
Univerzita Karlova v Praze
Matematicko-fyzikálnı́ fakulta

Funkčnı́ arabská morfologie

Formálnı́ systém a implementace

Otakar Smrž

Autoreferát dizertačnı́ práce

I-3 Matematická lingvistika

Praha 2007

Dizertačnı́ práce byla vypracována v rámci doktorského studia uchazeče na
Matematicko-fyzikálnı́ fakultě Univerzity Karlovy v Praze (MFF UK) v letech
2001–2007.

Uchazeč Mgr. Otakar Smrž

Školitelka Mgr. Barbora Vidová Hladká, Ph.D.

Školicı́ pracoviště Ústav formálnı́ a aplikované lingvistiky
Matematicko-fyzikálnı́ fakulta
Univerzita Karlova v Praze
Malostranské náměstı́ 25, Praha, 118 00

Oponenti Doc. RNDr. Jan Hajič, Dr.
Ústav formálnı́ a aplikované lingvistiky
Matematicko-fyzikálnı́ fakulta
Univerzita Karlova v Praze
Malostranské náměstı́ 25, Praha, 118 00

Nizar Y. Habash, Ph.D.
Center for Computational Learning Systems
Columbia University
850 Interchurch Center, MC 7717
475 Riverside Drive, New York, NY 10115

Předsedkyně OR I-3 Prof. PhDr. Jarmila Panevová, DrSc.

Autoreferát byl rozeslán dne 15. srpna 2007.

Obhajoba dizertačnı́ práce se koná dne 17. zářı́ 2007 od 8.30 hodin v budově
MFF UK, Ke Karlovu 3, Praha 2, mı́stnost M252 (105). S dizertačnı́ pracı́ je
možno se seznámit na studijnı́m oddělenı́ doktorského studia MFF UK, Ke
Karlovu 3, Praha 2.

Charles University in Prague
Faculty of Mathematics and Physics

Functional Arabic Morphology

Formal System and Implementation

Otakar Smrž

Dissertation Summary

I-3 Mathematical Linguistics

Prague 2007

The results comprised in the thesis were obtained within the candidate’s doc-
toral studies at the Faculty of Mathematics and Physics, Charles University in
Prague (MFF UK), during the years 2001–2007.

Candidate Mgr. Otakar Smrž

Supervisor Mgr. Barbora Vidová Hladká, Ph.D.

Department Institute of Formal and Applied Linguistics
Faculty of Mathematics and Physics
Charles University in Prague
Malostranské náměstı́ 25, Praha, 118 00

Opponents Doc. RNDr. Jan Hajič, Dr.
Institute of Formal and Applied Linguistics
Faculty of Mathematics and Physics
Charles University in Prague
Malostranské náměstı́ 25, Praha, 118 00

Nizar Y. Habash, Ph.D.
Center for Computational Learning Systems
Columbia University
850 Interchurch Center, MC 7717
475 Riverside Drive, New York, NY 10115

I-3 Board Chair Prof. PhDr. Jarmila Panevová, DrSc.

The summary was disseminated on August 15, 2007.

The thesis defense will be held on September 17, 2007 from 8.30 a.m. in the
building of MFF UK, Ke Karlovu 3, Praha 2, room M252 (105). The thesis
is available for perusal at the department of doctoral studies at MFF UK, Ke
Karlovu 3, Praha 2.

1 Introduction

Functional Arabic Morphology is a formulation of the Arabic inflectional sys-
tem seeking the working interface between morphology and syntax. ElixirFM is
its high-level implementation that reuses and extends the Functional Morphol-
ogy library for Haskell (Forsberg and Ranta, 2004), yet in the language-specific
issues constitutes our original work.

In the thesis, we develop a computational model of the morphological pro-
cesses in Arabic. With this system, we become able to derive and inflect words,
as well as analyze the structure of word forms and recognize their grammatical
functions.

The approach to building our morphological model strives to be compre-
hensive with respect to linguistic generalization, and high-level and modern
with respect to the programming techniques that we employ. We describe the
linguistic concept and try to implement it in a very similar, yet abstract way,
using the declarative functional programming language Haskell. We promote
the flexibility of our system, its reusability and extensibility.

1.1 Morphological Models

One can observe several different streams both in the computational and the
purely linguistic modeling of morphology. Some are motivated by the need to
analyze word forms as to their compositional structure, others consider word
inflection as being driven by the underlying system of the language and the
formal requirements of its grammar.

There are substantial discrepancies between the grammatical descriptions of
Arabic represented e.g. by (Fischer, 2001) or (Holes, 2004), and the information
that the available morphological computational systems provide. One of the
reasons is that there is never a complete consensus on what the grammatical
description should be. The other source of the incompatibility lies in the obser-
vation that many implementations overlook the principal difference between
the function and the form of a linguistic symbol.

Many of the computational models of Arabic morphology, including in
particular (Beesley, 2001), (Ramsay and Mansur, 2001) or (Buckwalter, 2002),
are lexical in nature, i.e. they tend to treat inflectional affixes just like full-
fledged lexical words. As they are not designed in connection with any syntax–
morphology interface, their interpretations are destined to be incremental. That
means that the only clue for discovering a word’s morphosyntactic properties
is through the explicit affixes and their prototypical functions.

Some signs of a lexical–realizational system can be found in (Habash, 2004).
The author mentions and fixes the problem of underdetermination of inherent

5

number with plurals, when developing a generative counterpart to (Buckwal-
ter, 2002).

The computational models in (Cavalli-Sforza et al., 2000) and (Habash et al.,
2005) attempt the inferential–realizational direction. Unfortunately, they imple-
ment only sections of the Arabic morphological system. The Arabic resource
grammar in the Grammatical Framework (El Dada and Ranta, 2006) is perhaps
the most complete inferential–realizational implementation to date. Its style
is compatible with the linguistic description in e.g. (Fischer, 2001) or (Badawi
et al., 2004), but the lexicon is now very limited and some other extensions for
data-oriented computational applications are still needed.

ElixirFM, the implementation of the system developed in this thesis, is in-
spired by the methodology in (Forsberg and Ranta, 2004) and by functional pro-
gramming, just like the Arabic GF is (El Dada and Ranta, 2006). Nonetheless,
ElixirFM reuses the Buckwalter lexicon (Buckwalter, 2002) and the annotations
in the Prague Arabic Dependency Treebank (Hajič et al., 2004b), and imple-
ments a yet more refined linguistic model.

In our view, influenced by the Prague linguistic school and the theory of
Functional Generative Description (Sgall et al., 1986; Sgall, 1967; Panevová,
1980; Hajičová and Sgall, 2003), the task of morphology should be to analyze
word forms of a language not only by finding their internal structure, i.e. recog-
nizing morphs, but even by strictly discriminating their functions, i.e. provid-
ing the true morphemes. This doing in such a way that it should be completely
sufficient to generate the word form that represents a lexical unit and features
all grammatical categories (and structural components) required by context,
purely from the information comprised in the analyses.

It appears from the literature on most other implementations (many sum-
marized in Al-Sughaiyer and Al-Kharashi, 2004) that the Arabic computational
morphology has understood its role in the sense of operations with morphs
rather than morphemes (cf. El-Sadany and Hashish, 1989), and has not con-
cerned itself systematically and to the necessary extent with the role of mor-
phology for syntax. In other terms, the syntax–morphology interface has not
been clearly established and respected.

The outline of formal grammar in (Ditters, 2001), for instance, works with
grammatical categories like number, gender, humanness, definiteness, but one
cannot see which of the existing systems could provide for this information
correctly, as they misinterpret some morphs for bearing a category, and un-
derdetermine lexical morphemes in general as to their intrinsic morphologi-
cal functions. Nowadays, the only exception to this is the Arabic Grammatical
Framework (El Dada and Ranta, 2006; Dada, 2007), which implements its own
morphological and syntactic model.

6

Certain syntactic parsers, like (Othman et al., 2003), may resort to their own
morphological analyzers, but still, they do not get rid of the form of an ex-
pression and only incidentally introduce truly functional categories. In syn-
tactic considerations they often call for discriminative extra-linguistic features
instead. Commercial systems, e.g. (Chalabi, 2004), do not seem to overcome this
interference either.

1.2 Reused Software

The ElixirFM implementation of Functional Arabic Morphology would not
have come to being were it not for many open-source software projects that
we could use during our work, or by which we got inspired.

ElixirFM and its lexicons are licensed under GNU GPL and are available
on http://sourceforge.net/projects/elixir-fm/, and so is other ac-
companying software (MorphoTrees, Encode Arabic) and the source code of
this thesis (ArabTEX extensions, TreeX).

ElixirFM 1.0 is intended for use with the Hugs interactive interpreter of
Haskell, available for a number of platforms via http://haskell.org/

hugs/.

Buckwalter Arabic Morphological Analyzer

The bulk of lexical entries in ElixirFM is extracted from the data in the Buck-
walter lexicon (Buckwalter, 2002). We devised an algorithm in Perl using the
morphophonemic patterns of ElixirFM that finds the roots and templates of the
lexical items, as they are available only partially in the original, and produces
the ElixirFM lexicon in customizable formats for Haskell and for Perl.

Functional Morphology Library

Functional Morphology (Forsberg and Ranta, 2004) is both a methodology for
modeling morphology in a paradigmatic manner, and a library of purposely
language-independent but customizable modules and functions for Haskell. It
partly builds on the Zen computational toolkit for Sanskrit (Huet, 2002). Func-
tional Morphology is also related to the Grammatical Framework, cf. (El Dada
and Ranta, 2006) and http://www.cs.chalmers.se/˜markus/FM/.

TrEd Tree Editor

TrEd http://ufal.mff.cuni.cz/˜pajas/tred/ is a general-purpose
graphical editor for trees and tree-like graphs written by Petr Pajas. It is im-
plemented in Perl and is designed to enable powerful customization and macro

7

http://sourceforge.net/projects/elixir-fm/
http://haskell.org/hugs/
http://haskell.org/hugs/
http://www.cs.chalmers.se/~markus/FM/
http://ufal.mff.cuni.cz/~pajas/tred/

programming. We have extended TrEd with the annotation mode for Mor-
phoTrees.

1.3 Original Contributions

A Recognition of functional versus illusory morphological categories, defini-
tion of a minimal but complete system of inflectional parameters in Arabic

B Morphophonemic patterns and their significance for the simplification of
the model of morphological alternations

C Inflectional invariant and its consequence for the efficiency of morpholog-
ical recognition in Arabic

D Intuitive notation for the structural components of words

E Conversion of the Buckwalter lexicon into a functional format resembling
printed dictionaries

F ElixirFM as a general-purpose model of morphological inflection and
derivation in Arabic, implemented with high-level declarative program-
ming

G Abstraction from one particular orthography affecting the clarity of the
model and extending its applicability to other written representations of
the language

H MorphoTrees as a hierarchization of the process of morphological disam-
biguation

I Expandable morphological positional tags, restrictions on features, their
inheritance

J Open-source implementations of ElixirFM, Encode Arabic, MorphoTrees,
and extensions for ArabTEX

2 Writing & Reading Arabic

In the context of linguistics, morphology is the study of word forms. In for-
mal language theory, the symbols for representing words are an inseparable
part of the definition of the language. In human languages, the concept is a
little different—an utterance can have multiple representations, depending on
the means of communication and the conventions for recording it. An abstract

8

computational morphological model should not be limited to texts written in
one customary orthography.

This chapter explores the interplay between the genuine writing system and
the transcriptions of Arabic. We introduce in detail the ArabTEX notation, a mor-
phophonemic transliteration scheme adopted as the representation of choice for
our general-purpose morphological model. We then discuss the problem of rec-
ognizing the internal structure of words given the various possible types of their
record.

2.1 ArabTEX Notation

The ArabTEX typesetting system (Lagally, 2004) defines its own Arabic script
meta-encoding that covers both contemporary and historical orthography. The
notation is human-readable and very natural to write with. Its design is inspired
by the standard phonetic transcription of Arabic, which it mimics, yet some
distinctions are introduced to make the conversion to the original script or the
transcription unambiguous.

Unlike other transliteration concepts based on the strict one-to-one substitu-
tion of graphemes, ArabTEX interprets the input characters in context in order
to get their proper meaning. Deciding the glyphs of letters (initial, medial, final,
isolated) and their ligatures is not the issue of encoding, but of visualizing of the
script. Nonetheless, definite article assimilation, inference of hamza carriers and
silent ↩alifs, treatment of auxiliary vowels, optional quoting of diacritics or cap-
italization, resolution of notational variants, and mode-dependent processing
remain the challenges for parsing the notation successfully.

ArabTEX’s implementation is documented in (Lagally, 1992), but the pars-
ing algorithm for the notation has not been published except in the form of the
source code. The TEX code is organized into deterministic-parsing macros, yet
the complexity of the whole system makes consistent modifications or exten-
sions by other users quite difficult.

We describe our own implementations of the interpreter in Chapter 9, where
we show how to decode the notation and its proposed extensions. To encode
the Arabic script or its phonetic transcription into the ArabTEX notation requires
heuristic methods, if we want to achieve linguistically appropriate results.

2.2 Recognition Issues

Arabic is a language of rich morphology, both derivational and inflectional. Due
to the fact that the Arabic script does usually not encode short vowels and omits
some other important phonological distinctions, the degree of morphological
ambiguity is very high.

9

In addition to this complexity, Arabic orthography prescribes to concatenate
certain word forms with the preceding or the following ones, possibly changing
their spelling and not just leaving out the whitespace in between them. This
convention makes the boundaries of lexical or syntactic units, which need to be
retrieved as tokens for any deeper linguistic processing, obscure, for they may
combine into one compact string of letters and be no more the distinct ‘words’.

Thus, the problem of disambiguation of Arabic encompasses not only di-
acritization (discussed in Nelken and Shieber, 2005), but even tokenization,
lemmatization, restoration of the structural components of words, and the dis-
covery of their actual morphosyntactic properties, i.e. morphological tagging
(cf. Hajič et al., 2005, plus references therein). These subproblems, of course,
can come in many variants, and are partially coupled.

3 Morphological Theory

This chapter defines lexical words as the tokens on which morphological inflec-
tion proper will operate. We explore in detail what morphosyntactic properties
should be included in the functional model. We discuss the linguistic and com-
putational views on inflectional morphology.

Later in the chapter, we are concerned with Arabic morphology from the
structural perspective, designing original morphophonemic patterns and pre-
senting roots as convenient inflectional invariants.

3.1 Functional and Illusory Categories

Functional Arabic Morphology endorses the inferential–realizational principles
in the morphological theory (cf. Stump, 2001). It re-establishes the system of in-
flectional and inherent morphosyntactic properties (or grammatical categories
or features, in the alternative naming) and discriminates precisely the senses of
their use in the grammar. It also deals with syncretism of forms (cf. Baerman
et al., 2006) that seems to prevent the resolution of the underlying categories in
some morphological analyzers.

In the thesis, we offer examples of morphological analyses disclosing that
grammatical descriptions cannot dispense with a single category for number
or for gender, but rather, that we should always specify the sense in which we
mean these:

functional category is introduced as the morphosyntactic property that is in-
volved in grammatical considerations; we further divide functional cate-
gories into

10

logical categories on which agreement with numerals and quantifiers is
based

formal categories controlling other kinds of agreement or pronominal
reference

illusory category denotes the value derived merely from the morphs of an ex-
pression

Does the classification of the senses of categories actually bring new quality
to the linguistic description? We in detail explore the extent of the differences
in the values assigned. It may, of course, happen that the values for a given
category coincide in all the senses. However, promoting the illusory values to
the functional ones is in principle conflicting:

1. Illusory categories are set only by a presence of some ‘characteristic’
morph, irrespective of the functional categories of the whole expression.

2. If no morph ‘characteristic’ of a value surrounds the word stem and the
stem’s morpheme does not have the right information in the lexicon, then
the illusory category remains unset. It is the particular issue about the
internal/broken plural in Arabic, for which the illusory analyses do not
reveal any values of number nor gender.

The problem concerns every nominal expression individually and pertains
to some verbal forms, too. Functional Arabic Morphology enables the func-
tional gender and number information thanks to the lexicon that can stipu-
late some properties as inherent to some lexemes, and thanks to the paradigm-
driven generation that associates the inflected forms with the desired functions
directly.

3.2 The Pattern Alchemy

In Functional Arabic Morphology, patterns constitute the inventory of phono-
logical melodies of words, regardless of the words’ other functions. Morpho-
phonemic patterns abstract from the consonantal root, which is often recog-
nized or postulated on etymological grounds. Other types of patterns, like the
decomposition into separate CV patterns and vocalisms, can be derived from
the morphophonemic patterns.

Fischer (2001) uses patterns that abstract away from the root, but can in-
clude even inflectional affixes or occasionally restore weak root consonants. For
instance, we can find references to patterns like ↩af↪ala for ↩ah. sana �	á

�
�

�
k

�
@ ‘he did

right’ or ↩ahdā ø
�
Y
�
ë

�
@ ‘he gave’, but ↩af↪alu for ↩a↪lā ú

�
Î
�
«

�
@ ‘higher’. In our model,

11

the morphophonemic pattern pertains to the morphological stem and reflects
its phonological qualities. Thus, our patterns become HaFCaL for ↩ah. sana �	á

�
�

�
k

�
@,

while HaFCY for both ↩ahdā ø
�
Y
�
ë

�
@ and ↩a↪lā ú

�
Î
�
«

�
@.

Beesley (1998) uses the term ‘morphophonemic’ as ‘underlying’, denoting
the patterns like CuCiC or staCCaC or maCCuuC. Yet, he also uses the term for
anything but the surface form, cf. “an interdigitated but still morphophone-
mic stem” or “there may be many phonological or orthographical variations
between these morphophonemic strings and their ultimate surface pronuncia-
tion or spelling” (Beesley, 1998).

Eleven years earlier, Kay (1987) gives an account on finite-state modeling
of the nonconcatenative morphological operations. He calls CV patterns as
‘prosodic templates’, both terms following (McCarthy, 1981). For further ter-
minological explanations, cf. (Kiraz, 2001, pages 27–46).

We build on morphophonemic patterns rather than on CV patterns and vo-
calisms. Words like istaǧāb H. A

�
j.

��
J
�
�@� ‘to respond’ and istaǧwab H.

�
ñ
�
j.

��
J
�
�@� ‘to inter-

rogate’ have the same underlying VstVCCVC pattern, so information on CV
patterns alone would not be enough to reconstruct the differences in the surface
forms. Morphophonemic patterns, in this case IstaFAL and IstaFCaL, can easily
be mapped to the hypothetical CV patterns and vocalisms, or linked with each
other according to their relationship. Morphophonemic patterns deliver more
information in a more compact way.

With this approach, we are also given more precise control on the actual
word forms—we explicitly confirm that the ‘word’ the pattern should create
does undergo the implied transformations. One can therefore speak of ‘weak
patterns’ rather than of ‘weak roots’.

The idea of pre-computing the phonological constraints within CV patterns
into the ‘morphophonemic’ ones is present in (Yaghi and Yagi, 2004), but is
applied to verbs only and is perhaps not understood in the sense of a primary
or full-fledged representation (Yaghi and Yagi, 2004, sec. 5):

The transformation may be made on the morphological pattern it-
self, thus producing a sound surface form template. . . . A coding
scheme is adopted that continues to retain letter origins and radi-
cal positions in the template so that this will not affect [the author’s
model of] affixation. . . . The surface form template can be rewrit-
ten as @�hF 2

���
HhM0 �'hL2ø' AiF2t˜aM0aL2Y. This can be used to form

stems such as ø
�
Y

���
K @� Ait˜adaY by slotting the root ø

Xð wdy.

Yaghi’s templates are not void of root-consonant ‘placeholders’ that actually
change under inflection, cf. hF 2 hL2 indexed by the auxiliary integers to denote
their ‘substitutability’. The template, on the other hand, reflects some of the

12

orthographic details and includes Form VIII assimilations that can be abstracted
from, cf. esp. the

���
H t˜a group.

With Functional Arabic Morphology, the morphophonemic pattern of ittadā
ø

�
Y

���
K @� is simply IFtaCY, the root being wdy ø

Xð. One of its inflected forms is

IFtaCY |<< "tumA" ittadaytumā A
�
Ò
��
J
�
K

�
Y

���
K @� ‘the two of you accepted compensation’,

to follow again the example in (Yaghi and Yagi, 2004). We describe the essence
of this notation in Chapter 5.

CV templates are viewed from the perspective of moraic templates in the
Prosodic Morphology (McCarthy and Prince, 1990), later discussed by Kiraz
(2001) within his development of a multitier nonlinear morphological model.
Given that we can define a mapping from morphophonemic templates into
prosodic or moraic templates, which we easily can, we claim that the prosodic
study of the templates is separable from the modeling of morphology.

3.3 The Inflectional Invariant

In our approach, we define roots as sequences of consonants. In most cases,
roots are triliteral, such as k t b I.

�
J», q w m Ðñ

�
¯, d s s ��X, r ↩y ø

@P, or quadriliteral,

like d h. r ǧ h. QkX, t. m ↩n 	
à

AÒ£, z l z l È 	QË 	P.

Roots in Arabic are, somewhat by definition, inflectional invariants. Unless
a root consonant is weak, i.e. one of y, w or ↩, and unless it assimilates inside a
Form VIII pattern, then this consonant will be part of the inflected word form.
This becomes apparent when we consider the repertoire and the nature of mor-
phophonemic patterns.

The corollary is that we can effectively exploit the invariant during recogni-
tion of word forms. We can check the derivations and inflections of the identi-
fied or hypothesized roots only, and need not inflect the whole lexicon before
analyzing the given inflected forms in question!

While this seems the obvious way in which learners of Arabic analyze un-
known words to look them up in the dictionary, it contrasts strongly with the
practice in the design of computational analyzers, where finite-state transducers
(Beesley and Karttunen, 2003), or analogously tries (Forsberg and Ranta, 2004;
Huet, 2002), are most often used. Of course, other languages than Arabic need
not have such convenient invariants.

4 Impressive Haskell

Haskell http://haskell.org/ is a purely functional programming lan-
guage based on typed λ-calculus, with lazy evaluation of expressions and many
impressive higher-order features.

13

http://haskell.org/

It is beyond the scope of the work to give any general, yet accurate account
of the language. We only overview some of its characteristics and point to
Haskell’s website for the most appropriate introduction and further references.

In Chapter 5, we exemplify and illustrate the features of Haskell step by step
while developing ElixirFM. In Chapter 9, we present the implementation of a
grammar of rewrite rules for Encode Arabic.

5 ElixirFM Design

ElixirFM is a high-level implementation of Functional Arabic Morphology. It
reuses and extends the Functional Morphology for Haskell (Forsberg and Ranta,
2004), yet in the language-specific issues constitutes our original work.

Inflection and derivation are modeled in terms of paradigms, grammatical
categories, lexemes and word classes. The functional and structural aspects of
morphology are clearly separated. The computation of analysis or generation is
conceptually distinguished from the general-purpose linguistic model.

The lexicon of ElixirFM is designed with respect to abstraction, yet is no
more complicated than printed dictionaries. It is derived from the open-source
Buckwalter lexicon (Buckwalter, 2002).

In Section 5.1, we survey some of the categories of the syntax–morphology
interface in Modern Written Arabic, described by Functional Arabic Morphol-
ogy. In passing, we introduce the basic concepts of programming in Haskell,
a modern purely functional language that is an excellent choice for declarative
generative modeling of morphologies, cf. (Forsberg and Ranta, 2004).

Section 5.2 is devoted to describing the lexicon of ElixirFM. We develop a so-
called domain-specific language embedded in Haskell with which we achieve
lexical definitions that are simultaneously a source code that can be checked for
consistency, a data structure ready for rather independent processing, and still
an easy-to-read-and-edit document resembling the printed dictionaries.

In Section 5.3, we illustrate how rules of inflection and derivation interact
with the parameters of the grammar and the lexical information. We claim the
reusability of the system in many applications, including computational anal-
ysis and generation in various modes, exploring and exporting of the lexicon,
printing of the inflectional paradigms, etc.

5.1 Morphosyntactic Categories

Inflection of nominals is subject to several formal requirements, which differ-
ent morphological models decompose differently into features and values that
are not always complete with respect to the inflectional system, nor mutually

14

orthogonal. We explain what we mean by revisiting the notions of state and
definiteness in contemporary written Arabic.

Functional Arabic Morphology refactors the category of state, also denoted
as formal definiteness, depending on two parameters. The first controls prefix-
ation of the (virtual) definite article, the other reduces some suffixes if the word
is a head of an annexation. In ElixirFM, we define these parameters as type
synonyms to standard Haskell types:

type Definite = Maybe Bool
type Annexing = Bool

The Definite values include Just True for forms with the definite article,
Just False for forms in some compounds or after lā B

�
or yā A

�
K
 (absolute nega-

tives or vocatives), and Nothing for forms that reject the definite article for other
reasons. The State category is in our view considered as a result of coupling
the two independent parameters:

type State = Couple Definite Annexing

Thus, the indefinite state describes a word void of the definite article(s) and
not heading an annexation, i.e. Nothing :-: False. Conversely, ar-rafı̄↪ū ñ

�
ªJ

	
�̄
��QË
�
@

‘the-highs-of’ is in the state Just True :-: True. The classical construct state is
Nothing :-: True. The definite state is Just _ :-: False, where _ is True for
El Dada and Ranta (2006) and False for Fischer (2001).

5.2 ElixirFM Lexicon

Unstructured text is just a list of characters, or string. Yet words do have struc-
ture, particularly in Arabic. We work with strings as the superficial word forms,
but the internal representations are more abstract (and computationally more
efficient, too).

The definition of lexemes can include the derivational root and pattern infor-
mation if appropriate, cf. (Habash et al., 2005), and our model does encourage
this. The surface word kitāb H. A

��
J»� ‘book’ can decompose to the triconsonantal

root k t b I.
�
J» and the morphophonemic pattern FiCAL:

data PatternT = FaCaL | FAL | FaCY | FaCL

| HaFCAL | HACAL | HaFCA’

| FiCAL | FiCA’

| FuCCAL | FUCAL

| TaFACuL | TaFACI

| MustaFCaL | {- ... -} | MustaFaCL

| {- ... -} deriving (Eq, Enum, Show)

15

The deriving clause associates the type PatternT with methods for testing
equality, enumerating all the values, and turning the names of the values into
strings. Of course, ElixirFM provides functions for properly interlocking the
patterns with the roots:

. . . ? merge "k t b" FiCAL −→ "kitAb"

. . . ? merge "ˆg w b" IstaFAL −→ "istaˆgAb"

. . . ? merge "ˆg w b" IstaFCaL −→ "istaˆgwab"

. . . ? merge "s ’ l" MaFCUL −→ "mas’Ul"

. . . ? merge "z h r" IFtaCaL −→ "izdahar"

The izdahar Q
�
ë
�
X 	P@� ‘to flourish’ case exemplifies that exceptionless assimila-

tions need not be encoded in the patterns, but can instead be hidden in rules.
The whole generative model adopts the notation of ArabTEX (Lagally, 2004)

as a meta-encoding of both the orthography and phonology. Therefore, instan-
tiation of the "’" hamza carriers or other merely orthographic conventions do
not obscure the morphological model. With Encode Arabic interpreting the no-
tation, ElixirFM can at the surface level process the original Arabic script (non-
)vocalized to any degree or work with some kind of transliteration or even tran-
scription thereof.

Morphophonemic patterns represent the stems of words. The various kinds
of abstract prefixes and suffixes can be expressed either as atomic values, or as
literal strings wrapped into extra constructors:

data Prefix = Al | LA | Prefix String

data Suffix = Iy | AT | At | An | {- ... -} | Suffix String

al = Al; lA = LA -- function synonyms

aT = AT; ayn = Ayn; aN = Suffix "aN"

Affixes and patterns are arranged together via the Morphs a data type, where
a is a triliteral pattern PatternT or a quadriliteral PatternQ or a non-templatic
word stem Identity of type PatternL:

data PatternL = Identity

data PatternQ = KaRDaS | KaRADiS {- ... -}

data Morphs a = Morphs a [Prefix] [Suffix]

The word lā-silkı̄y
�
ú

¾
�
Ê�
�
B
�

‘wireless’ can thus be decomposed as the root s l k
½Ê� and the value Morphs FiCL [LA] [Iy]. Shunning such concrete represen-
tations, we define new operators >| and |< that denote prefixes, resp. suffixes,
inside Morphs a:

16

. . . ? lA >| FiCL |< Iy −→ Morphs FiCL [LA] [Iy]

With the introduction of patterns, their synonymous functions and the >|

and |< operators, we start developing what can be viewed as a domain-specific
language embedded in the general-purpose programming language. Encour-
aged by the flexibility of many other domain-specific languages in Haskell, we
design the lexicon to look like in Figure 1, yet be a verifiable source code defin-
ing a directly interpretable data structure.

The lexicon of ElixirFM is derived from the open-source Buckwalter lexicon
(Buckwalter, 2002). We devised an algorithm in Perl using the morphophone-
mic patterns of ElixirFM that finds the roots and templates of the lexical items,
as they are available only partially in the original, and produces the lexicon in
formats for Perl and for Haskell.

5.3 Morphological Rules

Inferential–realizational morphology is modeled in terms of paradigms, gram-
matical categories, lexemes and word classes. ElixirFM implements the com-
prehensive rules that draw the information from the lexicon and generate the
word forms given the appropriate morphosyntactic parameters. The whole is
invoked through a convenient inflect method.

The lexicon and the parameters determine the choice of paradigms. The
template selection mechanism differs for nominals (providing plurals) and for
verbs (providing all needed stem alternations in the extent of the entry specifi-
cations of e.g. Hans Wehr’s dictionary), yet it is quite clear-cut!

In Figure 2, the algebraic data type ParaVerb restricts the space in which
verbs are inflected by defining three Cartesian products of the elementary cat-
egories: a verb can have VerbP perfect forms inflected in voice, person, gender,
number, VerbI imperfect forms inflected also in mood, and VerbC imperatives
inflected in gender and number only.

The paradigm for inflecting imperatives, the only such paradigm in
ElixirFM, is implemented as paraVerbC. It is a function parametrized by some
particular value of gender g and number n, as well as the initial imperative pre-
fix i and the verbal stem (both inferred from the morphophonemic patterns in
the lexical entry) and yielding the inflected form.

The definition of paraVerbC is simple and concise due to the chance to com-
pose with . the partially applied prefix and suffix functions and to virtually
omit the next argument. This advanced formulation may seem not as minimal
as when specifying the literal endings or prefixes, but we present it here to il-
lustrate the options that there are. An abstract paradigm can be used on more

17

abstract types than just strings. Inflected forms need not be merged with roots
yet, and can retain the internal structure:

. . . ? paraVerbC Feminine Plural "u" FCuL −→

"u" >>| FCuL |<< "na"

. . . ? merge "k t b" (Prefix "u" >| FCuL |< Suffix "na") −→

"uktubna" uktubna
�	á
�
�.

��
J
�
»
�
@ fem.pl. ‘write!’

The highlight of the Arabic morphology is that the ‘irregular’ inflection ac-
tually rests in strictly observing some additional rules, the nature of which is
phonological. Therefore, surprisingly, ElixirFM does not even distinguish be-
tween verbal and nominal word formation when enforcing these rules. This
reduces the number of paradigms to the prototypical 3 verbal and 5 nominal!
Yet, the model is efficient.

Nominal inflection is also driven by the information from the lexicon and
by phonology. Note that the morphophonemic patterns and the Morphs a tem-
plates are actually extremely informative. We can use them as determining the
inflectional class and the paradigm function, and thus we can almost avoid
other unintuitive or excessive indicators of the kind of weak morphology, dip-
totic inflection, and the like.

5.4 Applications

The ElixirFM linguistic model and the data of the lexicon can be integrated into
larger applications or used as standalone libraries and resources.

The language-independent part of the system could rest in the Functional
Morphology library (Forsberg and Ranta, 2004). Among other useful things, it
implements the compilation of the inflected word forms and their associated
morphosyntactic categories into morphological analyzers and generators. The
method used for analysis is deterministic parsing with tries, cf. also (Huet, 2002;
Ljunglöf, 2002).

Nonetheless, ElixirFM provides its original analysis method exploiting the
inflectional invariant defined in Chapter 3. We can, at least in the present ver-
sion of the implementation, dispense with the compilation into tries, and we
use rather minimal computational resources.

We define a class of types that can be Resolved, which introduces one rather
general method resolveBy and one more specific method resolve, for which
there is a default implementation. It says that the form in question should be
resolved by equality (==) with the inflected forms in the model. The generic
resolveBy method can be esp. used for recognition of partially vocalized or

18

completely non-vocalized representations of Arabic, or allow in fact arbitrary
kinds of omissions, cf. Chapter 6.

Reusing and extending the original Functional Morphology library,
ElixirFM also provides functions for exporting and pretty-printing the linguistic
model into XML, LATEX, Perl, SQL, and other custom formats.

6 Other Listings

This chapter is a non-systematic overview of the features of ElixirFM. It can
serve as a tutorial for the first sessions with ElixirFM in the environment of the
Hugs interpreter. Here, we present just a couple of examples.

ElixirFM> inflect (FiCAL ‘noun‘ []) "--------2-"

[("N------S2I",[("f ‘ l",FiCAL |<< "iN")]),("N------S2R",[(......

,("N------D2L",[("f ‘ l",FiCAL |<< "ay")]),...,("N------P2L",[])]

ElixirFM> pretty $

inflect (RE "k t b" $ FiCAL ‘noun‘ []) "-------S2[IDR]"

("N------S2I",[("k t b",FiCAL |<< "iN")])

("N------S2R",[("k t b",FiCAL |<< "i")])

("N------S2D",[("k t b",al >| FiCAL |<< "i")])

ElixirFM> uncurry merge ("k t b", FiCAL |<< "iN")

"kitAbiN"

ElixirFM> pretty $

inflect (RE "k t b" $ FiCAL ‘noun‘ [] ‘plural‘ FuCuL)

"-------P2[IDR]"

("N------P2I",[("k t b",FuCuL |<< "iN")])

("N------P2R",[("k t b",FuCuL |<< "i")])

("N------P2D",[("k t b",al >| FuCuL |<< "i")])

ElixirFM> pretty $ resolveBy (omitting "aiuAUI") "ktbuN"

N------S1I kitAbuN "k t b" FiCAL ["book"]

N------P1I kutubuN "k t b" FiCAL ["book"]

N------S1I kAtibuN "k t b" FACiL ["writer","author","clerk"]

A-----MS1I kAtibuN "k t b" FACiL ["writing"]

ElixirFM> pretty $

resolveBy (omitting $

(encode UCS . decode Tim) "˜aiuKNF")

(decode Tim "ktAb")

19

N------S1I kitAbuN "k t b" FiCAL ["book"]

N------S1R kitAbu "k t b" FiCAL ["book"]

N------S1A kitAbu "k t b" FiCAL ["book"]

N------S1L kitAbu "k t b" FiCAL ["book"]

N------S2I kitAbiN "k t b" FiCAL ["book"]

N------S2R kitAbi "k t b" FiCAL ["book"]

N------S2A kitAbi "k t b" FiCAL ["book"]

N------S2L kitAbi "k t b" FiCAL ["book"]

N------S4R kitAba "k t b" FiCAL ["book"]

N------S4A kitAba "k t b" FiCAL ["book"]

N------S4L kitAba "k t b" FiCAL ["book"]

N------P1I kuttAbuN "k t b" FACiL ["writer","author","clerk"]

N------P1R kuttAbu "k t b" FACiL ["writer","author","clerk"]

N------P1A kuttAbu "k t b" FACiL ["writer","author","clerk"]

N------P1L kuttAbu "k t b" FACiL ["writer","author","clerk"]

N------P2I kuttAbiN "k t b" FACiL ["writer","author","clerk"]

N------P2R kuttAbi "k t b" FACiL ["writer","author","clerk"]

N------P2A kuttAbi "k t b" FACiL ["writer","author","clerk"]

N------P2L kuttAbi "k t b" FACiL ["writer","author","clerk"]

N------P4R kuttAba "k t b" FACiL ["writer","author","clerk"]

N------P4A kuttAba "k t b" FACiL ["writer","author","clerk"]

N------P4L kuttAba "k t b" FACiL ["writer","author","clerk"]

7 MorphoTrees

MorphoTrees (Smrž and Pajas, 2004) is the idea of building effective and intu-
itive hierarchies over the information presented by morphological systems. It is
especially interesting for Arabic and the Functional Arabic Morphology, yet, it
is not limited to the language, nor to the formalism, and various extensions are
imaginable.

7.1 The MorphoTrees Hierarchy

As an inspiration for the design of the hierarchies, consider the following analy-
ses of the string fhm Ñê

	
¯. Some readings will interpret it as just one token related

to the notion of ‘understanding’, but homonymous for several lexical units,
each giving many inflected forms, distinct phonologically despite their identical
spelling in the ordinary non-vocalized text. Other readings will decompose the
string into two co-occurring tokens, the first one, in its non-vocalized form f

	
¬,

standing for an unambiguous conjunction, and the other one, hm Ñë, analyzed
as a verb, noun, or pronoun, each again ambiguous in its functions.

Clearly, this type of concise and ‘structured’ description does not come
ready-made—we have to construct it on top of the overall morphological

20

knowledge. We can take the output solutions of morphological analyzers and
process them according to our requirements on tokenization and ‘functionality’
stated above. Then, we can merge the analyses and their elements into a five-
level hierarchy similar to that of Figure 3. The leaves of it are the full forms of
the tokens plus their tags as the atomic units. The root of the hierarchy repre-
sents the input string, or generally the input entity (some linear or structured
subpart of the text). Rising from the leaves up to the root, there is the level of
lemmas of the lexical units, the level of non-vocalized canonical forms of the to-
kens, and the level of decomposition of the entity into a sequence of such forms,
which implies the number of tokens and their spelling.

Note that the MorphoTrees hierarchy itself might serve as a framework for
evaluating morphological taggers, lemmatizers and stemmers of Arabic, since
it allows for resolution of their performance on the different levels, which does
matter with respect to the variety of applications.

7.2 MorphoTrees Disambiguation

The annotation of MorphoTrees rests in selecting the applicable sequence of
tokens that analyze the entity in the context of the discourse. In a naive setting,
an annotator would be left to search the trees by sight, decoding the information
for every possible analysis before coming across the right one. If not understood
properly, the supplementary levels of the hierarchy would rather tend to be a
nuisance . . .

Instead, MorphoTrees in TrEd take great advantage of the hierarchy and
offer the option to restrict one’s choice to subtrees and hide those leaves or
branches that do not conform to the criteria of the annotation. Moreover, many
restrictions are applied automatically, and the decisions about the tree can be
controlled in a very rapid and elegant way.

The MorphoTrees of the entity fhm Ñê
	
¯ in Figure 3 are in fact annotated al-

ready. The annotator was expecting, from the context, the reading involving
a conjunction. By pressing the shortcut c at the root node, he restricted the
tree accordingly, and the only one eligible leaf satisfying the C--------- tag
restriction was selected at that moment. Nonetheless, the fa-

�	
¬ ‘so’ conjunction

is part of a two-token entity, and some annotation of the second token must
also be performed. Automatically, all inherited restrictions were removed from
the hm Ñë subtree (notice the empty tag in the flag over it), and the subtree
unfolded again. The annotator moved the node cursor to the lemma for the
pronoun, and restricted its readings to the nominative --------1- by pressing
another mnemonic shortcut 1, upon which the single conforming leaf hum Ñ

�
ë

‘they’ was selected automatically. There were no more decisions to make and
the annotation proceeded to the next entity of the discourse.

21

Alternatively, the annotation could be achieved merely by typing s1. The
restrictions would unambiguously lead to the nominative pronoun, and then,
without human intervention, to the other token, the unambiguous conjunction.
These automatic decisions need no linguistic model, yet are very effective.

7.3 Further Discussion

Hierarchization of the selection task seems to be the most important contribu-
tion of the idea. The suggested meaning of the levels of the hierarchy mir-
rors the linguistic theory and also one particular strategy for decision-making,
neither of which are universal. If we adapt MorphoTrees to other languages
or hierarchies, the power of trees remains, though—efficient top-down search
or bottom-up restrictions, gradual focusing on the solution, refinement, inheri-
tance and sharing of information, etc.

The levels of MorphoTrees are extensible internally as well as externally in
both directions, and the concept incites new views on some issues encompassed
by morphological analysis and disambiguation.

In PADT, whose MorphoTrees average roughly 8–10 leaves per entity de-
pending on the data set while the result of annotation is 1.16–1.18 tokens per
entity, restrictions as a means of direct access to the solutions improve the speed
of annotation significantly.

We propose to evaluate tokenizations in terms of the Longest Common Sub-
sequence problem (cf. Crochemore et al., 2000). The tokens that are the members
of the LCS with some referential tokenization, are considered correctly recog-
nized. Dividing the length of the LCS by the length of one of the sequences,
we get recall, doing it for the other of the sequences, we get precision. The
harmonic mean of both is Fβ=1-measure (cf. Manning and Schütze, 1999).

8 Lexicon versus Treebank

This chapter outlines the structure of linguistic description in the framework of
Functional Generative Description and motivates our specific concerns about
Arabic within the Prague Arabic Dependency Treebank.

8.1 Functional Description of Language

Prague Arabic Dependency Treebank (Hajič et al., 2004a,b) is a project of ana-
lyzing large amounts of linguistic data in Modern Written Arabic in terms of the
formal representation of language that originates in the Functional Generative

22

Description (Sgall et al., 1986; Sgall, 1967; Panevová, 1980; Hajičová and Sgall,
2003).

In this theory, the formal representation delivers the linguistic meaning of
what is expressed by the surface realization, i.e. the natural language. The de-
scription is designed to enable generating the natural language out of the formal
representations. By constructing the treebank, we provide a resource for com-
putational learning of the correspondences between both languages, the natural
and the formal.

Morphological annotations identify the textual forms of a discourse lexically
and recognize the morphosyntactic categories that the forms assume. Process-
ing on the analytical level describes the superficial syntactic relations present in
the discourse, whereas the tectogrammatical level reveals the underlying struc-
tures and restores the linguistic meaning (cf. Sgall et al., 2004).

Linguistic data, i.e. mostly newswire texts in their original written form, are
gradually analyzed in this system of levels, and their linguistic meaning is thus
reconstructed and made explicit.

8.2 Analytical Syntax

The tokens with their disambiguated grammatical information enter the anno-
tation of analytical syntax (Žabokrtský and Smrž, 2003; Hajič et al., 2004b). This
level is formalized into dependency trees the nodes of which are the tokens. Re-
lations between nodes are classified with analytical syntactic functions. More
precisely, it is the whole subtree of a dependent node that fulfills the particular
syntactic function with respect to the governing node.

In Figure 4, we analyze a verbal sentence with coordination and a subordi-
nate relative clause. Coordination is depicted with a diamond node and dashed
‘dependency’ edges between the coordination node and its member coordi-
nants.

Both clauses and nominal expressions can assume the same analytical
functions—the attributive clause in our example is Atr, just like in the case of
nominal attributes. Pred denotes the main predicate, Sb is subject, Obj is ob-
ject, Adv stands for adverbial. AuxP, AuxY and AuxK are auxiliary functions of
specific kinds.

The coordination relation is different from the dependency relation, how-
ever, we can depict it in the tree-like manner, too. The coordinative node be-
comes Coord, and the subtrees that are the members of the coordination are
marked as such (cf. dashed edges). Dependents modifying the coordination
as a whole would attach directly to the Coord node, yet would not be marked
as coordinants—therefrom, the need for distinguishing coordination and pure
dependency in the trees.

23

The immediate-dominance relation that we capture in the annotation is
independent of the linear ordering of words in an utterance, i.e. the linear-
precedence relation (Debusmann, 2006). Thus, the expressiveness of the depen-
dency grammar is stronger than that of phrase-structure context-free grammar.
The dependency trees can become non-projective by featuring crossing depen-
dencies, which reflects the possibility of relaxing word order while preserving
the links of grammatical government.

8.3 Tectogrammatics

The analytical syntax is yet a precursor to the deep syntactic annotation (Sgall
et al., 2004; Mikulová et al., 2006). Note these characteristics of the tectogram-
matical level, and compare the representations in Figures 4 & 5:

deleted nodes only autosemantic lexemes and coordinative nodes are involved
in tectogrammatics; synsemantic lexemes, such as prepositions or parti-
cles, are deleted from the trees and may instead reflect in the values of
deep grammatical categories, called grammatemes, that are associated with
the relevant autosemantic nodes

inserted nodes autosemantic lexemes that do not appear explicitly in the sur-
face syntax, yet that are demanded as obligatory by valency frames or by
other criteria of tectogrammatical well-formedness, are inserted into the
deep syntactic structures; the elided lexemes may be copies of other ex-
plicit nodes, or may be restored even as generic or unspecified

functors are the tectogrammatical functions describing deep dependency rela-
tions; the underlying theory distinguishes arguments (inner participants:
ACTor, PATient, ADDRessee, ORIGin, EFFect) and adjuncts (free mod-
ifications, e.g.: LOCation, CAUSe, MANNer, TimeWHEN, ReSTRictive,
APPurtenance) and specifies the type of coordination (e.g. CONJunctive,
DISJunctive, ADVerSative, ConSeQuential)

grammatemes are the deep grammatical features that are necessary for proper
generation of the surface form of an utterance, given the tectogrammatical
tree as well (cf. Hajič et al., 2004b)

coreference pronouns are matched with the lexical mentions they refer to; we
distinguish grammatical coreference (the coreferent is determined by gram-
mar) and textual coreference (otherwise); in Figure 5, the black dotted arcs
indicate grammatical coreference, the loosely dotted red curves denote
textual coreference.

24

Note the differences in the set of nodes actually represented, esp. the re-
stored ADDRessee which is omitted in the surface form of the sentence, but is
obligatory in the valency frame of the semantics of the PREDicate.

8.4 Dependency and Inherent vs. Inflectional Properties

Analytical syntax makes the agreement relations more obvious. We can often
use those relations to infer information on inherent lexical properties as to gen-
der, number, and humanness, as other words in the relation can, with their
inflectional properties, provide enough constraints.

So this problem is a nice example for constraint programming. Our experi-
ments with the treebank so far have been implemented in Perl, and the inference
algorithm was not optimal. Neither was the handling of constraints that (per-
haps by an error in the annotation) contradict the other ones. Anyway, we did
arrive at promising preliminary results.

These experiments have not been fully completed, though, and their revi-
sion is needed. In view of that, we consider formulating the problem in the
Mozart/Oz constraint-based programming environment (Van Roy and Haridi,
2004, chapters 9 and 12).

8.5 Tectogrammatics and Derivational Morphology

We can define default derivations of participles and deverbal nouns, the
mas.dars, or consider transformations of patterns between different derivational
forms, like in the case of Czech where lexical-semantic shifts are also enforced in
the valency theory (cf. Žabokrtský, 2005). If the default happens to be inappro-
priate, then a lexical entry can be extended to optionally include the lexicalized
definition of the information that we might require.

The concrete transformations that should apply on the tectogrammatical
level are a research in progress, performed by the whole PADT team.

The ability to do the transformations, however, is expected in near future as
a direct extension of the ElixirFM system.

9 Encode Arabic

This chapter contains details about the implementations related to process-
ing the ArabTEX notation and its extensions. The mentioned software is
open-source and is available via http://sourceforge.net/projects/

encode-arabic/.

25

http://sourceforge.net/projects/encode-arabic/
http://sourceforge.net/projects/encode-arabic/

Extending ArabTEX

The alocal package implements some of the notational extensions of Encode
Arabic to work in ArabTEX.

The acolor package adds colorful typesetting to ArabTEX. Thanks to Karel
Mokrý who implemented the core of this functionality originally.

Independent Libraries

The Perl implementation of Encode Arabic is documented at http://search.
cpan.org/dist/Encode-Arabic/.

In the thesis, we present parts of the implementation of our Haskell li-
brary for processing the Arabic language in the ArabTEX transliteration (La-
gally, 2004), a non-trivial and multi-purpose notation for encoding Arabic or-
thographies and phonetic transcriptions in parallel. Our approach relies on the
Pure Functional Parsing library developed in (Ljunglöf, 2002), which we ac-
commodate to our problem and partly extend. We promote modular design in
systems for modeling or processing natural languages.

Conclusion

In the thesis, we developed the theory of Functional Arabic Morphology and
designed ElixirFM as its high-level functional and interactive implementation
written in Haskell.

Next to numerous theoretical points on the character of Arabic morphology
and its relation to syntax, we proposed a model that represents the linguistic
data in an abstract and extensible notation that encodes both orthography and
phonology, and whose interpretation is customizable. We developed a domain-
specific language in which the lexicon is stored and which allows easy manual
editing as well as automatic verification of consistency. We believe that the mod-
eling of both the written language and the spoken dialects can share the presented
methodology.

ElixirFM and its lexicons are licensed under GNU GPL and are available
on http://sourceforge.net/projects/elixir-fm/. The implementa-
tions of Encode Arabic, MorphoTrees, and the ArabTEX extensions are pub-
lished likewise.

We intend to improve our work further and integrate ElixirFM closely with
MorphoTrees as well as with both levels of syntactic representation in the
Prague Arabic Dependency Treebank.

26

http://search.cpan.org/dist/Encode-Arabic/
http://search.cpan.org/dist/Encode-Arabic/
http://sourceforge.net/projects/elixir-fm/

References

Al-Sughaiyer, Imad A. and Ibrahim A. Al-Kharashi. 2004. Arabic Morphological
Analysis Techniques: A Comprehensive Survey. Journal of the American Society
for Information Science and Technology 55(3):189–213.

Badawi, Elsaid, Mike G. Carter, and Adrian Gully. 2004. Modern Written Arabic:
A Comprehensive Grammar. Routledge.

Baerman, Matthew, Dunstan Brown, and Greville G. Corbett. 2006. The Syntax-
Morphology Interface. A Study of Syncretism. Cambridge Studies in Linguistics.
Cambridge University Press.

Beesley, Kenneth R. 1998. Arabic Morphology Using Only Finite-State Oper-
ations. In COLING-ACL’98 Proceedings of the Workshop on Computational Ap-
proaches to Semitic languages, pages 50–57.

Beesley, Kenneth R. 2001. Finite-State Morphological Analysis and Generation
of Arabic at Xerox Research: Status and Plans in 2001. In EACL 2001 Work-
shop Proceedings on Arabic Language Processing: Status and Prospects, pages 1–8.
Toulouse, France.

Beesley, Kenneth R. and Lauri Karttunen. 2003. Finite State Morphology. CSLI
Studies in Computational Linguistics. Stanford, California: CSLI Publica-
tions.

Buckwalter, Tim. 2002. Buckwalter Arabic Morphological Analyzer Version 1.0.
LDC catalog number LDC2002L49, ISBN 1-58563-257-0.

Cavalli-Sforza, Violetta, Abdelhadi Soudi, and Teruko Mitamura. 2000. Arabic
Morphology Generation Using a Concatenative Strategy. In Proceedings of
NAACL 2000, pages 86–93. Seattle.

Chalabi, Achraf. 2004. Sakhr Arabic Lexicon. In NEMLAR International Confer-
ence on Arabic Language Resources and Tools, pages 21–24. ELDA.

Crochemore, Maxime, Costas S. Iliopoulos, Yoan J. Pinzon, and James F. Reid.
2000. A Fast and Practical Bit-Vector Algorithm for the Longest Common
Subsequence Problem. In Proceedings of the 11th Australasian Workshop On
Combinatorial Algorithms. Hunter Valley, Australia.

Dada, Ali. 2007. Implementation of the Arabic Numerals and their Syntax in
GF. In ACL 2007 Proceedings of the Workshop on Computational Approaches to
Semitic Languages: Common Issues and Resources, pages 9–16. Prague, Czech
Republic: Association for Computational Linguistics.

27

Debusmann, Ralph. 2006. Extensible Dependency Grammar: A Modular Grammar
Formalism Based On Multigraph Description. Ph.D. thesis, Saarland University.

Ditters, Everhard. 2001. A Formal Grammar for the Description of Sentence
Structure in Modern Standard Arabic. In EACL 2001 Workshop Proceedings
on Arabic Language Processing: Status and Prospects, pages 31–37. Toulouse,
France.

El Dada, Ali and Aarne Ranta. 2006. Open Source Arabic Grammars in Gram-
matical Framework. In Proceedings of the Arabic Language Processing Conference
(JETALA). Rabat, Morocco: IERA.

El-Sadany, Tarek A. and Mohamed A. Hashish. 1989. An Arabic morphological
system. IBM Systems Journal 28(4):600–612.

Fischer, Wolfdietrich. 2001. A Grammar of Classical Arabic. Yale Language Series.
Yale University Press, third revised edn. Translated by Jonathan Rodgers.

Forsberg, Markus and Aarne Ranta. 2004. Functional Morphology. In Proceed-
ings of the Ninth ACM SIGPLAN International Conference on Functional Program-
ming, ICFP 2004, pages 213–223. ACM Press.

Habash, Nizar. 2004. Large Scale Lexeme Based Arabic Morphological Gener-
ation. In JEP-TALN 2004, Session Traitement Automatique de l’Arabe. Fes, Mo-
rocco.

Habash, Nizar, Owen Rambow, and George Kiraz. 2005. Morphological Analy-
sis and Generation for Arabic Dialects. In Proceedings of the ACL Workshop on
Computational Approaches to Semitic Languages, pages 17–24. Ann Arbor, Michi-
gan: Association for Computational Linguistics.

Hajič, Jan, Otakar Smrž, Tim Buckwalter, and Hubert Jin. 2005. Feature-Based
Tagger of Approximations of Functional Arabic Morphology. In Proceedings
of the Fourth Workshop on Treebanks and Linguistic Theories (TLT 2005), pages
53–64. Barcelona, Spain.

Hajič, Jan, Otakar Smrž, Petr Zemánek, Petr Pajas, Jan Šnaidauf, Emanuel
Beška, Jakub Kráčmar, and Kamila Hassanová. 2004a. Prague Arabic Depen-
dency Treebank 1.0. LDC catalog number LDC2004T23, ISBN 1-58563-319-4.

Hajič, Jan, Otakar Smrž, Petr Zemánek, Jan Šnaidauf, and Emanuel Beška.
2004b. Prague Arabic Dependency Treebank: Development in Data and
Tools. In NEMLAR International Conference on Arabic Language Resources and
Tools, pages 110–117. ELDA.

28

Hajičová, Eva and Petr Sgall. 2003. Dependency Syntax in Functional Gener-
ative Description. In Dependenz und Valenz – Dependency and Valency, vol. I,
pages 570–592. Walter de Gruyter.

Holes, Clive. 2004. Modern Arabic: Structures, Functions, and Varieties. George-
town Classics in Arabic Language and Linguistics. Georgetown University
Press.

Huet, Gérard. 2002. The Zen Computational Linguistics Toolkit. ESSLLI Course
Notes, FoLLI, the Association of Logic, Language and Information.

Kay, Martin. 1987. Nonconcatenative Finite-State Morphology. In Proceedings of
the Third Conference of the European Chapter of the ACL (EACL-87), pages 2–10.
ACL, Copenhagen, Denmark.

Kiraz, George Anton. 2001. Computational Nonlinear Morphology with Emphasis
on Semitic Languages. Studies in Natural Language Processing. Cambridge
University Press.

Lagally, Klaus. 1992. ArabTEX: Typesetting Arabic with Vowels and Ligatures.
In EuroTEX 92, page 20. Prague, Czechoslovakia.

Lagally, Klaus. 2004. ArabTEX: Typesetting Arabic and Hebrew, User Manual
Version 4.00. Tech. Rep. 2004/03, Fakultät Informatik, Universität Stuttgart.

Ljunglöf, Peter. 2002. Pure Functional Parsing. An Advanced Tutorial. Licenciate
thesis, Göteborg University & Chalmers University of Technology.

Manning, Christopher D. and Hinrich Schütze. 1999. Foundations of Statistical
Natural Language Processing. Cambridge: MIT Press.

McCarthy, John and Alan Prince. 1990. Foot and Word in Prosodic Morphology:
The Arabic Broken Plural. Natural Language and Linguistic Theory 8:209–283.

McCarthy, John J. 1981. A Prosodic Theory of Nonconcatenative Morphology.
Linguistic Inquiry 12:373–418.

Mikulová, Marie et al. 2006. A Manual for Tectogrammatical Layer Annotation
of the Prague Dependency Treebank. Tech. rep., Charles University in Prague.

Nelken, Rani and Stuart M. Shieber. 2005. Arabic Diacritization Using Finite-
State Transducers. In Proceedings of the ACL Workshop on Computational Ap-
proaches to Semitic Languages, pages 79–86. Ann Arbor.

29

Othman, Eman, Khaled Shaalan, and Ahmed Rafea. 2003. A Chart Parser for
Analyzing Modern Standard Arabic Sentence. In Proceedings of the MT Summit
IX Workshop on Machine Translation for Semitic Languages: Issues and Approaches,
pages 37–44.

Panevová, Jarmila. 1980. Formy a funkce ve stavbě české věty [Forms and Functions
in the Structure of the Czech Sentence]. Academia.

Ramsay, Allan and Hanady Mansur. 2001. Arabic morphology: a categorial
approach. In EACL 2001 Workshop Proceedings on Arabic Language Processing:
Status and Prospects, pages 17–22. Toulouse, France.

Sgall, Petr. 1967. Generativnı́ popis jazyka a česká deklinace [Generative Description
of Language and Czech Declension]. Academia.

Sgall, Petr, Eva Hajičová, and Jarmila Panevová. 1986. The Meaning of the Sen-
tence in Its Semantic and Pragmatic Aspects. D. Reidel & Academia.

Sgall, Petr, Jarmila Panevová, and Eva Hajičová. 2004. Deep Syntactic Anno-
tation: Tectogrammatical Representation and Beyond. In HLT-NAACL 2004
Workshop: Frontiers in Corpus Annotation, pages 32–38. Association for Com-
putational Linguistics.

Smrž, Otakar and Petr Pajas. 2004. MorphoTrees of Arabic and Their Annota-
tion in the TrEd Environment. In NEMLAR International Conference on Arabic
Language Resources and Tools, pages 38–41. ELDA.

Stump, Gregory T. 2001. Inflectional Morphology. A Theory of Paradigm Structure.
Cambridge Studies in Linguistics. Cambridge University Press.

Van Roy, Peter and Seif Haridi. 2004. Concepts, Techniques, and Models of Computer
Programming. Cambridge: MIT Press.

Yaghi, Jim and Sane Yagi. 2004. Systematic Verb Stem Generation for Arabic. In
COLING 2004 Computational Approaches to Arabic Script-based Languages, pages
23–30. Geneva, Switzerland.

Žabokrtský, Zdeněk. 2005. Valency Lexicon of Czech Verbs. Ph.D. thesis, Charles
University in Prague.

Žabokrtský, Zdeněk and Otakar Smrž. 2003. Arabic Syntactic Trees: from Con-
stituency to Dependency. In EACL 2003 Conference Companion, pages 183–186.
Budapest, Hungary.

30

|
>
"
k
t
b
"
<
|
[

F
a
C
a
L

‘
v
e
r
b
‘

[
"
w
r
i
t
e
"
,
"
b
e
d
e
s
t
i
n
e
d
"
]

‘
i
m
p
e
r
f
‘

F
C
u
L
,

F
i
C
A
L

‘
n
o
u
n
‘

[
"
b
o
o
k
"
]

‘
p
l
u
r
a
l
‘

F
u
C
u
L
,

F
i
C
A
L
|
<
a
T

‘
n
o
u
n
‘

[
"
w
r
i
t
i
n
g
"
]
,

F
i
C
A
L
|
<
a
T

‘
n
o
u
n
‘

[
"
e
s
s
a
y
"
,
"
p
i
e
c
e
o
f
w
r
i
t
i
n
g
"
]

‘
p
l
u
r
a
l
‘

F
i
C
A
L
|
<
A
t
,

F
A
C
i
L

‘
n
o
u
n
‘

[
"
w
r
i
t
e
r
"
,
"
a
u
t
h
o
r
"
,
"
c
l
e
r
k
"
]

‘
p
l
u
r
a
l
‘

F
a
C
a
L
|
<
a
T

‘
p
l
u
r
a
l
‘

F
u
C
C
A
L
,

F
u
C
C
A
L

‘
n
o
u
n
‘

[
"
k
u
t
t
a
b
"
,
"
Q
u
r
a
n
s
c
h
o
o
l
"
]

‘
p
l
u
r
a
l
‘

F
a
C
A
C
I
L
,

M
a
F
C
a
L

‘
n
o
u
n
‘

[
"
o
f
f
i
c
e
"
,
"
d
e
p
a
r
t
m
e
n
t
"
]

‘
p
l
u
r
a
l
‘

M
a
F
A
C
i
L
,

M
a
F
C
a
L
|
<
I
y

‘
a
d
j
‘

[
"
o
f
f
i
c
e
"
]
,

M
a
F
C
a
L
|
<
a
T

‘
n
o
u
n
‘

[
"
l
i
b
r
a
r
y
"
,
"
b
o
o
k
s
t
o
r
e
"
]

‘
p
l
u
r
a
l
‘

M
a
F
A
C
i
L

]

Fi
gu

re
1:

En
tr

ie
s

of
th

e
El

ix
ir

FM
le

xi
co

n
ne

st
ed

un
de

r
th

e
ro

ot
k

tb
I
.
� J»

us
in

g
m

or
ph

op
ho

ne
m

ic
te

m
pl

at
es

.

31

d
a
t
a
M
o
o
d
=
I
n
d
i
c
a
t
i
v
e
|
S
u
b
j
u
n
c
t
i
v
e
|
J
u
s
s
i
v
e
|
E
n
e
r
g
e
t
i
c

d
e
r
i
v
i
n
g
(
E
q
,
E
n
u
m
)

d
a
t
a
G
e
n
d
e
r
=
M
a
s
c
u
l
i
n
e
|

F
e
m
i
n
i
n
e

d
e
r
i
v
i
n
g
(
E
q
,
E
n
u
m
)

d
a
t
a
P
a
r
a
V
e
r
b
=
V
e
r
b
P

V
o
i
c
e
P
e
r
s
o
n
G
e
n
d
e
r
N
u
m
b
e
r

|
V
e
r
b
I
M
o
o
d
V
o
i
c
e
P
e
r
s
o
n
G
e
n
d
e
r
N
u
m
b
e
r

|
V
e
r
b
C

G
e
n
d
e
r
N
u
m
b
e
r

d
e
r
i
v
i
n
g
E
q

p
a
r
a
V
e
r
b
C
:
:
M
o
r
p
h
i
n
g
a
b
=
>
G
e
n
d
e
r
-
>
N
u
m
b
e
r
-
>
[
C
h
a
r
]
-
>
a
-
>
M
o
r
p
h
s
b

p
a
r
a
V
e
r
b
C
g
n
i
=
c
a
s
e
n
o
f

S
i
n
g
u
l
a
r

-
>
c
a
s
e
g
o
f

M
a
s
c
u
l
i
n
e
-
>

p
r
e
f
i
x
i
.
s
u
f
f
i
x
"
"

F
e
m
i
n
i
n
e

-
>

p
r
e
f
i
x
i
.
s
u
f
f
i
x
"
I
"

P
l
u
r
a
l

-
>
c
a
s
e
g
o
f

M
a
s
c
u
l
i
n
e
-
>

p
r
e
f
i
x
i
.
s
u
f
f
i
x
"
U
W
"

F
e
m
i
n
i
n
e

-
>

p
r
e
f
i
x
i
.
s
u
f
f
i
x
"
n
a
"

_
-
>

p
r
e
f
i
x
i
.
s
u
f
f
i
x
"
A
"

Fi
gu

re
2:

Ex
ce

rp
tf

ro
m

th
e

im
pl

em
en

ta
ti

on
of

ve
rb

al
in

fle
ct

io
na

lf
ea

tu
re

s
an

d
pa

ra
di

gm
s

in
El

ix
ir

FM
.

32

f
h
m

Ñê	 ¯

f
h
m

Ñë	 ¬

f

	 ¬ � 	 ¬fa u C---------
�	¬ fa-

h
m

Ñë

� � Ñ� ëhamma u VP---3MS--
��Ñ �ë hamm-a

� Ñ� ëhamm

u N---------
�Ñ �ë hamm

u N-------1R
��Ñ �ë hamm-u

u N-------4R
��Ñ �ë hamm-a

u N-------2R
��Ñ �ë hamm-i

u N-------1I
��Ñ �ë hamm-un

u N-------2I
��Ñ �ë hamm-in

Ñ� ëhum u S----3MP1- Ñ �ë hum

f
h
m

Ñê	 ¯
f
h
m

Ñê	 ¯
� Ñê �� 	 ¯fahimaÑ
ê� 	 ¯fahm� Ñ� � ê� 	 ¯fahhama

C
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
1
-

� 	 ¬fa
an

d
,s

o
� � Ñ� ë hamma

to
b

e
re

ad
y,

in
te

n
d

� Ñ� ë hamm
co

n
ce

rn
,i

n
te

re
st

Ñ� ëhum
th

ey

� Ñê �� 	 ¯ fahima
to

u
n

d
er

st
an

d

Ñê� 	 ¯fahm
u

n
d

er
st

an
d

in
g

� Ñ� � ê� 	 ¯ fahhamato
m

ak
e

u
n

d
er

st
an

d

Fi
gu

re
3:

M
or

ph
oT

re
es

of
th

e
or

th
og

ra
ph

ic
st

ri
ng

f
h
m
Ñ
ê
	 ¯
in

cl
ud

in
g

an
no

ta
ti

on
w

it
h

re
st

ri
ct

io
ns

.T
he

da
sh

ed
lin

es
in

di
ca

te
th

er
e

is
no

so
lu

ti
on

su
it

in
g

th
e

in
he

ri
te

d
re

st
ri

ct
io

ns
in

th
e

gi
ve

n
su

bt
re

e.
T

he
do

tt
ed

lin
e

sy
m

bo
liz

es
th

er
e

m
ig

ht
be

im
pl

ic
it

m
or

ph
os

yn
ta

ct
ic

co
ns

tr
ai

nt
s

be
tw

ee
n

th
e

ad
ja

ce
nt

to
ke

ns
in

th
e

an
al

ys
es

.

33

A
ux

S A
ux

Y A
ux

P A
dv

A
tr

Pr
ed

Sb O
bj

A
tr

A
tr

C
oo

rd A
tr

A
ux

Y

A
tr

O
bj

A
ux

K

� ð
w

a-
an

d
C
-
-
-
-
-
-
-
-
-

ú

	 ¯ �
fı̄

in
P
-
-
-
-
-
-
-
-
-

� � 	

� ÊÓ
�

m
ila

ffi
co

lle
ct

io
n/

fil
e-

of
N
-
-
-
-
-
-
-
2
R

H
. �

� X

� B
� @

al
-↩a

da
bi

th
e-

lit
er

at
ur

e
N
-
-
-
-
-
-
-
2
D

� I
� k
� Q
� £

t .a
ra

h .a
t

it
-p

re
se

nt
ed

V
P
-
A
-
3
F
S
-
-

� � é

� � Ê
� j .
� Ü
Ï� @

al
-m

aǧ
al

la
tu

th
e-

m
ag

az
in

e
N
-
-
-
-
-
F
S
1
D

� � é
� � J

	
� �

� � ¯
qa

d .ı̄
ya

ta
is

su
e-

of
N
-
-
-
-
-
F
S
4
R

� é �

� 	 ª

� � ÊË
� @

al
-lu

ġa
ti

th
e-

la
ng

ua
ge

N
-
-
-
-
-
F
S
2
D

� é �

� � J
K
. �
� Q
� ª
Ë� @

al
-↪a

ra
bı̄

ya
ti

th
e-

A
ra

bi
c

A
-
-
-
-
-
F
S
2
D

� ð
w

a-
an

d
C
-
-
-
-
-
-
-
-
-

P �
A
� ¢
	
k

� B
� @

al
-↩a

h ˘t .ā
ri

th
e-

da
ng

er
s

N
-
-
-
-
-
-
-
2
D

ú

� æ �

� � Ë� @
al

la
tı̄

th
at

S
R
-
-
-
-
F
S
-
-

� X
� � Y
� î
� � E

tu
ha

dd
id

u
th

ey
-t

hr
ea

te
n

V
I
I
A
-
3
F
S
-
-

A
� ë

-h
ā

it
S
-
-
-
-
3
F
S
4
-

.
.

.
G
-
-
-
-
-
-
-
-
-

Fi
gu

re
4:

In
th

e
se

ct
io

n
on

lit
er

at
ur

e,
th

e
m

ag
az

in
e

pr
es

en
te

d
th

e
is

su
e

of
th

e
A

ra
bi

c
la

ng
ua

ge
an

d
th

e
da

ng
er

s
th

at
th

re
at

en
it

.A
na

ly
ti

ca
lr

ep
re

se
nt

at
io

n.

34

SE
N

T

LO
C PA

T

PR
ED A

C
T

A
D

D
R

PA
T

ID

R
ST

R

C
O

N
J

ID

R
ST

R A
C

T

PA
T

� 	

� ÊÓ
�

m
ila

ff
co

lle
ct

io
n

M
as

c.
Si

ng
.D

ef

H
.

� X

� @
↩ad

ab
lit

er
at

ur
e

M
as

c.
Si

ng
.D

ef

h
� Q
� £

t .a
ra

h .
to

pr
es

en
t

In
d.

A
nt

.A
ct

� é

� � Ê� m .

� ×
m

aǧ
al

la
h

m
ag

az
in

e
Fe

m
.S

in
g.

D
ef

� ñ
� ë

hu
w

a
so

m
eo

ne
G

en
Pr

on
ou

n
� é
� � J

	
� �

� � ¯
qa

d .ı̄
ya

h
is

su
e

Fe
m

.S
in

g.
D

ef
� é
� 	 ª
� Ë
lu

ġa
h

la
ng

ua
ge

Fe
m

.S
in

g.
D

ef
� ú

G . �

� Q
� «
↪ar

ab
ı̄y

A
ra

bi
c

A
dj

ec
ti

ve
� ð

w
a-

an
d

C
oo

rd
in

at
io

n

Q
� ¢
� 	 k

h ˘at .
ar

da
ng

er
M

as
c.

Pl
ur

.D
ef

X
� � Y
� ë

ha
dd

ad
to

th
re

at
en

In
d.

Si
m

.A
ct

� ù

ë �

hi
ya

it
Pe

rs
Pr

on
ou

n
� ù

ë �

hi
ya

it
Pe

rs
Pr

on
ou

n

Fi
gu

re
5:

In
th

e
se

ct
io

n
on

lit
er

at
ur

e,
th

e
m

ag
az

in
e

pr
es

en
te

d
th

e
is

su
e

of
th

e
A

ra
bi

c
la

ng
ua

ge
an

d
th

e
da

ng
er

s
th

at
th

re
at

en
it

.T
ec

to
gr

am
m

at
ic

s.

35

