
Data Intensive Computing – Handout 1

Sun Grid Engine and others

• Since 2001, open-source.

• In 2009 Sum bought by Oracle – Oracle Grid Engine, no longer open-source.

• Two major open-source forks, one of them (Son of Grid Engine) still active.

qsub: Submits a job for execution

• -b [y|n] binary or a script

• -cwd keep current working directory

• -v variable[=value] defines or redefines environment variable

• -V export all environment variables

• -N name set name of the job

• -o outpath set file with the standard output of the job; default $JOB_NAME.o$JOB_ID

• -e outpath set file with the standard error of the job; default $JOB_NAME.e$JOB_ID

• -j [y|n] merge standard output and error

• -sync [y|n] wait till the job finishes

• -l mem_free=1G set required amount of memory

• -l h_vmem=1G set maximum amount of memory; stop job if exceeded

• -hold_jid comma_separated_job_list jobs that must finish before this job starts

• environmental variable JOB_ID

• environmental variable JOB_NAME

Array jobs:

• -t 1-n start array job with n jobs numbered 1 . . . n

• environmental variable SGE_TASK_ID (sometimes GE_TASK_ID in different SGE versions)

• output and error files $JOB_NAME.[eo]$JOB_ID.$TASK_ID

• -t m-n[:s] start array job with jobs m,m + s, ..., n

• environmental variables SGE_TASK_FIRST, SGE_TASK_LAST, SGE_TASK_STEPSIZE

• -tc j run at most j jobs simultaneously

• -hold_jid_ad comma_separated_job_list array jobs that must finish before this job
starts; task i depends only on task i of specified jobs

qstat: List of running jobs

Detailed information about a job can be obtained using qstat -j job_id.

qdel: Stops jobs with given ids

qrsh: Starts interactive shell – think ssh

1



Dumbo and Hadoop::Streaming Examples

def mapper(key, value): sub map {

for word in value.split(): my ($self, $line) = @_;

yield word, 1 my ($key, $value) = split /\t/, $line, 2;

foreach my $word (split /\s+/, $value) {

$self->emit($word => 1);

}

def reducer(key, values): sub reduce {

yield key, sum(values) my ($self, $key, $values) = @_;

my $count;

for ($count = 0; $values->has_next(); $count++) {

$values->next;

if __name__ == "__main__": }

import dumbo $self->emit( $key => $count );

dumbo.run(mapper, reducer) }

Tasks

Assume we have Wikipedia content – pairs (article name, article content). Tasks:

• Find unique article names.

• Find unique words used in articles.

• Count all unique words in the articles.

• Compute inverted index – for every word, compute sorted (article of occurrence, position
of occurrence) pairs of its occurrences.

• Ideally the articles would be identified using numeric id.

• Create simple N -gram language model – count number of occurrences of unigrams, bi-
grams, . . . , N -grams. The N -gram language model should be reasonably efficient. One
possible algorithm:

• Compute the unique words of the corpus, filter out the words that have only one
occurrence, sort them according to the number of their occurrences and number
them from 1.

• In order to represent N -gram, use the N numbers identifying the words, followed by
a 0. Store the numbers using variable-length encoding (smaller numbers take less
bytes, e.g. pack ’w*’, @word_numbers, 0 in Perl).

• One file of the resulting index should contain a sorted list of (N-gram representation,
occurrences) pairs, where N -gram representation is described above and occurrence
is a variable-length encoded number of occurrences. No separators are necessary.

• Every data file should also be accompanied by an index file, which contains every
10001-th N -gram representation of the data file, together with the byte offset of that
N -gram representation in the data file. (The motivation behind the index file is that
it will be read into memory and if an N -gram is searched for, it will point to the
possible position in the data file.)

• The N-gram representation in one data file should be all smaller or larger than in
another data file.

Design suitable representation and solutions when using both SGE and MapReduce framework.

1You are free to choose better Pivejc constant

2


