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Spark: Transitive Closure

spark/transitive_closure.py

import sys
from random import Random

from pyspark import SparkContext

num_edges = 3000
num_vertices = 500
rand = Random (42)

def generate_graph ():
edges = set ()
while len (edges) < num_edges:

src = rand.randrange (0, num_vertices)
dst = rand.randrange (0, num_vertices)
if src = dst:

edges.add ((src, dst))
return edges

if __name_._. = " __main__":
if len(sys.argv) = 1:
print >> sys.stderr, "Usage:_transitive_closure _<master>_[<slices >]”
exit (1)
sc = SparkContext (sys.argv[1], ”TransitiveClosure”)
slices = int(sys.argv[2]) if len(sys.argv) > 2 else 1
closure = sc.parallelize (generate_graph (), slices).cache()

# Linear transitive closure: each round grows paths by one edge,
# by joining the graph’s edges with the already—discovered paths.
# e.g. join the path (y, z) from the TC with the edge (z, y) from
# the graph to obtain the path (z, z).

# Because join () joins on keys, the edges are stored in reversed order.
edges = closure .map(lambda (x, y): (y, x)).cache()

old_count = 0L

new_count = closure.count ()

while new_count != old_count:
# Perform the join, obtaining an RDD of (y, (z, z)) pairs,
# then project the result to obtain the new (z, z) paths.
new_edges = closure.join (edges).map(lambda (_, (a, b)): (b, a))
new_closure = closure.union(new_edges). distinct (). cache()

old_count , new_count = new._count, new_closure.count ()
closure.unpersist ()
closure = new_closure

closure.unpersist ()

edges.unpersist ()

print "TC_has %i._edges” % closure.count ()




Spark: MLLib

Machine Learning library.

Binary Classification

mllib/classification.py

import numpy as np
import sys

from pyspark import SparkContext
from pyspark.mllib.classification import LogisticRegressionWithSGD

if __name__ = 7 __main__":
if len(sys.argv) < 3:
print >> sys.stderr, ”Usage: %s.<master>.<file>" % sys.argv[0]
exit (1)
sc = SparkContext (sys.argv|[1l], appName=" Classification”)

# Load and parse the data
data = sc.textFile(sys.argv[2])
parsedData = data.map(lambda line:
np.array ([ float (x) for x in line.split(’-")]))
model = LogisticRegressionWithSGD . train (parsedData)

# Build the model
labelsAndPreds = parsedData.map(lambda point: (int(point.item(0)),
model. predict (point . take(range (1, point.size)))))

# Fvaluating the model on training data

trainErr = labelsAndPreds. filter (lambda (v, p): v != p).count() /
float (parsedData.count ())

print (” Training _.Error.=."” + str(trainErr))

e NaiveBayes

e train(cls, data, lambda=1.0)
e The resulting model has method predict(self, x).

e SVMWithSGD

e train(cls, data, iterations=100, step=1.0, regParam=1.0,
miniBatchFraction=1.0, initialWeights=None)

e The resulting model has method predict(self, x).
e LogisticRegressionWithSGD

e train(cls, data, iterations=100, step=1.0, regParam=1.0,
miniBatchFraction=1.0, initialWeights=None)

e The resulting model has method predict(self, x).



Linear Regression

mllib/regression.py

import numpy as np
import sys

from pyspark import SparkContext
from pyspark.mllib.regression import LinearRegressionWithSGD

if __name__ = 7 __main__":
if len(sys.argv) < 3:
print >> sys.stderr, ”Usage: %s.<master>_.<file>"” % sys.argv[0]
exit (1)
sc = SparkContext (sys.argv|[1l], appName="Regression”)

# Load and parse the data
data = sc.textFile(sys.argv[2])
parsedData = data.map(lambda line:
np.array ([ float (x) for x in line.replace(’,’, "2’ ).split(’27)]))
# Build the model
model = LinearRegressionWithSGD . train (parsedData)

# Fvaluate the model on training data
valuesAndPreds = parsedData.map(lambda point: (point.item (0),
model . predict (point.take (range (1, point.size)))))
MSE = valuesAndPreds.map(lambda (v, p): (v — p)*x2).reduce(
lambda x, y: x + y)/valuesAndPreds. count ()
print ("Mean_Squared .Error.=." + str (MSE))

e LinearRegressionWithSGD

e train(cls, data, iterations=100, step=1.0, miniBatchFraction=1.0,
initialWeights=None)

e The resulting model has method predict(self, x).
e LassoRegressionWithSGD

e train(cls, data, iterations=100, step=1.0, regParam=1.0,
miniBatchFraction=1.0, initialWeights=None)

e The resulting model has method predict(self, x).
e RidgeRegressionWithSGD

e train(cls, data, iterations=100, step=1.0, regParam=1.0,
miniBatchFraction=1.0, initialWeights=None)

e The resulting model has method predict(self, x).



Clustering

mllib/clustering.py

g
from math import sqrt
import numpy as np
import sys

from pyspark import SparkContext
from pyspark.mllib.clustering import KMeans

if __name__. =— 7 __main__":
if len(sys.argv) < 3:
print >> sys.stderr , ”"Usage: %s.<master>_.<file>" % sys.argv[0]
exit (1)
sc = SparkContext (sys.argv[1], appName=" Clustering”)

# Load and parse the data

data = sc.textFile(sys.argv[2])

parsedData = data.map(lambda line:
np.array ([ float (x) for x in line.split(’-7)]))

# Build the model (cluster the data)
clusters = KMeans. train (parsedData, 2, maxIterations=10,
runs=30, initializationMode="random” )

# Evaluate clustering by computing Within Set Sum of Squared Errors
def error(point):

center = clusters.centers|[clusters.predict (point)]

return sqrt (sum([x*%2 for x in (point — center)]))

WSSSE = parsedData.map(error ). reduce (lambda x, y: x + y)
print (” Within_.Set _Sum.of._.Squared .Error_.=.” 4+ str (WSSSE))

e KMeans

e train(cls, data, k, maxIterations=100, runs=1,
initializationMode="k-means||")

e initializatioinMode can be either random or k-means]| |

e The resulting model has method predict(self, x).

Collaborative Filtering

mllib/collaborative_filtering.py

p
from math import sqrt
import numpy as np
import sys

from pyspark import SparkContext
from pyspark.mllib.recommendation import ALS

if __name__ = 7 __main__":
if len(sys.argv) < 3:
print >> sys.stderr, ”Usage: %s.<master>.<file>" % sys.argv[0]
exit (1)
sc = SparkContext (sys.argv|[1l], appName=" CollaborativeFiltering”)




# Load and parse the data
data = sc.textFile(sys.argv[2])

ratings = data.map(lambda line: array ([float(x) for x in line.split(’,”)]))

# Build the recommendation model using Alternating Least Squares
model = ALS. train (ratings, 1, 20)

# Fvaluate the model on training data

testdata = ratings.map(lambda p: (int(p[0]), int(p[1l])))
predictions = model. predictAll(testdata ). map(lambda r: ((r[0], r[1]), r[2]))
ratesAndPreds = ratings.map(lambda r: ((r[0], r[1]), r[2])).join(predictions)
MSE = ratesAndPreds.map(lambda r: (r[1][0] — r[1 ][1])**2) reduce (
lambda x, y: x + y)/ratesAndPreds. count ()
print ("Mean_Squared _Error.=." + str (MSE))
e ALS

e train(cls, ratings, rank, iterations=5, lambda=0.01, blocks=-1)

e trainImplicit(cls, ratings, rank, iterations=5, lambda=0.01,
blocks=-1, alpha=0.01)

e The resulting model has methods

e predict(self, user, product)
e predictAll(self, usersProducts)




Tasks

Solve the following tasks. Solution for each task is a Spark source processing the Wikipedia
source data and producing required results.

Simple Tokenizer

We will commonly need to split given text into words (called tokens). You can do so easily
by using function wordpunct_tokenize from nltk.tokenize package, i.e. using the following
import line at the beginning of you program:

from nltk.tokenize import wordpunct_tokenize

Wikipedia Data

The textual Wikipedia Data are avilable in HDF'S:
e /data/wiki-txt/cs: Czech Wikipedia data (Sep 2009), 195MB, 124k articles
e /data/wiki-txt/en: English Wikipedia data (Sep 2009), 4.9GB, 2.9M articles

All data are encoded in UTF-8 and contain one particle per line. Article name is separated by
\t character from the article content.

Task Points | Description

Create a list of unique words used in the articles using Spark.

spark ique_words 2 .
park_unique_wor Convert them to lowercase to ignore case.

Two words are anagrams if one is a letter permutation of the
other (ignoring case).

spark_anagrams 2 For a given input, find all anagram classes that contain at
least A words. Output each anagram class on a separate
line.

You are given data consisting of (31-bit integer, string data)
pairs. These are available in plain text format:

e /data/numbers-txt/numbers-small: 3MB
e /data/numbers-txt/numbers-medium: 184MB
e /data/numbers-txt/numbers-large: 916MB

You can assume that the integers are uniformly distributed.
Your task is to sort these data, comparing the key numerically
and not lexicographically. The lines in the output must be
the same as in the input, only in different order.

Your solution should work for TBs of data. For that reason,
you must use multiple machines. If your job is executed using
m machines, the output consists of m files, which when con-
catenated would produce sorted (key, value) pairs. In other
words, each of the output files contains sorted (integer, data)
pairs and all keys in one file are either smaller or larger than
in other file. Your solution should work for any number of
machines specified.

spark_sort 3




Task

Points

Description

spark_nonuniform_sort

Improve the spark_sort to handle nonuniform data. You can
use the following exponentially distributed data:

e /data/numbers-txt/nonuniform-small: 3MB
e /data/numbers-txt/nonuniform-medium: 160MB

e /data/numbers-txt/nonuniform-large: 797MB

Assume we want to produce m output files. One of the solu-
tions is the following:

e Go through the data and sample only a small fraction
of the keys.

e Find best m — 1 separators using the sampled data.

e Run the second pass using the computed separators.

spark_inverted_index

Compute inverted index in Spark — for every lowercased word
from the articles, compute (article name, ascending positions
of occurrences as word indices) pairs.

The output should be a file with one word on a line in the
following format:

word \t articleName \t spaceSeparatedOccurrences. ..
You will get 2 additional points if the articles will be num-
bered using consecutive integers. In that case, the output
is ascending (article id, ascending positions of occurrences as
word indices) pairs, together with a file containing list of ar-
ticles representing this mapping (the article on line i is the
article with id 7).

spark_no_references

An article A is said to reference article B, if it contains B as
a token (ignoring case).

Run a Spark job which for each article B counts how many
references for article B there exist in the whole wiki (summing
references in a single article).

You will get one extra point if the result is sorted by the
number of references.

spark_wordsim_index

In order to implement word similarity search, compute for
each form with at least three occurrences all conterts in which
it occurs, including their number of occurrences. List the con-
texts in ascending order.

Given N (either 1, 2, 3 or 4), the context of a form occurrence
is N forms preceding this occurrence and N forms following
this occurrence (ignore sentence boundaries, use empty words
when article boundaries are reached).

The output should be a file with one form on a line in the
following format:

form \t context \t counts...




Task

Points

Description

spark_wordsim_find

Let S be given natural number. Using the index created
in spark_wordsim_index, find for each form S most similar
forms. The similarity of two forms is computed using cosine
simalarity as %, where CF is a vector of occurrences of
form F' contexts.

The output should be a file with one form on a line in the
following format:

form \t most similar form \t cosine similarity...

spark_kmeans

Implement K-means clustering algorithm as described
on http://en.wikipedia.org/wiki/K-means_clustering#
Standard_algorithm.

The user specifies number of iterations and the program run
specified number of K-means clustering algorithm iterations.
You can use the following training data. Each line contains
space separated coordinates of one points. The coordinates in
one input naturally have the same dimension.

HDFS path ‘ Points ‘ Dimension ‘ Clusters
/data/points-txt/small | 10000 | 50 50
/data/points-txt/medium | 100000 | 100 100
/data/points-txt/large | 500000 | 200 200

You will get 2 additional points if the algorithm stops when
none of the centroid positions change more than given ¢.




