untokenized UTF-8 text from standard input
and produces tokenized UTF-8 text on standard output. It
preserves line breaks and separates tokens on each line by
exactly one space.

inverted_index 4

Compute inverted index – for every lowercased word from the
articles, compute ascending (article id, ascending positions of
occurrences as word indices) pairs. In order to do so, number
the articles using consecutive integers and produce also a list
of articles representing this mapping (the article on line i is
the article with id i; you can use the example articles.sh).
The output should be a file with list of articles ordered by
article id, and a file with one word on a line in this format:
word \t article_id \t space separated occurrences

\t article_id \t space separated occurrences ...

Once again use provided tokenizer.

wordsim_index 4

In order to implement word similarity search, compute for each
lemma with at least three occurrences all contexts in which it
occurs, including their number of occurrences.
Given N (either 1, 2 or 3) on the command line, the context of
a lemma occurrence is N lemmas preceding it and N lemmas
following it (ignore sentence boundaries).
To compute the lemmas for a given article, use provided
/dlrc_share/data/wiki/lemmatizer/{cs,en}_lemmatizer,
which works just like the tokenizer – it reads untokenized
UTF-8 text from standard input and produces tokenized and
lemmatized UTF-8 text on standard output, each lemma
separated by exactly one space.
The output should be a file with one lemma on a line in the
following format:
lemma \t context \t counts \t context \t counts ...

wordsim_find 3

Let S be natural number given on the command line. Using
the index created in wordsim_index, find for each lemma S
most similar lemmas. The similarity of two lemmas is com-
puted using cosine similarity as CA·CB

|CA|·|CB |
, where CL is a vector

of occurrences of lemma L contexts.
The output should be a file with one lemma on a line in the
following format:
lemma \t most similar lemma \t cosine similarity

\t 2. most similar lemma \t cosine similarity ...

4

