Data Intensive Computing — Handout 5

Hadoop

Hadoop 1.2.1 is installed in /HADOOP directory. The JobTracker web interface is available at
http://dlrc:50030, the NameNode web interface is available at http://d1lrc:50070.

To conveniently access the web interfaces remotely, you can use ssh -D localhost:2020
-p 11422 ufallab.ms.mff.cuni.cz to open SOCKS5 proxy server forwarding requests to the
remove site, and use it as a proxy server in a browser, for example as
chromium --proxy-server=socks://localhost:2020.

Simple Tokenizer

We will commonly need to split given text into words (called tokens). You can do so easily
by using function wordpunct_tokenize from nltk.tokenize package, i.e. using the following
import line at the beginning of you program:

from nltk.tokenize import wordpunct_tokenize

Dumbo

Dumbo is (one of several) Python API to Hadoop. It utilizes Hadoop Streaming, as most
Hadoop language bindings.
Overview of features:

e always a mapper, maybe reducer and combiner

e mapper, reducer and combiner can be implemented as

e simple method

e class with __init__, __call__ and possibly cleanup. Note that both __call__ and
cleanup must return either a list or a generator returning the results. Especially, if
you do not want to return anything, you have to return [] (that is Dumbo bug as
it could be fixes easily).

parameters through self.params and -param

passing files using -file or -cachefile

e counters

multiple iterations with any non-circular dependencies

Simple Grep Example

All mentioned examples are available in /home/straka/examples.

grep_ab.py
p
def mapper(key, value):
if key.startswith (7Ab”):
yield key, value.replace(”\n”, ”.")

if __name_._. = ” __main__":
import dumbo
dumbo . run (mapper)

grep_ab.sh

/users/$USER/grep_ab -outputformat text -overwrite yes

{dumbo start grep_ab.py -input /data/wiki/cs-medium -output

Running Dumbo

Run above script using dumbo start script.py options. Available options:

—-input input_HDFS_path: input path to use

-inputformat [autol|sequencefilel|text|keyvaluetext]: input format to use, auto
is default

-output output_HDFS_path: output path to use
-output [sequencefilel|text]: output format to use, sequencefile is default
-nummaptasks n: set number of map tasks to given number

-numreducetasks n: set number of reduce tasks to given number. Zero is allowed (and
default if no reducer is specified) and only mappers are executed in that case.

-file local_file: file to be put in the dir where the python program gets executed

-cachefile HDFS_path#link_name: create a link 1ink_name in the dir where the python
program gets executed

-param name=value: param available in the Python script as self.params["name"]
-hadoop hadoop_prefix: default is /HADOOP

-name hadoop_job_name: default is script.py

-mapper hadoop_mapper: Java class to use as mapper instead of mapper in script.py

-reducer hadoop_reducer: Java class to use as reducer instead of reducer in script.py

Dumbo HDFS Commands

dumbo cat HDFS_path [-ascode=yes]: convert to text and print given file
dumbo 1s HDFS_path

dumbo exists HDFS_path

dumbo rm HDFS_path

dumbo put local_path HDFS_path

dumbo get HDFS_path local_path

Grep Example

Parameters can be passed to mappers and reducers using -param name=value Dumbo option
and accessed using self.params dictionary. Also note the class version of the mapper, using
constructor __init__ and mapper method __call__. Reducers can be implemented similarly.

grep.py
import re
class Mapper:
def __init__(self):
self .re = re.compile(self.params.get(” pattern”, 77))

def __call__(self, key, value):
if self.re.search(key):
yield key, value.replace(”\n”, ”.")

if __name_._. = 7 __main__":
import dumbo
dumbo . run (Mapper)

.

grep.sh

~
dumbo start grep.py -input /data/wiki/cs-medium -output /users/$USER/grep
-outputformat text -param pattern=""H" -overwrite yes

=

Simple Word Count

Reducers are similar to mappers, and can be specified also either using a method or a class.
An optional combiner (third parameter of dumbo.run) can be specified too.

wordcount.py

p
from nltk.tokenize import wordpunct_tokenize

def mapper(key, value):
for word in wordpunct_tokenize (value.decode(utf—8’)):
yield word, 1

def reducer(key, values):
yield key, sum(values)

if __name_._. = 7 __main__":
import dumbo
dumbo . run (mapper, reducer, reducer)

=

wordcount.sh

-
dumbo start wordcount.py -input /data/wiki/cs-medium -output

/users/$USER/wordcount -outputformat text -overwrite yes

=

Efficient Word Count Example

More efficient word count is obtained when counts in the processed block are stored in an
associative array (more efficient version of local reducer). To that end, cleanup method can
be used nicely.

Note that we have to return [] in __call__. That is causes by the fact that Dumbo iterates

over results of a __call__ invocation and unfortunately does not handle None return value.

wc_effective.py

g
from nltk.tokenize import wordpunct_tokenize

class Mapper:

def __init__(self):
self.counts = {}

def __call__(self, key, value):
for word in wordpunct_tokenize (value.decode(utf—8’)):

self.counts[word] = self.counts.get(word, 0) + 1
return [| # Method __call__ has to return the (key, value) pairs.
Unfortunately, NoneType is not handled in Dumbo.

def cleanup(self):
for word_count in self.counts.iteritems ():
yield word_count

class Reducer:
def __call__(self, key, values):
yield key, sum(values)

if __name_._. =— 7 __main__":
import dumbo
dumbo . run (Mapper, Reducer)

wc_effective.sh

dumbo start wc_effective.py -input /data/wiki/cs-medium -output
/users/$USER/wc_effective -outputformat text -overwrite yes

Word Count with Counters

User counters can be collected using Hadoop using self.counters object.

wc_counters.py

g
from nltk.tokenize import wordpunct_tokenize

def mapper(key, value):
for word in wordpunct_tokenize (value.decode(’utf—8’)):
yield word, 1

class Reducer:
def __call__(self, key, values):
total = sum(values)
counter = "Key_occurrences.” + (str(total) if total < 10 else ”"10_or._more”)
self.counters|[counter] += 1
yield key, total

if __name__ = 7 __main__":
import dumbo
dumbo. run (mapper, Reducer)

—

wc_counters.sh

dumbo start wc_counters.py -input /data/wiki/cs-medium -output
/users/$USER/wc_counters -outputformat text -overwrite yes

Word Count using Stop List

Sometimes customization using -param is not enough, instead a whole file should be used to
customize the mapper or reducer. Consider for example case where word count should ignore
given words. This task can be solved by using -param to specify file with words to ignore and
by -file or —cachefile to distribute the file in question with the computation.

wc_excludes.py

from nltk.tokenize import wordpunct_tokenize

class Mapper:
def __init__(self):

file = open(self.params[”excludes”],”r”)
self.excludes = set(line.strip () for line in file)
file.close ()

def __call__(self, key, value):
for word in wordpunct_tokenize(value.decode(utf—8’)):
if not (word in self.excludes):
yield word, 1

def reducer (key, values):
yield key, sum(values)

if __name.. =— ” __main__":
import dumbo
dumbo. run (Mapper, reducer, reducer)

wc_excludes.sh

dumbo start wc_excludes.py -input /data/wiki/cs-medium -output
/users/$USER/wc_excludes -outputformat text -param excludes=stoplist.txt
-file stoplist.txt -overwrite yes

Multiple Iterations Word Count

Dumbo can execute multiple iterations of MapReduce. In the following artifical example, we
first create lower case variant of values and then filter out words not matching given pattern
and count their occurrences.

wc_2iterations.py

p
from nltk.tokenize import wordpunct_tokenize
import re

class LowercaseMapper:
def __call__(self, key, value):
yield key, value.decode(utf—8’).lower ().encode(’utf—8”)

class GrepMapper:
def __init__(self):
self .re = re.compile(self.params. get(” pattern”, 77))

def __call__(self, key, value):
for word in wordpunct_tokenize (value.decode(’utf—8’)):
if self.re.search(word):
yield word, 1

def reducer(key, values):
yield key, sum(values)

def runner(job):
job.additer (LowercaseMapper)
job.additer (GrepMapper, reducer)

if __name__ = 7 __main__":
import dumbo
dumbo. main (runner)

wc_2iterations.sh

dumbo start wc_2iterations.py -input /data/wiki/cs-medium -output
/users/$USER/wc_2iterations -outputformat text -param pattern=h
-overwrite yes

Non-Trivial Dependencies Between Iterations

The MapReduce iterations can depend on output of arbitrary iterations (as long as the depen-
dencies do not form a cycle, of course). This can be specifies using input parameter to additer
as follows.

wc_dag.py

from nltk.tokenize import wordpunct_tokenize
import re

class LowercaseMapper:
def __call__(self, key, value):
yield key, value.decode(’utf—8’).lower ().encode(’utf—8”)

class FilterMapperl:
def __init__(self):
self .re = re.compile(self.params.get(” patternl”, 77))

def __call__(self, key, value):
for word in wordpunct_tokenize (value.decode(utf—8’)):
if self.re.search(word):
yield word, 1

class FilterMapper2:
def __init__(self):
self.re = re.compile(self.params.get(” pattern2”?, 77))

def __call__(self, key, value):
for word in wordpunct_tokenize (value.decode(’utf—8’)):
if self.re.search(word):
yield word, 1

class IdentityMapper:
def __call__(self, key, value):
yield key, value

def reducer(key, values):
yield key, sum(values)

def runner(job):
lowercased = job.additer (LowercaseMapper) # implicit input = job.root
filteredl = job.additer (FilterMapperl, input = lowercased)
filtered2 = job.additer (FilterMapper2, input = lowercased)
job.additer (IdentityMapper, reducer, input = [filteredl , filtered2])

if __name__ = 7 __main__":
import dumbo
dumbo. main (runner)

wc_dag.sh

dumbo start wc_dag.py -input /data/wiki/cs-medium -output
/users/$USER/wc_dag -outputformat text -param patternl=h -param
pattern2=i -overwrite yes

Execute Hadoop Locally

Using dumbo-local instead of dumbo, you can run the Hadoop computation locally using one
mapper and one reducer. The standard error of the Python script is available in that case.

Wikipedia Data

The Wikipedia Data available from /dlrc_share/data/wiki/ are available also in HDF'S:
e /data/wiki/cs: Czech Wikipedia data (Sep 2009), 195MB, 124k articles

e /data/wiki/en: English Wikipedia data (Sep 2009), 4.9GB, 2.9M articles

All data is stored in a record-compressed sequence files, with article names as keys and article

texts as values, in UTF-8 encoding.

Tasks

Solve the following tasks. Solution for each task is a Dumbo Python source processing the
Wikipedia source data and producing required results.

Task

Points

Description

dumbo_unique_words

Create a list of unique words used in the articles using Dumbo.
Convert them to lowercase to ignore case.
Use the wordpunct_tokenize as a tokenizer.

article_initials

Run a Dumbo job which uses counters to count the number
of articles according to their first letter, ignoring the case and
merging all non-Czech initials.

dumbo_inverted_index

Compute inverted index in Dumbo — for every lowercased word
from the articles, compute (article name, ascending positions
of occurrences as word indices) pairs.

Use the wordpunct_tokenize as a tokenizer.

The output should be a file with one word on a line in the
following format:

word \t article name \t space separated occurrences.|..

You will get 2 additional points if the articles will be num-
bered using consecutive integers. In that case, the output
is ascending (article id, ascending positions of occurrences as
word indices) pairs, together with a file containing list of ar-
ticles representing this mapping (the article on line i is the
article with id 7).

no_references

An article A is said to reference article B, if it contains B as
a token (ignoring case).

Run a Dumbo job which counts for each article how many
references there exists for the given article (summing all ref-
erences in a single article).

You will get one extra point if the result is sorted by the
number of references (you are allowed to use 1 reducer in the
sorting phase).

Use the wordpunct_tokenize as a tokenizer.

Task

Points

Description

dumbo_wordsim_index

In order to implement word similarity search, compute for
each form with at least three occurrences all conterts in which
it occurs, including their number of occurrences. List the con-
texts in ascending order.

Given N (either 1, 2, 3 or 4), the contezt of a form occurrence
is N forms preceding this occurrence and N forms following
this occurrence (ignore sentence boundaries, use empty words
when article boundaries are reached).

Use the wordpunct_tokenize as a tokenizer.

The output should be a file with one form on a line in the
following format:

form \t context \t counts...

dumbo_wordsim_find

Let S be given natural number. Using the index created
in dumbo_wordsim_index, find for each form S most similar
forms. The similarity of two forms is computed using cosine
similarity as gﬁfc’; E where CF is a vector of occurrences of
form F' contexts.

The output should be a file with one form on a line in the
following format:

form \t most similar form \t cosine similarity...

