
Feature-Based Tagger of Approximations of
Functional Arabic Morphology

Jan Hajič & Otakar Smrž
Inst. of Formal and Applied Linguistics

Faculty of Mathematics and Physics
Charles University in Prague

{hajic,smrz}@ufal.mff.cuni.cz

Tim Buckwalter & Hubert Jin
Linguistic Data Consortium
University of Pennsylvania

timbuck2@ldc.upenn.edu
hubertj@ldc.upenn.edu

1 Introduction
The field of morphological disambiguation of Arabic has recently witnessed signif-
icant achievements (Habash and Rambow [15], Smith et al. [28]). Through them,
the Penn Arabic Treebank (PATB, Maamouri et al. [24]) is being confirmed as a
standard for development and evaluation of systems for automatic morphological
processing of Arabic, and the Buckwalter Arabic Morphological Analyzer (Buck-
walter [6, 7]) is becoming the most respected lexical resource of its kind.

The context for understanding the current paper has evolved since our work on
it started, yet, the motivation for it is unchanged and the conclusions are valid and
up-to-date. We would like to open some issues concerning the very description
of Arabic morphology and point out that in this domain, one should carefully dis-
tinguish individual problems, theories, resources, and solutions for their frequent
idiosyncrasies and incompatibilities.

In this contribution, we reference Functional Arabic Morphology (Smrž [29])
and take the Buckwalter Morphology as the departure point for approximating this
novel model by (a) restoring the true syntactic units (b) seeking their functional,
rather than structural, morphological categories. We then present five versions of a
feature-based morphological tagger depending on that approximation, which were
built on all the currently available Parts of PATB, as well as on the MorphoTrees
annotations of the Prague Arabic Dependency Treebank (PADT, Hajič et al. [18]).

1.1 The Disambiguation Problem
Arabic is a language of rich morphology, both derivational and inflectional (Holes
[20]). Due to the fact that the Arabic script usually does not encode short vowels



and omits some other important phonological distinctions, the degree of morpho-
logical ambiguity is very high.

In addition, Arabic orthography prescribes to concatenate certain word forms
with the preceding or the following ones, which makes the boundaries of syntactic
units, i.e. tokens as we denote them, obscure. Unlike in Chinese or German, how-
ever, in Arabic there are clear limits to the number and the kind of tokens that can
combine in this manner. What appears to be one orthographical string in a Modern
Standard Arabic text, can actually constitute from up to four syntactic tokens.1

In Latin script-based languages, one usually assumes that words, i.e. the input
strings, can be processed into tokens easily and uniquely by an independent tok-
enizer module that runs before a morphological tagger. For Arabic, this is not pos-
sible — one input string can be analyzed in such ways that not only the morphemes,
but even the syntactic tokens may vary for individual readings of the string.

Thus, the problem of disambiguation of this language encompasses subprob-
lems like tokenization, full morphological tagging or its simplified ‘part-of-speech’
versions, lemmatization, diacritization (discussed in Nelken and Shieber [25]) or
restoration of the structural components of words. These subproblems, of course,
can come in many variants and combinations.

1.2 Existing Morphological Systems
The long evolution of computational modeling of Arabic morphology is nowa-
days mirrored in the excellent works of (Kiraz [23]) and (Beesley and Karttunen
[4]), and although many morphological systems are in development (Ramsay and
Mansur [27] or Soudi et al. [32], inter alia), only (Beesley [3]) and (Buckwalter
[6, 7]) are actually accessible to the interested public, meeting the prerequisite to
their wider application and evaluation.

It appears from the literature and implementations (many summarized in Al-
Sughaiyer and Al-Kharashi [1]) that Arabic computational morphology has under-
stood its purpose in the sense of operations with morphs rather than morphemes
(cf. El-Sadany and Hashish [12]; see also Sproat [33] or Stump [34]), and has not
concerned itself systematically and to the necessary extent with its role for syntax.

The outline of formal grammar in (Ditters [11]), for instance, works with gram-
matical categories like number, gender, humanness, definiteness, but one cannot
see which of the existing systems could provide for this information correctly, as
they misinterpret some morphs for bearing a category, and underdetermine lexical
morphemes in general. Certain syntactic parsers, like (Othman et al. [26]), may
resort to their own morphological analyzers, but still, they do not get rid of the

1In theory (Fischer [13]), an additional personal suffix might increase this number to five, which
is extremely unlikely to occur in the standard language, and is unattested in the resources we study.



String Token Token Tag Buckwalter’s Morph Tags Token Form Token Gloss

������� �	�
���� F--------- FUT sa- will
VIIA-3MS-- IV3MS+IV+IVSUFF_MOOD:I yu-h

˘
bir-u he-notify

S----3MP4- IVSUFF_DO:3MS -hum them
��� ���� � P--------- PREP bi- about/by

SD----MS-- DEM_PRON_MS d
¯

ālika that
���� P--------- PREP ↪an by/about�� �  ��� N-------2R NOUN+CASE_DEF_GEN t.arı̄q-i way-of������ � � �� N-------2D DET+NOUN+CASE_DEF_GEN ar-rasā↩il-i the-messages�! � � #" �$ �% A-----FS2D DET+ADJ+NSUFF_FEM_SG+

+CASE_DEF_GEN al-qas. ı̄r-at-i the-short
�& �� � �� ��(' �  ) C--------- CONJ wa- and

Z-------2D DET+NOUN_PROP+
+CASE_DEF_GEN al-↩internet-i the-internet

� � � �  �� )
C--------- CONJ wa- and
FN------2R NEG_PART+CASE_DEF_GEN ġayr-i other/not-of
S----3FS2- POSS_PRON_3FS -hā them

Figure 1: Tokenization of input strings into tokens in he will notify them about
that through SMS messages, the Internet, and other means, and the disambiguated
morphological analyses with Buckwalter’s tags and the quasi-functional token tags.

form of an expression and only incidentally introduce truly functional categories
(cf. Hajič et al. [19]). In syntactic considerations they often call for discriminative
semantic features instead. Commercial systems, esp. (Chalabi [9]), do not seem to
overcome this interference either.

The missing common rationale as to what higher linguistic framework the mor-
phology should serve for crystalizes in the number of individual, ad hoc tagsets
and a very rare discussion of their motivation, completeness, relevance and actual
expressive power. This situation brought us to designing Functional Arabic Mor-
phology.2 In (Hajič et al. [19], Smrž and Hajič [30]), we discuss its principles and
show how e.g. agreement can naturally be controlled and restored in the functional
system — which is impossible if recognizing morphs only and not their functions.

1.3 Approximating the Functional Model
The underlying morphological engine for both the Penn Arabic Treebank and the
Prague Arabic Dependency Treebank is the Buckwalter Arabic Morphological An-

2Functional Arabic Morphology (Smrž [29]) is being implemented in the Functional Morphol-
ogy (Forsberg and Ranta [14]), which is a methodology as well as a domain-specific programming
language embedded in Haskell building on the computational toolkit Zen for Sanskrit (Huet [21, 22]).



Morphs Form Token Tag Lemma Glosses per Morph
|laY+(null) ↩̄alā VP-A-3MS-- ↩̄alā promise/take an oath + he/it
|liy˜ ↩̄alı̄y A--------- ↩̄alı̄y mechanical/automatic
|liy˜+u ↩̄alı̄y-u A-------1R ↩̄alı̄y mechanical . . . + [def.nom.]
|liy˜+i ↩̄alı̄y-i A-------2R ↩̄alı̄y mechanical . . . + [def.gen.]
|liy˜+a ↩̄alı̄y-a A-------4R ↩̄alı̄y mechanical . . . + [def.acc.]
|liy˜+N ↩̄alı̄y-un A-------1I ↩̄alı̄y mechanical . . . + [indef.nom.]
|liy˜+K ↩̄alı̄y-in A-------2I ↩̄alı̄y mechanical . . . + [indef.gen.]
|l + ↩̄al N--------R ↩̄al family/clan +
+ iy -ı̄ S----1-S2- ı̄ + my
IilaY ↩ilā P--------- ↩ilā to/towards
Iilay + ↩ilay P--------- ↩ilā to/towards +
+ ya -ya S----1-S2- ya + me
Oa+liy+(null) ↩a-lı̄ VIIA-1-S-- waliya I + follow/come after + [ind.]
Oa+liy+a ↩a-liy-a VISA-1-S-- waliya I + follow/come after + [sub.]

AlY *�+-,

|lY *.+0/ ,

|lY *.+ / ,

*21+ / , ↩̄alā

3

|ly * 4 +0/ ,

|ly * 4 + / ,
5* 4 +
1
/ , ↩̄alı̄y

6 7 8 9 : ;

|l y < 4>= / ,

|l = / ,

= / , ↩̄al

?

y < 4

< 4
1

ı̄

@

IlY *.+-,A

IlY *.+-,A

*B1+-,A1
↩ilā

C

Ily y < 4 * 4 +D,A

Ily * 4 +D,A

*21+-,A1
↩ilā

E

y < 4

1< 4 ya

F

Oly * 4 + A ,

Oly * 4 + A ,

1* 4 + 1 1
G waliya

H I

Figure 2: Analyses of the string AlY J�K2L turned into the MorphoTrees hierarchy.

alyzer (Buckwalter [6, 7]). While PATB adopts the analyses in their original format
(Maamouri et al. [24]), the PADT annotations take place on quasi-functional ap-
proximations organized into MorphoTrees (Smrž and Pajas [31]).

With respect to the linguistic view and the architecture of the tagger that we
will develop, we unify the format of the morphological data by converting all the
Parts of PATB into the approximation, which is done in two steps: (a) the morphs
of the original input strings are re-grouped to form tokens (b) the corresponding
sequences of tags are mapped into the fixed-width positional notation of PADT.

Let us illustrate the transformations through Figure 1 and Figure 2, and refer to
(Smrž and Pajas [31], Smrž and Hajič [30]) for any other details.



2 The Feature-Based Tagger
The refined morphological information that we have sought in our studies requires
full morphological tagging to be established. The Arabic tagger that we present is
an adaptation of the feature-based, exponential-model tagger described in (Hajič
and Hladká [17]), taking the advantage of the positional tag system by predicting
the individual columns/categories separately (but not irrespective of the other ones
in context). It has been used on several inflectional and agglutinative languages.

Recall the problem of tokenization being part of morphological analysis in
Arabic. In order to keep the tagger’s functionality unmodified, we extend the tagset
in the way that all input strings will be considered 4-tuples of tokens, with the
resulting string tag being a concatenation of the token tags. By disambiguating
such aggregate tags, the tagger decides the tokenization as well, since the tokens
can be deterministically derived from the tag and the list of associated lemmas.3

2.1 Feature-Based Tagging
Instead of employing the source–channel paradigm for tagging, we are using here a
conditional approach to modeling, for which we have chosen an exponential prob-
abilistic model. Such model (when predicting an event4 y ∈ Y in a context x) has
the general form

pAC,e(y|x) =
exp(

∑n
i=1

λifi(y, x))

Z(x)
(1)

where fi(y, x) is the set (of size n) of binary-valued (yes/no) features of the event
value being predicted and its context, λi is a “weight” (in the exponential sense) of
the feature fi, and the normalization factor Z(x) is defined naturally as

Z(x) =
∑

y∈Y

exp(
n∑

i=1

λifi(y, x)) (2)

We use a separate model for each ambiguity class AC (that actually appeared in
the training data) of each of the 4×10 morphological categories. The final distribu-
tion pAC(y|x) is further smoothed using unigram distributions on subtags (again,
separately for each category):

pAC(y|x) = σpAC,e(y|x) + (1 − σ)pAC,1(y) (3)

Such smoothing takes care of any unseen context; for ambiguity classes not
seen in the training data, for which there is no model, we use unigram probabilities
of subtags, one distribution per category.

3Lemma disambiguation is a separate process following tagging, and is not covered here.
4In our case, a subtag, i.e. a unique value of a morphological category.



In the general case, features can operate on any imaginable context. In practice,
we view the context as a set of attribute–value pairs with a discrete range of values.
Every feature can thus be represented by a set of contexts in which it is positive.
There is, of course, also a distinguished attribute for the value of the variable being
predicted (y); the rest of the attributes is denoted by x as expected. Values of
attributes are denoted by an overstrike (y, x).

The pool of contexts of prospective features is for the purpose of morphological
tagging defined as a full cross-product of the category being predicted (y) and of
the x specified as a combination of

[A] an ambiguity class of a single category, which may be different
from the category being predicted, or [B] a word form (the input
string), or [C] a single position value membership in an ambiguity
class, or [D] a full tag (to the left of the current position only),

and

[E] the current position, or [F] immediately preceding/following po-
sition in text, or [G] position ± 2 strings apart, or [H] closest pre-
ceding/following position (up to four positions away) having a certain
ambiguity class in the POS category.

The full cross-product of these contexts is prohibitively large, but there are
means to limit the size of the pool of features to fit to available memory. For
Arabic, we have used a limit of 7 million feature contexts in the pool.

Feature weights can be computed only iteratively, but it is impossible to do
so in reasonable time while selecting the features at the same time, even when
using certain shortcuts (Berger et al. [5]). Therefore, the initial feature weight
of a feature which is true in context x for a tag y is estimated as the log of the
conditional probability p(y|x), estimated by MLE from the training data. This
makes the model essentially a form of a Naive Bayes one.

The learner is allowed to vary the weights (in several discrete steps) during fea-
ture selection, a (somewhat crude) attempt to depart from the original Naive Bayes
simplification to the approximation of the “correct” Maximum Entropy estimation.

2.2 Training Iterations
Given the huge number of possible features, the training proceeds in four “itera-
tions”, each adding more complex features, but only from those training events that
are in error after the previous iteration.

The training “iterations” are not really part of the algorithm; they only allow to
try and possibly keep more detailed features in later iterations when most simple



Characteristics # Train # Test Data # String Tags # Token Tags
Experiment Strings Strings Tokens Total Anno. Total Anno.
PATB Part 2 Prototype 122 556 19 683 23 074 2 031 852 317 242
PATB Part 3 320 998 19 283 22 690 2 864 1 251 391 314
PADT MorphoTrees 106 887 19 253 22 547 3 164 927 378 265
PATB Part 1 120 045 19 339 22 131 884 534 165 143
PATB Part 1 Revised 125 392 19 363 22 104 2 226 785 401 271

Table 1: Characteristics of the sets of data (note all tags vs. annotated only).

features are not generated any more since there are much fewer errors remaining.
Experimentally, we found that adding more than four such iterations does not im-
prove the results. The type and nature of the features allowed for the i-th iteration
has been tried experimentally and heuristically. Typically, only the simplest fea-
tures (such as those having an input string as the only “context” and nothing more)
are used in the first iteration.

A single training iteration first generates a feature pool of a predetermined size
and of the requested type (and complexity), and then proceeds in selecting features
(and estimating their weights) in a greedy way (minimizing the training data error
rate directly as the objective function) as described in (Hajič [16]).

3 Experiments and Evaluation
Table 1 overviews the five experiments described below, the parameters of which
severely differ. The level of detail of morphological annotation (cf. sizes of tagsets)
and the ambiguity within analyses considerably increase with the progress in time.

The resulting models were tested using the simplest tagging mode (Viterbi
beam width 1, effectively canceling the Viterbi search,5 and the independence as-
sumption about the categories, i.e., simply multiplying the probabilities of the 40
category values and normalizing by the available tags listed as analyses).

Table 2 delivers the taggers’ performance in terms of accuracy for full mor-
phological tagging (40 positions per string, 10 positions per token), part-of-speech
tagging (assigning only the first position, one of 15 values, in each token tag), and
lemmatization (choosing one lemma for every token in the string). Two variants of
tokenization are evaluated using Fβ=1 (see further the Discussion).

5Please note that this is not a decisive factor for the resulting accuracy, as opposed to e.g. HMM-
-based tagging, since the tagger looks right for morphological ambiguity classes — see above the
description of the feature pool available to the tagger at training time.



Performance Per String Per Token
Experiment Full (40) Full (10) POS Lemma Tknz++ Tknz
PATB Part 2 Prototype 87.88 89.31 96.46 92.33 99.31 99.51
PATB Part 3 86.82 88.17 95.25 89.91 97.52 98.60
PADT MorphoTrees 87.73 89.24 96.02 90.64 97.71 99.25
PATB Part 1 96.85 96.99 97.37 92.75 97.47 99.37
PATB Part 1 Revised 88.13 89.16 95.57 90.27 97.13 98.86

Table 2: Performance evaluation for the individual experiments (in percents).

Penn Arabic Treebank Part 2, Version 1 The pre-release of this dataset (iden-
tified as LDC2003E17) served for developing the prototypes of both the tagger and
the mapping between Buckwalter’s sequences of tags and the quasi-functional po-
sitional token tags. The analyses do not seem to overgenerate for orthographical
variation (Buckwalter [8]) too much yet (note the similar Tknz++ and Tknz).

Habash and Rambow [15] report 96.5 % accuracy in POS tagging for the com-
parable dataset and tagset, counting, unlike us, only the well-tokenized data.

Penn Arabic Treebank Part 3, Version 1 This dataset (LDC2004T11) brings
the advanced features of Buckwalter’s morphology, among which are complete vo-
calization (with case and mood endings), extended lexicon, and finer tags for verbs
and particles. Therefore, the mapping into the approximation also improved, and
the complexity of the tagset largely increased compared to that of the prototype.

Prague Arabic Dependency Treebank 1.0 Due to the nature of MorphoTrees
(LDC2004T23), where long-dependency relations between tokens may be weak-
ened and some values in tags expanded for the sake of more precise annotations,
certain token combinations may be listed in the format for the tagger that the ana-
lyzer would not produce (note the highest number of non-annotated string tags).

MorphoTrees are the ‘purest’ available approximation of the Functional Arabic
Morphology. Given the detail and the complexity of the data, the tagger’s perfor-
mance is remarkable. Just like with PATB Part 3, no other computational results
relevant to this dataset are known to us.

Penn Arabic Treebank Part 1, Version 2 The annotations in this dataset (LDC-
2003T06) are morphologically most ‘impoverished’, but have been used by other
researchers (Diab et al. [10], Habash and Rambow [15]) to train very successful
taggers based on support vector machines. Habash and Rambow [15] reach 98.1 %
of POS accuracy and 96.2 % of accuracy in full token tagging, which are results
well comparable to ours.



AlY MDNPO0 1A O 2l Q 3Y R

AlY MDNPO

Al Q O

lY MDN

ε ε

AlY MDNPO

|lY MDNTS O |ly M U NTS O IlY MDNPOV Oly M U N V O

Al Y RWQ O

|l y R U Q S O

AlY ε ε MDNPO

Ily y R U M U NPOV

Figure 3: Discussion of partitioning and tokenization of input strings.

Penn Arabic Treebank Part 1, Version 3 This is the revised version (LDC2005-
T02) of the previously mentioned corpus, with a complete coverage of the lexicon
and including the advanced features of the morphology.

It is actually this dataset and not its former version (Smith et al., p.c.) that Smith
et al. [28] used for the development of their log-linear source–channel tagging
model. It works with strings and morphs only, but achieves overwhelming results
(accuracy) — 96.1 % in full string tag disambiguation, 95.4 % in the restoration of
morphs, and 94.6 % in assigning one representative lemma per input string.

4 Discussion and Conclusions
We have introduced two measures for tokenization. Tknz is close to the evaluations
in (Habash and Rambow [15], Diab et al. [10]) which only check the partition-
ing determined by finding token boundaries between the characters of the original
string, and do not, unlike Tknz++, require the tokenization to faithfully reconstruct
the canonical non-vocalized forms of tokens, as is the standard in MorphoTrees
(Smrž and Pajas [31], Smrž and Hajič [30]).

The disparity of these tokenizations is illustrated in Figure 3. The graph on the
left depicts the three ‘sensible’ ways of partitioning the input string AlY J�K2L in the
approach of (Diab et al. [10]), where characters are classified to be token-initial
or not. Two tokenizations are obtained by linking the boundaries from 0 to 3 fol-
lowing the solid edges. The third partitioning AlY ε ε J2K2L implies there is another
fictitious boundary and some ‘empty word’ ε ε at the end of the string, which cor-
responds to taking the dashed edge in the graph.

Even though conceptually sound, this kind of partitioning cannot undo the ef-
fects of orthographical variation (Buckwalter [8]), nor express other useful dis-



tinctions. The hierarchy in Figure 3 relates this tokenization to that of Figure 2.
Habash and Rambow [15, section 7] correctly point out that “[t]here is not a single
possible or obvious tokenization scheme: a tokenization scheme is an analytical
tool devised by the researcher.” Nonetheless, different tokenizations capture dif-
ferent information, and some may be linguistically not as appropriate as others
(cf. Bar-Haim et al. [2] for the influence of tokenization on tagging in Hebrew).

In any case, we evaluate tokenizations in terms of the Longest Common Sub-
sequence (LCS) problem. The tokens that are the members of the LCS with some
referential tokenization, are considered correctly recognized. Dividing the length
of the LCS by the length of one of the sequences, we get recall, doing it for the
other of the sequences, we get precision. The harmonic mean of both is Fβ=1.

We have presented five versions of the feature-based tagger of Arabic, devel-
oped gradually on all the data of the Penn Arabic Treebank and the Prague Arabic
Dependency Treebank. Using the experience with other inflectional languages, we
prefer the functional treatment of the morphology of Arabic, which we now only
approximate. The pure description with respect to syntactic tokens and their rele-
vant, functional grammatical categories is being further pursued and implemented.

The results of our tagger rank competitively high in the field (cf. Habash and
Rambow [15]). Full morphological tagging is expected to improve with the in-
creasing ‘functionality’ of the data. Note that applying the conditionally-estimated
context-based models set forth in (Smith et al. [28]) to such data is certainly possi-
ble and promising, too. Lemmatization and the issue of unknown words have only
received little attention in our tagger, and can be well improved.

This research was supported by the Ministry of Education of the Czech Re-
public, project MSM0021620838, by the Grant Agency of Charles University in
Prague, project 207-10/203333, and through the Fulbright-Masaryk Fellowship of
the Fulbright Commission in the Czech Republic.

References
[1] Imad A. Al-Sughaiyer and Ibrahim A. Al-Kharashi. Arabic Morphological Analysis Tech-

niques: A Comprehensive Survey. Journal of the American Society for Information Science
and Technology, 55(3):189–213, 2004.

[2] Roy Bar-Haim, Khalil Sima’an, and Yoad Winter. Choosing an Optimal Architecture for Seg-
mentation and POS-Tagging of Modern Hebrew. In Proceedings of the ACL Workshop on
Computational Approaches to Semitic Languages, pages 39–46, Ann Arbor, 2005.

[3] Kenneth R. Beesley. Finite-State Morphological Analysis and Generation of Arabic at Xerox
Research: Status and Plans in 2001. In EACL 2001 Workshop Proceedings on Arabic Language
Processing: Status and Prospects, pages 1–8, Toulouse, France, 2001.



[4] Kenneth R. Beesley and Lauri Karttunen. Finite State Morphology. CSLI Studies in Computa-
tional Linguistics. CSLI Publications, Stanford, California, 2003.

[5] Adam L. Berger, Stephen Della Pietra, and Vincent J. Della Pietra. A Maximum Entropy
Approach to Natural Language Processing. Computational Linguistics, 22(1):39–71, 1996.

[6] Tim Buckwalter. Buckwalter Arabic Morphological Analyzer Version 1.0. LDC catalog num-
ber LDC2002L49, ISBN 1-58563-257-0, 2002.

[7] Tim Buckwalter. Buckwalter Arabic Morphological Analyzer Version 2.0. LDC catalog num-
ber LDC2004L02, ISBN 1-58563-324-0, 2004.

[8] Tim Buckwalter. Issues in Arabic Orthography and Morphology Analysis. In Proceedings of
the COLING 2004 Workshop on Computational Approaches to Arabic Script-based Languages,
pages 31–34, 2004.

[9] Achraf Chalabi. Sakhr Arabic Lexicon. In NEMLAR International Conference on Arabic
Language Resources and Tools, pages 21–24. ELDA, 2004.

[10] Mona Diab, Kadri Hacioglu, and Daniel Jurafsky. Automatic Tagging of Arabic Text: From
Raw Text to Base Phrase Chunks. In HLT-NAACL 2004: Short Papers, pages 149–152, 2004.

[11] Everhard Ditters. A Formal Grammar for the Description of Sentence Structure in Modern
Standard Arabic. In EACL 2001 Workshop Proceedings on Arabic Language Processing: Sta-
tus and Prospects, pages 31–37, Toulouse, France, 2001.

[12] Tarek A. El-Sadany and Mohamed A. Hashish. An Arabic morphological system. IBM Systems
Journal, 28(4):600–612, 1989.

[13] Wolfdietrich Fischer. A Grammar of Classical Arabic. Yale Language Series. Yale University
Press, third revised edition, 2001. Translated by Jonathan Rodgers.

[14] Markus Forsberg and Aarne Ranta. Functional Morphology. In Proceedings of ICFP 2004,
pages 213–223. ACM Press, 2004.

[15] Nizar Habash and Owen Rambow. Arabic Tokenization, Part-of-Speech Tagging and Morpho-
logical Disambiguation in One Fell Swoop. In Proceedings of the 43rd Annual Meeting of the
Association for Computational Linguistics ACL 2005, pages 573–580, Ann Arbor, 2005.

[16] Jan Hajič. Morphological Tagging: Data vs. Dictionaries. In Proceedings of NAACL-ANLP
2000, pages 94–101, Seattle, 2000. ACL.

[17] Jan Hajič and Barbora Hladká. Tagging Inflective Languages: Prediction of Morphological
Categories for a Rich, Structured Tagset. In Proceedings of COLING-ACL 1998, pages 483–
490, Montreal, Canada, 1998. ACL.

[18] Jan Hajič, Otakar Smrž, Petr Zemánek, Petr Pajas, Jan Šnaidauf, Emanuel Beška, Jakub
Kráčmar, and Kamila Hassanová. Prague Arabic Dependency Treebank 1.0. LDC catalog
number LDC2004T23, ISBN 1-58563-319-4, 2004.

[19] Jan Hajič, Otakar Smrž, Petr Zemánek, Jan Šnaidauf, and Emanuel Beška. Prague Arabic
Dependency Treebank: Development in Data and Tools. In NEMLAR International Conference
on Arabic Language Resources and Tools, pages 110–117. ELDA, 2004.



[20] Clive Holes. Modern Arabic: Structures, Functions, and Varieties. Georgetown Classics in
Arabic Language and Linguistics. Georgetown University Press, 2004.

[21] Gérard Huet. The Zen Computational Linguistics Toolkit. ESSLLI Course Notes, FoLLI, the
Association of Logic, Language and Information, 2002.

[22] Gérard Huet. A Functional Toolkit for Morphological and Phonological Processing, Applica-
tion to a Sanskrit Tagger. Journal of Functional Programming, 2004.

[23] George Anton Kiraz. Computational Nonlinear Morphology with Emphasis on Semitic Lan-
guages. Studies in Natural Language Processing. Cambridge University Press, 2001.

[24] Mohamed Maamouri, Ann Bies, Tim Buckwalter, and Wigdan Mekki. The Penn Arabic Tree-
bank: Building a Large-Scale Annotated Arabic Corpus. In NEMLAR International Conference
on Arabic Language Resources and Tools, pages 102–109. ELDA, 2004.

[25] Rani Nelken and Stuart M. Shieber. Arabic Diacritization Using Finite-State Transducers. In
Proceedings of the ACL Workshop on Computational Approaches to Semitic Languages, pages
79–86, Ann Arbor, 2005.

[26] Eman Othman, Khaled Shaalan, and Ahmed Rafea. A Chart Parser for Analyzing Modern Stan-
dard Arabic Sentence. In Proceedings of the MT Summit IX Workshop on Machine Translation
for Semitic Languages: Issues and Approaches, pages 37–44, 2003.

[27] Allan Ramsay and Hanady Mansur. Arabic morphology: a categorial approach. In EACL 2001
Workshop Proceedings on Arabic Language Processing: Status and Prospects, pages 17–22,
Toulouse, France, 2001.

[28] Noah A. Smith, David A. Smith, and Roy W. Tromble. Context-Based Morphological Disam-
biguation with Random Fields. In Proceedings of HLT/EMNLP 2005, Vancouver, 2005.

[29] Otakar Smrž. Functional Arabic Morphology. Formal System and Implementation. PhD thesis,
Charles University in Prague, in prep.

[30] Otakar Smrž and Jan Hajič. The Other Arabic Treebank: Prague Dependencies and Functions.
In Arabic Computational Linguistics: Current Implementations. CSLI Publications, to appear.

[31] Otakar Smrž and Petr Pajas. MorphoTrees of Arabic and Their Annotation in the TrEd En-
vironment. In NEMLAR International Conference on Arabic Language Resources and Tools,
pages 38–41. ELDA, 2004.

[32] Abdelhadi Soudi, Violetta Cavalli-Sforza, and Abderrahim Jamari. A Computational Lexeme-
Based Treatment of Arabic Morphology. In EACL 2001 Workshop Proceedings on Arabic
Language Processing: Status and Prospects, pages 155–162, Toulouse, 2001.

[33] Richard Sproat. Morphology and Computation. ACL–MIT Press Series in Natural Language
Processing. MIT Press, 1992.

[34] Gregory T. Stump. Inflectional Morphology. A Theory of Paradigm Structure. Cambridge
Studies in Linguistics. Cambridge University Press, 2001.


