
The Prague Bulletin of Mathematical Linguistics
NUMBER 88 DECEMBER 2007 5–30

Functional Arabic Morphology
Dissertation Summary

Otakar Smrž

Abstract
is is a summary of the author’s PhD dissertation defended on September 17, 2007 at the Faculty

of Mathematics and Physics, Charles University in Prague. e results comprised in the thesis were ob-
tained within the author’s doctoral studies in Mathematical Linguistics during the years 2001–2007. e
complete dissertation is available via http://sourceforge.net/projects/elixir-fm/.

1. Introduction

Functional Arabic Morphology is a formulation of the Arabic inflectional system seeking
the working interface between morphology and syntax. ElixirFM is its high-level implemen-
tation that reuses and extends the Functional Morphology library for Haskell (Forsberg and
Ranta, 2004), yet the treatment of the language-specific issues constitutes our original work.

In the thesis (Smrž, 2007), we develop a computational model of the morphological pro-
cesses in Arabic. With this system, we are able to derive and inflect words, as well as to analyze
the structure of word forms and to recognize their grammatical functions.

e approach to building our morphological model strives to be comprehensive with re-
spect to linguistic generalization, and high-level and modern with respect to the programming
techniques that we employ. We describe the linguistic concept and try to implement it in a
very similar, yet abstract way, using the declarative functional programming language Haskell.
We emphasize the flexibility of our system, its reusability and extensibility.

1.1. Morphological Models

One can observe several different streams both in the computational and the purely lin-
guistic modeling of morphology. Some are motivated by the need to analyze word forms as to

© 2007 PBML. All rights reserved.
Please cite this article as: Otakar Smrž, Functional Arabic Morphology: Dissertation Summary. The Prague
Bulletin of Mathematical Linguistics No. 88, 2007, 5–30.



PBML 88 DECEMBER 2007

their compositional structure, others consider word inflection as being driven by the underly-
ing system of the language and the formal requirements of its grammar.

ere are substantial discrepancies between the grammatical descriptions of Arabic repre-
sented e.g. by (Fischer, 2001) or (Holes, 2004), and the information that the available morpho-
logical computational systems provide. One of the reasons is that there is never a complete
consensus on what the grammatical description should be. e other source of the incom-
patibility lies in the observation that many implementations overlook the principal difference
between the function and the form of a linguistic symbol.

Many of the computational models of Arabic morphology, including in particular (Beesley,
2001), (Ramsay and Mansur, 2001) or (Buckwalter, 2002), are lexical in nature, i.e. they tend to
treat inflectional affixes just like full-fledged lexical words. As they are not designed in connec-
tion with any syntax–morphology interface, their interpretations are destined to be incremen-
tal. at means that the only clue for discovering the morphosyntactic properties of a word is
through the explicit affixes and their prototypical functions.

Some signs of a lexical–realizational system can be found in (Habash, 2004). e author
mentions and fixes the problem of underdetermination of inherent number with plurals, when
developing a generative counterpart to (Buckwalter, 2002).

e computational models in (Cavalli-Sforza, Soudi, and Mitamura, 2000) and (Habash,
Rambow, and Kiraz, 2005) attempt at the inferential–realizational direction. Unfortunately,
they implement only sections of the Arabic morphological system. e Arabic resource gram-
mar in the Grammatical Framework (El Dada and Ranta, 2006) is perhaps the most complete
inferential–realizational implementation to date. Its style is compatible with the linguistic de-
scription in e.g. (Fischer, 2001) or (Badawi, Carter, and Gully, 2004), but the lexicon is now
very limited and some other extensions for data-oriented computational applications are still
needed.

ElixirFM, the implementation of the system developed in this thesis, is inspired by the
methodology in (Forsberg and Ranta, 2004) and by functional programming, just like the Ara-
bic GF is (El Dada and Ranta, 2006). Nonetheless, ElixirFM reuses the Buckwalter lexicon
(Buckwalter, 2002) and the annotations in the Prague Arabic Dependency Treebank (Hajič et
al., 2004b), and implements a yet more refined linguistic model.

In our view, influenced by the Prague linguistic school and the theory of Functional Gener-
ative Description (Sgall, 1967, Sgall, Hajičová, and Panevová, 1986, Panevová, 1980, Hajičová
and Sgall, 2003), the task of morphology should be to analyze word forms of a language not
only by finding their internal structure, i.e. recognizing morphs, but even by strictly discrimi-
nating their functions, i.e. providing the true morphemes. Conceived in such a way, it should
be completely sufficient to generate the word form that represents a lexical unit and features
all grammatical categories (and structural components) required by context, purely from the
information comprised in the analyses.

It appears from the literature on most other implementations (many summarized in (Al-
Sughaiyer and Al-Kharashi, 2004)) that the Arabic computational morphology has understood
its role in the sense of operations with morphs rather than morphemes (cf. (El-Sadany and
Hashish, 1989)), and has not concerned itself systematically and to the necessary extent with

6



Otakar Smrž Functional Arabic Morphology (5–30)

the role of morphology for syntax. In other terms, the syntax–morphology interface has not
been clearly established and respected.

e outline of formal grammar in (Ditters, 2001), for instance, works with grammatical
categories like number, gender, humanness, definiteness, but one cannot see which of the ex-
isting systems could provide for this information correctly, as they misinterpret some morphs
for bearing a category, and underdetermine lexical morphemes in general as to their intrinsic
morphological functions. Nowadays, the only exception is the Arabic Grammatical Frame-
work (El Dada and Ranta, 2006, Dada, 2007), which implements its own morphological and
syntactic model.

Certain syntactic parsers, like (Othman, Shaalan, and Rafea, 2003), may resort to their own
morphological analyzers, but still, they do not get rid of the form of an expression and only
incidentally introduce truly functional categories. In syntactic considerations they oen call
for discriminative extra-linguistic features instead. Commercial systems, e.g. (Chalabi, 2004),
do not seem to overcome this interference either.

1.2. Reused Soware

eElixirFM implementation of Functional ArabicMorphology would not have come into
existence were it not for many open-source soware projects that we could use during our
work, or by which we got inspired.

ElixirFM and its lexicons are licensed under GNU GPL and are available on http://
sourceforge.net/projects/elixir-fm/, along with the other accompanying soware
(MorphoTrees, Encode Arabic) and the source code of the thesis (ArabTEX extensions, TreeX).

ElixirFM 1.0 is intended for use with the Hugs interactive interpreter of Haskell, available
for a number of platforms via http://haskell.org/hugs/.

Buckwalter Arabic Morphological Analyzer e bulk of lexical entries in ElixirFM is ex-
tracted from the data in the Buckwalter lexicon (Buckwalter, 2002). We devised an algorithm
in Perl using the morphophonemic patterns of ElixirFM that finds the roots and templates of
the lexical items, as they are available only partially in the original, and produces the ElixirFM
lexicon in customizable formats for Haskell and for Perl.

FunctionalMorphology Library FunctionalMorphology (Forsberg andRanta, 2004) is both
amethodology formodelingmorphology in a paradigmaticmanner, and a library of purposely
language-independent but customizable modules and functions for Haskell. It partly builds
on the Zen computational toolkit for Sanskrit (Huet, 2002). Functional Morphology is also
related to the Grammatical Framework, cf. (El Dada and Ranta, 2006) and http://www.cs.
chalmers.se/~markus/FM/.

TrEd Tree Editor TrEd http://ufal.mff.cuni.cz/~pajas/tred/ is a general-purpo-
se graphical editor for trees and tree-like graphs written by Petr Pajas. It is implemented in Perl

7



PBML 88 DECEMBER 2007

and is designed to enable powerful customization andmacro programming. We have extended
TrEd with the annotation mode for MorphoTrees.

1.3. Original Contributions

e following are the original contributions and proposals of the present study:
(i) Recognition of functional versus illusory morphological categories, definition of a min-

imal but complete system of inflectional parameters in Arabic
(ii) Morphophonemic patterns and their significance for the simplification of the model of

morphological alternations
(iii) Inflectional invariant and its consequence for the efficiency ofmorphological recognition

in Arabic
(iv) Intuitive notation for the structural components of words
(v) Conversion of the Buckwalter lexicon into a functional format resembling printed dic-

tionaries
(vi) ElixirFM as a general-purposemodel of morphological inflection and derivation in Ara-

bic, implemented with high-level declarative programming
(vii) Abstraction from one particular orthography affecting the clarity of the model and ex-

tending its applicability to other written representations of the language
(viii) MorphoTrees as a hierarchization of the process of morphological disambiguation
(ix) Expandable morphological positional tags, restrictions on features, their inheritance
(x) Open-source implementations of ElixirFM, Encode Arabic, MorphoTrees, and exten-

sions for ArabTEX

2. Writing & Reading Arabic

In the context of linguistics, morphology is the study of word forms. In formal language
theory, the symbols for representing words are an inseparable part of the definition of the lan-
guage. In natural languages, the concept is a little different—an utterance can have multiple
representations, depending on the means of communication and the conventions for record-
ing it. An abstract computational morphological model should not be limited to texts written
in one customary orthography.

is chapter explores the interplay between the genuine writing system and the transcrip-
tions of Arabic. We introduce in detail the ArabTEX notation, a morphophonemic transliter-
ation scheme adopted as the representation of choice for our general-purpose morphological
model. We then discuss the problem of recognizing the internal structure of words given the
various possible types of their record.

2.1. ArabTEX Notation

e ArabTEX typesetting system (Lagally, 2004) defines its own Arabic script meta-encod-
ing that covers both contemporary and historical orthography. enotation is human-readable

8



Otakar Smrž Functional Arabic Morphology (5–30)

and very natural to write with. Its design is inspired by the standard phonetic transcription of
Arabic, which it mimics, yet some distinctions are introduced to make the conversion to the
original script or the transcription unambiguous.

Unlike other transliteration concepts based on the strict one-to-one substitution of graph-
emes, ArabTEX interprets the input characters in context in order to get their proper meaning.
Deciding the glyphs of letters (initial, medial, final, isolated) and their ligatures is not the issue
of encoding, but of visualizing of the script. Nonetheless, definite article assimilation, inference
of hamza carriers and silent ↪alifs, treatment of auxiliary vowels, optional quoting of diacritics
or capitalization, resolution of notational variants, andmode-dependent processing remain the
challenges for parsing the notation successfully.

ArabTEX’s implementation is documented in (Lagally, 1992), but the parsing algorithm for
the notation has not been published except in the form of the source code. e TEX code is
organized into deterministic-parsing macros, yet the complexity of the whole system makes
consistent modifications or extensions by other users quite difficult.

We describe our own implementations of the interpreter in Chapter 9, where we show how
to decode the notation and its proposed extensions. To encode the Arabic script or its phonetic
transcription into the ArabTEX notation requires heuristic methods, if we want to achieve lin-
guistically appropriate results.

2.2. Recognition Issues

Arabic is a language of rich morphology, both derivational and inflectional. Due to the fact
that the Arabic script usually does not encode short vowels and omits some other important
phonological distinctions, the degree of morphological ambiguity is very high.

Besides this complexity, Arabic orthography prescribes to concatenate certain word forms
with the preceding or the following ones, possibly changing their spelling and not just leaving
out the whitespace in between them. is convention makes the boundaries of lexical or syn-
tactic units, which need to be retrieved as tokens for any deeper linguistic processing, obscure,
for they may combine into one compact string of letters and be no more the distinct ‘words’.

us, the problem of disambiguation of Arabic encompasses not only diacritization (dis-
cussed in (Nelken and Shieber, 2005)), but even tokenization, lemmatization, restoration of the
structural components of words, and the discovery of their actual morphosyntactic properties,
i.e. morphological tagging (cf. (Hajič et al., 2005), plus references therein). ese subproblems,
of course, can come in many variants, and are partially coupled.

3. Morphological eory

is chapter defines lexical words as the tokens on which morphological inflection proper
will operate. We explore whatmorphosyntactic properties should be included in the functional
model. Wediscuss the linguistic and computational views on inflectionalmorphology. Further,
we are concerned with Arabic morphology from the structural perspective, designing original
morphophonemic patterns and presenting roots as convenient inflectional invariants.

9



PBML 88 DECEMBER 2007

3.1. Functional and Illusory Categories

Functional ArabicMorphology endorses the inferential–realizational principles in themor-
phological theory (cf. (Stump, 2001)). It re-establishes the system of inflectional and inherent
morphosyntactic properties (or grammatical categories or features, in the alternative naming)
and discriminates precisely the senses of their use in the grammar. It also deals with syncretism
of forms (cf. (Baerman, Brown, and Corbett, 2006)) that seems to prevent the resolution of the
underlying categories in some morphological analyzers.

In the thesis, we offer examples of morphological analyses disclosing that grammatical de-
scriptions cannot dispense with a single category for number or for gender, but rather, that we
should always specify the sense in which we mean these:

functional category is introduced as the morphosyntactic property that is involved in gram-
matical considerations; we further divide functional categories into
logical categories on which agreement with numerals and quantifiers is based
formal categories controlling other kinds of agreement or pronominal reference

illusory category denotes the value derived merely from the morphs of an expression

Does the classification of the senses of categories actually bring new quality to the linguistic
description? We explore in detail the extent of the differences in the values assigned. It may,
of course, happen that the values for a given category coincide in all the senses. However,
promoting the illusory values to the functional ones is in principle conflicting:

(i) Illusory categories are set only by a presence of some ‘characteristic’ morph, irrespective
of the functional categories of the whole expression.

(ii) If nomorph ‘characteristic’ of a value surrounds the word stem and the stem’smorpheme
does not have the right information in the lexicon, then the illusory category remains
unset. It is the particular issue with the internal/broken plural in Arabic, for which the
illusory analyses do not reveal any values of number or gender.

e problem concerns every nominal expression individually and pertains to some verbal
forms, too. Functional Arabic Morphology makes the functional gender and number infor-
mation available thanks to the lexicon that can stipulate some properties as inherent to some
lexemes, and thanks to the paradigm-driven generation that associates the inflected forms with
the desired functions directly.

3.2. e Pattern Alchemy

In Functional Arabic Morphology, patterns constitute the inventory of phonological mel-
odies of words, regardless of the other functions of the words. Morphophonemic patterns
abstract from the consonantal root, which is oen recognized or postulated on etymologi-
cal grounds. Other types of patterns, like the decomposition into separate CV patterns and
vocalisms, can be derived from the morphophonemic patterns.

Fischer (2001) uses patterns that abstract away from the root, but can include even inflec-
tional affixes or occasionally restore weak root consonants. For instance, we can find references

10



Otakar Smrž Functional Arabic Morphology (5–30)

to patterns like ↪af↩ala for ↪aḥsana �	á �� �k
�

@ ‘he did right’ or ↪ahdā ø �Y �ë

�

@ ‘he gave’, but ↪af↩alu for ↪a↩lā

ú
�
Î �«
�

@ ‘higher’. In our model, the morphophonemic pattern pertains to the morphological stem

and reflects its phonological qualities. us, our patterns become HaFCaL for ↪aḥsana �	á �� �k
�

@,

while HaFCY for both ↪ahdā ø �Y �ë
�

@ and ↪a↩lā ú

�
Î �«
�

@.

Beesley (1998) uses the term ‘morphophonemic’ as ‘underlying’, denoting the patterns like
CuCiC or staCCaC or maCCuuC. Yet, he also uses the term for anything but the surface form,
cf. “an interdigitated but still morphophonemic stem” or “there may be many phonological or
orthographical variations between these morphophonemic strings and their ultimate surface
pronunciation or spelling” (Beesley, 1998).

Kay (1987) gives an account of finite-statemodeling of the nonconcatenativemorphological
operations. He calls CV patterns ‘prosodic templates’, both terms following (McCarthy, 1981).
For further terminological explanations, cf. ((Kiraz, 2001), pages 27–46).

We build on morphophonemic patterns rather than on CV patterns and vocalisms. Words
like istaǧāb H. A

�j.
��J ��@� ‘to respond’ and istaǧwab H. �ñ �j.

��J ��@� ‘to interrogate’ have the same under-
lying VstVCCVC pattern, thus the information on CV patterns alone would not be enough
to reconstruct the differences in the surface forms. Morphophonemic patterns, in this case
IstaFAL and IstaFCaL, can easily be mapped to the hypothetical CV patterns and vocalisms,
or linked with each other according to their relationship. Morphophonemic patterns deliver
more information in a more compact way.

With this approach, we also get a more precise control over the actual word forms—we
explicitly confirm that the ‘word’ the pattern should create does undergo the implied transfor-
mations. One can therefore speak of ‘weak patterns’ rather than of ‘weak roots’.

e idea of pre-computing the phonological constraints within CV patterns into the ‘mor-
phophonemic’ ones is present in (Yaghi and Yagi, 2004), but is applied to verbs only and is
perhaps not understood in the sense of a primary or full-fledged representation ((Yaghi and
Yagi, 2004), sec. 5):

e transformation may be made on the morphological pattern itself, thus pro-
ducing a sound surface form template. … A coding scheme is adopted that con-
tinues to retain letter origins and radical positions in the template so that this will
not affect [the author’s model of] affixation. … e surface form template can be
rewritten as @�hF 2

���HhM0 �'hL2ø' AiF2t~aM0aL2Y. is can be used to form stems
such as ø �Y

���K @� Ait~adaY by slotting the root ø
 Xð wdy.

Yaghi’s templates are not void of root-consonant ‘placeholders’ that actually change under
inflection, cf. hF 2 hL2 indexed by the auxiliary integers to denote their ‘substitutability’. e
template, on the other hand, reflects some of the orthographic details and includes Form VIII
assimilations that can be abstracted from, cf. esp. the

���H t~a group.
With Functional ArabicMorphology, themorphophonemic pattern of ittadā ø �Y

���K @� is simply
IFtaCY, the root being wdy ø
 Xð. One of its inflected forms is IFtaCY |<< "tumA" ittadaytumā
A �Ò��J�K


�Y
���K @� ‘the two of you accepted compensation’, to follow again the example in (Yaghi and Yagi,

2004). We describe the essence of this notation in Chapter 5.

11



PBML 88 DECEMBER 2007

CV templates are viewed from the perspective of moraic templates in the Prosodic Mor-
phology (McCarthy and Prince, 1990), later discussed by (Kiraz, 2001) within his development
of a multitier nonlinear morphological model. Given that we can define a mapping from mor-
phophonemic templates into prosodic or moraic templates, which we easily can, we claim that
the prosodic study of the templates is separable from the modeling of morphology.

3.3. e Inflectional Invariant

In our approach, we define roots as sequences of consonants. In most cases, roots are trilit-
eral, such as k t b I. �J», q w m Ðñ�̄, d s s ��X, r ↪ y ø




@P, or quadriliteral, like d ḥ r ǧ h. QkX,

ṭ m ↪ n 	à


AÒ£, z l z l È 	QË 	P.

Roots in Arabic are, somewhat by definition, inflectional invariants. Unless a root conso-
nant is weak, i.e. one of y, w or ↪, and unless it assimilates inside a Form VIII pattern, then this
consonant will be part of the inflected word form. is becomes apparent when we consider
the repertoire and the nature of morphophonemic patterns.

e corollary is that we can effectively exploit the invariant during recognition of word
forms. We can check the derivations and inflections of the identified or hypothesized roots only,
and need not inflect the whole lexicon before analyzing the given inflected forms in question.

While this seems the obvious way in which learners of Arabic analyze unknown words to
look them up in the dictionary, it contrasts strongly with the practice in the design of computa-
tional analyzers, where finite-state transducers (Beesley and Karttunen, 2003), or analogously
tries (Forsberg and Ranta, 2004, Huet, 2002), are most oen used. Of course, other languages
than Arabic need not have such convenient invariants.

4. Impressive Haskell

Haskell is a purely functional programming language based on typed λ-calculus, with lazy
evaluation of expressions and many impressive higher-order features.

It is beyond the scope of our study to give any general, yet accurate account of the language.
We only overview some of its characteristics and point toHaskell’s websitehttp://haskell.
org/ for the most appropriate introduction and further references.

In Chapter 5, we exemplify and illustrate the features of Haskell step by step while develop-
ing ElixirFM. In Chapter 9, we present the implementation of a grammar of rewrite rules for
Encode Arabic.

5. ElixirFM Design

ElixirFM is a high-level implementation of Functional Arabic Morphology. It reuses and
extends the Functional Morphology for Haskell (Forsberg and Ranta, 2004), yet the treatment
of the language-specific issues constitutes our original contribution.

Inflection and derivation are modeled in terms of paradigms, grammatical categories, lex-
emes and word classes. e functional and the structural aspects of morphology are clearly

12



Otakar Smrž Functional Arabic Morphology (5–30)

separated. e computation of analysis or generation is conceptually distinguished from the
general-purpose linguistic model.

e lexicon of ElixirFM is designed with respect to abstraction, yet is no more complicated
than printed dictionaries. It is derived from the open-source Buckwalter lexicon (Buckwalter,
2002) and is enhanced with other unique information.

In Section 5.1, we survey some of the categories of the syntax–morphology interface in
ModernWrittenArabic, described by Functional ArabicMorphology. In passing, we introduce
the basic concepts of programming in Haskell, a modern purely functional language that is an
excellent choice for declarative generative modeling of morphologies, as Forsberg and Ranta
(2004) have shown.

Section 5.2 is devoted to describing the lexicon of ElixirFM.Wedevelop a so-called domain-
specific language embedded inHaskell with which we achieve lexical definitions that are simul-
taneously a source code that can be checked for consistency, a data structure ready for rather
independent processing, and still an easy-to-read-and-edit document resembling the printed
dictionaries.

In Section 5.3, we illustrate how rules of inflection and derivation interact with the param-
eters of the grammar and the lexical information. We claim that the system is reusable in many
applications, including computational analysis and generation in variousmodes, exploring and
exporting of the lexicon, printing of the inflectional paradigms, etc.

5.1. Morphosyntactic Categories

Different morphological models categorize individual inflected word forms differently.
Some models introduce features and values that are not always complete with respect to the
inflectional system, nor mutually orthogonal. We explain what we mean by revisiting the no-
tions of state and definiteness in contemporary written Arabic.

Functional Arabic Morphology refactors the category of state, also denoted as formal def-
initeness, depending on two parameters. e first controls prefixation of the (virtual) definite
article, the other reduces some suffixes if the word is a head of an annexation. In ElixirFM, we
define these parameters as type synonyms to standard Haskell types:

type Definite = Maybe Bool
type Annexing = Bool

e Definite values include Just True for forms with the definite article, Just False for
forms in some compounds or aer lā B

�
or yā A�K
 (absolute negatives or vocatives), and Nothing

for forms that reject the definite article for other reasons. e State category is in our view
considered as a result of coupling the two independent parameters:

type State = Couple Definite Annexing

us, the indefinite state describes a word void of the definite article(s) and not heading an
annexation, i.e. Nothing :-: False. Conversely, ar-rafī↩ū ñ �ªJ
 	̄� ��QË

�
@ ‘the-highs-of ’ is in the state

Just True :-: True. e classical construct state is Nothing :-: True. e definite state is
Just _ :-: False, where _ is True for (El Dada and Ranta, 2006) and False for (Fischer, 2001).

13



PBML 88 DECEMBER 2007

|> "k t b" <| [

FaCaL `verb` [ "write", "be destined" ] `imperf` FCuL,

FiCAL `noun` [ "book" ] `plural` FuCuL,

FiCAL |< aT `noun` [ "writing" ],

FiCAL |< aT `noun` [ "essay", "piece of writing" ] `plural` FiCAL |< At,

FACiL `noun` [ "writer", "author", "clerk" ] `plural` FaCaL |< aT
`plural` FuCCAL,

FuCCAL `noun` [ "kuttab", "Quran school" ] `plural` FaCACIL,

MaFCaL `noun` [ "office", "department" ] `plural` MaFACiL,

MaFCaL |< Iy `adj` [ "office" ],

MaFCaL |< aT `noun` [ "library", "bookstore" ] `plural` MaFACiL ]

Figure 1. Entries of the ElixirFM lexicon nested under the root k t b I. �J» using
morphophonemic templates.

5.2. ElixirFM Lexicon

Unstructured text is just a list of characters, i.e. a string. Yet words do have structure, par-
ticularly in Arabic. We work with strings as the superficial word forms, but the internal repre-
sentations are more abstract (and computationally more efficient, too).

e definition of lexemes can include the derivational root and pattern information if ap-
propriate, cf. (Habash, Rambow, and Kiraz, 2005), and our model does encourage this. e
surface word kitāb H. A

��J»� ‘book’ can decompose to the triconsonantal root k t b I. �J» and the
morphophonemic pattern FiCAL:

data PatternT = FaCaL | FAL | FaCY | FaCL
| HaFCAL | HACAL | HaFCA' | HACA'
| FiCAL | FiCA'
| FuCCAL | FUCAL
| TaFACuL | TaFACI
| IFtiCAL | IFtiyAL | IFtiCA'
| MustaFCaL | MustaFAL | MustaFCY | MustaFaCL

| {- ... -} deriving (Eq, Enum, Show)

e deriving clause associates the type PatternT with methods for testing equality, enu-
merating all the values, and turning the names of the values into strings. Of course, ElixirFM
provides functions for properly interlocking the patterns with the roots:

14



Otakar Smrž Functional Arabic Morphology (5–30)

merge "k t b" FiCAL −→ "kitAb"
merge "^g w b" IstaFAL −→ "ista^gAb"
merge "^g w b" IstaFCaL −→ "ista^gwab"
merge "s ' l" MaFCUL −→ "mas'Ul"
merge "r ' y" HAFA' −→ "'ArA'"
merge "z h r" IFtaCaL −→ "izdahar"

e izdahar Q �ë �X 	P@� ‘to flourish’ case exemplifies that exceptionless assimilations need not be
encoded in the patterns, but can instead be hidden in rules.

e whole generative model adopts the notation of ArabTEX (Lagally, 2004) as a meta-
encoding of both the orthography and phonology. erefore, instantiation of the "'" hamza
carriers or other merely orthographic conventions do not obscure the morphological model.
With Encode Arabic interpreting the notation, ElixirFM can at the surface level process the
original Arabic script (non-)vocalized to any degree or work with some kind of transliteration
or even transcription thereof.

Morphophonemic patterns represent the stems of words. e various kinds of abstract
prefixes and suffixes can be expressed either as atomic values, or as literal strings wrapped into
extra constructors:

data Prefix = Al | LA | Prefix String

data Suffix = Iy | AT | At | An | Ayn | Un | In | Suffix String

al = Al; lA = LA -- function synonyms

aT = AT; ayn = Ayn; aN = Suffix "aN"

Affixes and patterns are put together via the Morphs a data type, where a is a triliteral pattern
PatternT or a quadriliteral PatternQ or a non-templatic word stem Identity of type PatternL:

data PatternL = Identity
data PatternQ = KaRDaS | KaRADiS {- ... -}

data Morphs a = Morphs a [Prefix] [Suffix]

e word lā-silkīy
�ú
¾� Ê��B

�
‘wireless’ can thus be decomposed as the root s l k ½Ê� and the

value Morphs FiCL [LA] [Iy]. Shunning such concrete representations, we define new opera-
tors >| and |< that denote prefixes, resp. suffixes, inside Morphs a. If it is strings that need to be
prefixed or suffixed, the shorthand >>| and |<< can also be used:

lA >| FiCL |< Iy −→ Morphs FiCL [LA] [Iy]

al >| lA >| FiCL |< Iy |<< "u" −→ Morphs FiCL [Al, LA] [Suffix "u", Iy]

With the introduction of patterns and templates, some synonymous functions and the in-
tuitive operators, we start developing what can be viewed as a domain-specific language em-
bedded in the general-purpose programming language. Encouraged by the flexibility of many
other domain-specific languages in Haskell, we design the lexicon to look as shown in Figure 1,
yet be a verifiable source code defining a directly interpretable data structure.

15



PBML 88 DECEMBER 2007

data Mood = Indicative | Subjunctive | Jussive | Energetic deriving (Eq, Enum)
data Gender = Masculine | Feminine deriving (Eq, Enum)

data ParaVerb = VerbP Voice Person Gender Number
| VerbI Mood Voice Person Gender Number
| VerbC Gender Number deriving Eq

paraVerbC :: Morphing a b => Gender -> Number -> [Char] -> a -> Morphs b
paraVerbC g n i = case n of

Singular -> case g of Masculine -> prefix i . suffix ""
Feminine -> prefix i . suffix "I"

Plural -> case g of Masculine -> prefix i . suffix "UW"
Feminine -> prefix i . suffix "na"

_ -> prefix i . suffix "A"

Figure 2. Excerpt from the implementation of verbal inflectional features and
paradigms in ElixirFM.

e lexicon of ElixirFM is derived from the open-source Buckwalter lexicon (Buckwalter,
2002). We devised an algorithm in Perl using the morphophonemic patterns of ElixirFM that
finds the roots and templates of the lexical items, as they are available only partially in the
original, and produces the lexicon in formats for Perl and for Haskell.

5.3. Morphological Rules

Inferential–realizational morphology is modeled in terms of paradigms, grammatical cate-
gories, lexemes and word classes. ElixirFM implements the comprehensive rules that draw the
information from the lexicon and generate the word forms given the appropriate morphosyn-
tactic parameters. e whole is invoked through a convenient inflect method.

e lexicon and the parameters determine the choice of paradigms. e template selection
mechanism differs for nominals (providing plurals) and for verbs (providing all needed stem
alternations in the extent of the entry specifications of e.g. Hans Wehr’s dictionary).

In Figure 2, the algebraic data type ParaVerb restricts the space in which verbs are inflected
by defining three Cartesian products of the elementary categories: a verb can have VerbP per-
fective forms inflected in voice, person, gender, number, VerbI imperfective forms inflected
also in mood, and VerbC imperatives inflected in gender and number only.

e paradigm for inflecting imperatives, the only such paradigm in ElixirFM, is imple-
mented as paraVerbC. It is a function parametrized by some particular value of gender g and
number n, as well as the initial imperative prefix i and the verbal stem (both inferred from the
morphophonemic patterns in the lexical entry) and yielding the inflected form.

16



Otakar Smrž Functional Arabic Morphology (5–30)

e definition of paraVerbC is simple and concise due to the chance to compose with . the
partially applied prefix and suffix functions and to virtually omit the next argument. is
advanced formulation perhaps does not seem asminimal as themere specification of the literal
endings or prefixes, but we present it here to illustrate the options that there are. An abstract
paradigm can be used on more abstract types than just strings. Inflected forms need not be
merged with roots yet, and can retain the internal structure:

paraVerbC Feminine Plural "u" FCuL −→ "u" >>| FCuL |<< "na"

merge "k t b" (Prefix "u" >| FCuL |< Suffix "na") −→
"uktubna" uktubna

�	á��.
��J
�
»
�
@ fem.pl. ‘write!’

e highlight of the Arabic morphology is that the ‘irregular’ inflection actually rests in
strictly observing some additional rules, the nature of which is phonological. erefore, sur-
prisingly, ElixirFM does not even distinguish between verbal and nominal word formation
when enforcing these rules. is reduces the number of paradigms to the prototypical 3 verbal
and 5 nominal. Yet, the model is efficient.

Nominal inflection is also driven by the information from the lexicon and by phonology.
Note that the morphophonemic patterns and the Morphs a templates are actually extremely
informative. We can use them as determining the inflectional class and the paradigm function,
and thus we can almost avoid other unintuitive or excessive indicators of the kind of weak
morphology, diptotic inflection, and the like.

5.4. Applications

e ElixirFM linguistic model and the data of the lexicon can be integrated into larger ap-
plications or used as standalone libraries and resources.

e language-independent part of the system could rest in the Functional Morphology li-
brary (Forsberg and Ranta, 2004). Among other useful things, it implements the compilation
of the inflected word forms and their associated morphosyntactic categories into morphologi-
cal analyzers and generators. e method used for analysis is deterministic parsing with tries,
cf. also (Huet, 2002, Ljunglöf, 2002).

Nonetheless, ElixirFM provides an original analysis method exploiting the inflectional in-
variant defined in Chapter 3. We can, at least in the present version of the implementation,
dispense with the compilation into tries, and we use rather minimal computational resources.

We define a class of types that can be Resolved, which introduces one rather generalmethod
resolveBy and one more specific method resolve saying that the form in question should be
resolved by equality with the inflected forms in the model. e generic resolveBy method can
be used esp. for recognition of partially vocalized or completely non-vocalized representations
of Arabic, or allow in fact arbitrary kinds of omissions, cf. Chapter 6.

Reusing and extending the original Functional Morphology library, ElixirFM also provides
functions for exporting and pretty-printing the linguistic model into XML, LATEX, Perl, SQL,
and other custom formats.

17



PBML 88 DECEMBER 2007

6. Other Listings

is chapter is a non-systematic overview of the features of ElixirFM. It can serve as a tu-
torial for the first sessions with ElixirFM in the environment of the Hugs interpreter. Here, we
present just a couple of examples.

ElixirFM> inflect (FiCAL `noun` []) "--------2-"

[("N------S2I",[("f ` l",FiCAL |<< "iN")]),("N------S2R",[(......
,("N------D2L",[("f ` l",FiCAL |<< "ay")]),...,("N------P2L",[])]

ElixirFM> pretty $ inflect (RE "k t b" $ FiCAL `noun` []) "-------S2[IDR]"

("N------S2I",[("k t b",FiCAL |<< "iN")])
("N------S2R",[("k t b",FiCAL |<< "i")])
("N------S2D",[("k t b",al >| FiCAL |<< "i")])

ElixirFM> uncurry merge ("k t b", FiCAL |<< "iN")

"kitAbiN"

ElixirFM> pretty $ inflect (RE "k t b" $ FiCAL `noun` [] `plural` FuCuL)
"-------P2[IDR]"

("N------P2I",[("k t b",FuCuL |<< "iN")])
("N------P2R",[("k t b",FuCuL |<< "i")])
("N------P2D",[("k t b",al >| FuCuL |<< "i")])

ElixirFM> pretty $ resolveBy (omitting "aiuAUI") "ktbuN"

N------S1I kitAbuN "k t b" FiCAL ["book"]
N------P1I kutubuN "k t b" FiCAL ["book"]
N------S1I kAtibuN "k t b" FACiL ["writer","author","clerk"]
A-----MS1I kAtibuN "k t b" FACiL ["writing"]

ElixirFM> pretty $ resolveBy (omitting $ (encode UCS . decode Tim) "~aiuKNF")
(decode Tim "ktAb")

N------S1I kitAbuN "k t b" FiCAL ["book"]
N------S1R kitAbu "k t b" FiCAL ["book"]
N------S1A kitAbu "k t b" FiCAL ["book"]
N------S1L kitAbu "k t b" FiCAL ["book"]
N------S2I kitAbiN "k t b" FiCAL ["book"]
N------S2R kitAbi "k t b" FiCAL ["book"]
N------S2A kitAbi "k t b" FiCAL ["book"]
N------S2L kitAbi "k t b" FiCAL ["book"]
N------S4R kitAba "k t b" FiCAL ["book"]
N------S4A kitAba "k t b" FiCAL ["book"]
N------S4L kitAba "k t b" FiCAL ["book"]
N------P1I kuttAbuN "k t b" FACiL ["writer","author","clerk"]
N------P1R kuttAbu "k t b" FACiL ["writer","author","clerk"]
N------P1A kuttAbu "k t b" FACiL ["writer","author","clerk"]

18



Otakar Smrž Functional Arabic Morphology (5–30)

N------P1L kuttAbu "k t b" FACiL ["writer","author","clerk"]
N------P2I kuttAbiN "k t b" FACiL ["writer","author","clerk"]
N------P2R kuttAbi "k t b" FACiL ["writer","author","clerk"]
N------P2A kuttAbi "k t b" FACiL ["writer","author","clerk"]
N------P2L kuttAbi "k t b" FACiL ["writer","author","clerk"]
N------P4R kuttAba "k t b" FACiL ["writer","author","clerk"]
N------P4A kuttAba "k t b" FACiL ["writer","author","clerk"]
N------P4L kuttAba "k t b" FACiL ["writer","author","clerk"]

7. MorphoTrees

MorphoTrees (Smrž and Pajas, 2004) evolved as an idea of building effective and intuitive
hierarchies over the information presented by morphological systems. Such a concept is espe-
cially interesting for Arabic and the Functional Arabic Morphology, yet, it is not limited to the
language, nor to the formalism, and various extensions are imaginable.

7.1. e MorphoTrees Hierarchy

As an inspiration for the design of the hierarchies, consider the following analyses of the
string fhm Ñê 	̄ . Some readings will interpret it as just one token related to the notion of ‘under-
standing’, but homonymous for several lexical units, each giving many inflected forms, distinct
phonologically despite their identical spelling in the ordinary non-vocalized text. Other read-
ings will decompose the string into two co-occurring tokens, the first one, in its non-vocalized
form f

	¬, standing for an unambiguous conjunction, and the other one, hm Ñë, analyzed as a
verb, noun, or pronoun, each again ambiguous in its functions.

Clearly, this type of concise and ‘structured’ description does not come ready-made—we
have to construct it on top of the overall morphological knowledge. We can take the output
solutions of morphological analyzers and process them according to our requirements on tok-
enization and ‘functionality’ stated above. en, we can merge the analyses and their elements
into a five-level hierarchy similar to that of Figure 3. e leaves of it are the full forms of the
tokens plus their tags as the atomic units. e root of the hierarchy represents the input string,
or generally the input entity (some linear or structured subpart of the text). Rising from the
leaves up to the root, there is the level of lemmas of the lexical units, the level of non-vocalized
canonical forms of the tokens, and the level of decomposition of the entity into a sequence of
such forms, which implies the number of tokens and their spelling.

Note that the MorphoTrees hierarchy itself might serve as a framework for evaluating mor-
phological taggers, lemmatizers and stemmers of Arabic, since it allows for resolution of their
performance on the different levels, which does matter with respect to the variety of applica-
tions.

7.2. MorphoTrees Disambiguation

e annotation of MorphoTrees rests in selecting the applicable sequence of tokens that
analyze the entity in the context of the discourse. In a naive setting, an annotator would be le

19



PBML 88 DECEMBER 2007

to search the trees by sight, decoding the information for every possible analysis before coming
across the right one. If not understood properly, the supplementary levels of the hierarchy
would rather tend to be a nuisance…

Instead, MorphoTrees in TrEd take great advantage of the hierarchy and offer the option
to restrict one’s choice to subtrees and hide those leaves or branches that do not conform to
the criteria of the annotation. Moreover, many restrictions are applied automatically, and the
decisions about the tree can be controlled in a very rapid and elegant way.

e MorphoTrees of the entity fhm Ñê 	̄ in Figure 3 are in fact already annotated. e an-
notator was expecting, from the context, the reading involving a conjunction. By pressing the
shortcut c at the root node, he restricted the tree accordingly, and the only one eligible leaf
satisfying the C--------- tag restriction was selected at that moment. Nonetheless, the fa-�	¬ ‘so’ conjunction is part of a two-token entity, and some annotation of the second token
must also be performed. Automatically, all inherited restrictions were removed from the hm
Ñë subtree (notice the empty tag in the flag over it), and the subtree unfolded again. e an-
notator moved the node cursor to the lemma for the pronoun, and restricted its readings to
the nominative --------1- by pressing another mnemonic shortcut 1, upon which the single
conforming leaf hum Ñ �ë ‘they’ was selected automatically. ere were no more decisions to
make and the annotation proceeded to the next entity of the discourse.

Alternatively, the annotation could be achievedmerely by typings1. e restrictions would
unambiguously lead to the nominative pronoun, and then, without human intervention, to
the other token, the unambiguous conjunction. ese automatic decisions need no linguistic
model, yet are very effective.

7.3. Further Discussion

Hierarchization of the selection task seems to be the most important contribution of the
idea. e suggested meaning of the levels of the hierarchy mirrors the linguistic theory and
also one particular strategy for decision-making, neither of which are universal. If we adapt
MorphoTrees to other languages or hierarchies, the power of trees remains, though—efficient
top-down search or bottom-up restrictions, gradual focusing on the solution, refinement, in-
heritance and sharing of information, etc.

e levels of MorphoTrees are extensible internally as well as externally in both directions,
and the concept incites new views on some issues encompassed by morphological analysis and
disambiguation.

In PADT, whose MorphoTrees average roughly 8–10 leaves per entity depending on the
data set while the result of annotation is 1.16–1.18 tokens per entity, restrictions as a means of
direct access to the solutions improve the speed of annotation significantly.

We propose to evaluate tokenizations in terms of the Longest Common Subsequence prob-
lem (cf. (Crochemore et al., 2000)). e tokens that are the members of the LCS with some
referential tokenization, are considered correctly recognized. Dividing the length of the LCS
by the length of one of the sequences, we get recall, doing it for the other of the sequences, we
get precision. e harmonicmean of both isFβ=1-measure (cf. (Manning and Schütze, 1999)).

20



Otakar Smrž Functional Arabic Morphology (5–30)
.

.fh
m
Ñê

	̄

.fh
m
Ñê

	̄

.fh
m
Ñê

	̄

.Ñê �
� 	̄ fa

hi
m

.Ñê
� 	̄ fa

hm
.Ñ� � ê� 	̄ fa

hh
am

.f
hm

Ñë
	 ¬

.f
	 ¬

.
� 	 ¬
fa .

.hm
Ñë

.� Ñ� ë
ha

m
m

.

.� Ñ� ë
ha

m
m

.

.

.

.

.

.

.Ñ� ë
hu

m

.

.C--------- .
�	¬ fa

.VP---3MS-- .
��Ñ �ë hamm-a

.N--------- .�Ñ �ë hamm

.N-------1R .
��Ñ �ë hamm-u

.N-------4R .
��Ñ �ë hamm-a

.N-------2R .
��Ñ �ë hamm-i

.N-------1I .
��Ñ �ë hamm-un

.N-------2I .
��Ñ �ë hamm-in

.S----3MP1- .Ñ �ë hum

.C-
--
--
--
--

.--
--
--
--
--

.--
--
--
--
1-

.

Ñê �
� 	̄ fa

hi
m

to
un

de
rs
ta
nd

Ñê
� 	̄ fa

hm
un

de
rs
ta
nd

in
g

Ñ� � ê� 	̄ fa
hh

am
to

m
ak

e
un

de
rs
ta
nd

� 	 ¬
fa

an
d,

so
� Ñ� ë

ha
m
m

to
be

on
on

e’s
m

in
d

� Ñ� ë
ha

m
m

co
nc

er
n,

in
te
re

st
Ñ� ë

hu
m

th
ey

Fi
gu

re
3.

M
or
ph

oT
re
es

of
th
e
or
th
og

ra
ph

ic
st
rin

g
fh
m
Ñê

	̄ in
cl
ud

in
g
an

no
ta
tio

n
w
ith

re
st
ric

tio
ns

.
Th

e
da

sh
ed

lin
es

in
di
ca

te
th
er
e
is
no

so
lu
tio

n
su

iti
ng

th
e
in
he

rit
ed

re
st
ric

tio
ns

in
th
e
gi
ve

n
su

bt
re
e.

Th
e
do

tt
ed

lin
e
sy
m
bo

liz
es

th
er
e
m
ig
ht

be
im

pl
ic
it
m
or
ph

os
yn

ta
ct
ic
co

ns
tr
ai
nt
s
be

tw
ee

n
th
e
ad

ja
ce

nt
to
ke

ns
in

th
e
an

al
ys
es
.

21



PBML 88 DECEMBER 2007

8. Lexicon versus Treebank

is chapter outlines the structure of linguistic description in the framework of Functional
Generative Description and motivates our specific concerns about Arabic within the Prague
Arabic Dependency Treebank.

8.1. Functional Description of Language

Prague Arabic Dependency Treebank (Hajič et al., 2004a, Hajič et al., 2004b) is a project
of analyzing large amounts of linguistic data in Modern Written Arabic in terms of the for-
mal representation of language that originates in the Functional Generative Description (Sgall,
1967, Sgall, Hajičová, and Panevová, 1986, Panevová, 1980, Hajičová and Sgall, 2003).

In this theory, the formal representation delivers the linguisticmeaning of what is expressed
by the surface realization, i.e. the natural language. e description is designed to enable gener-
ating the natural language out of the formal representations. By constructing the treebank, we
provide a resource for computational learning of the correspondences between both languages,
the natural and the formal.

Morphological annotations identify the textual forms of a discourse lexically and recog-
nize the morphosyntactic categories that the forms assume. Processing on the analytical level
describes the superficial syntactic relations present in the discourse, whereas the tectogram-
matical level reveals the underlying structures and restores the linguistic meaning (cf. (Sgall,
Panevová, and Hajičová, 2004)).

Linguistic data, i.e. mostly newswire texts in their written form, are gradually analyzed in
this system of levels, and their linguistic meaning is thus reconstructed and made explicit.

8.2. Analytical Syntax

e tokens with their disambiguated grammatical information enter the annotation of an-
alytical syntax (Žabokrtský and Smrž, 2003, Hajič et al., 2004b). is level is formalized into
dependency trees the nodes of which are the tokens. Relations between nodes are classified
with analytical syntactic functions. More precisely, it is the whole subtree of a dependent node
that fulfills the particular syntactic function with respect to the governing node.

In Figure 4, we analyze a verbal sentence with coordination and a subordinate relative
clause. Coordination is depicted with a diamond node and dashed ‘dependency’ edges be-
tween the coordination node and its member coordinants.

Both clauses and nominal expressions can assume the same analytical functions—the at-
tributive clause in our example is Atr, just like in the case of nominal attributes. Pred denotes
the main predicate, Sb is subject, Obj is object, Adv stands for adverbial. AuxP, AuxY and
AuxK are auxiliary functions of specific kinds.

e coordination relation is different from the dependency relation, but we can depict it in
the tree-like manner, too. e coordinative node becomes Coord, and the subtrees that are the
members of the coordination are marked as such (cf. dashed edges). Dependents modifying

22



Otakar Smrž Functional Arabic Morphology (5–30)
.

. .AuxS

. .AuxY

. .AuxP

. .Adv

. .Atr

. .Pred

. .Sb

. .Obj

. .Atr

. .Atr

. .Coord

. .Atr

. .AuxY

. .Atr

. .Obj

. .AuxK

. . .

.�ð wa- .and .C---------

.ú

	̄
� fī .in .P---------

.
��	­
�
ÊÓ� milaffi .collection/file-of .N-------2R

.H.�
�X
�

B@ al-↪adabi .the-literature .N-------2D

. �I �k�Q �£ ṭaraḥat .it-presented .VP-A-3FS--

.
��é
��
Ê �j. �ÜÏ @ al-maǧallatu .the-magazine .N-----FS1D

.
��é��J
 	��

��̄ qaḍīyata .issue-of .N-----FS4R

.�é�
�	ª
��
ÊË @ al-luġati .the-language .N-----FS2D

.�é�
��J
K.� �Q

�ªË@ al-↩arabīyati .the-Arabic .A-----FS2D

.�ð wa- .and .C---------

.P�A
�¢ 	k

�

B@ al-↪aẖṭāri .the-dangers .N-------2D

.ú

�æ�
��
Ë @ allatī .that .SR----FS--

.�X
��Y�î��E tuhaddidu .they-threaten .VIIA-3FS--

.A �ë -hā .it .S----3FS4-

.. . .. .G---------

Figure 4. An analytical representation of the sentence In the section on literature,
the magazine presented the issue of the Arabic language and the dangers that

threaten it.

the coordination as a whole would attach directly to the Coord node, yet would not be marked
as coordinants—therefrom, the need for distinguishing coordination and pure dependency in
the trees.

e immediate-dominance relation that we capture in the annotation is independent of the
linear ordering ofwords in an utterance, i.e. the linear-precedence relation (Debusmann, 2006).
us, the expressiveness of the dependency grammar is stronger than that of phrase-structure
context-free grammar. e dependency trees can become non-projective by featuring crossing
dependencies, which reflects the possibility of relaxing word order while preserving the links
of grammatical government.

23



PBML 88 DECEMBER 2007
.

. .SENT

. .LOC

. .PAT

. .PRED

. .ACT

. .ADDR

. .PAT

. .ID

. .RSTR

. .CONJ

. .ID

. .RSTR

. .ACT

. .PAT

. . .

.
�	­
�
ÊÓ� milaff .collection .Masc.Sing.Def

.H.
�X
�

@ ↪adab .literature .Masc.Sing.Def

.h �Q �£ ṭaraḥ .to present .Ind.Ant.Act

.�é
��
Ê�m.
�×maǧallah .magazine .Fem.Sing.Def

. �ñ �ë huwa .someone .GenPronoun

.�é��J
 	��
��̄ qaḍīyah .issue .Fem.Sing.Def

.�é �	ª
�
Ë luġah .language .Fem.Sing.Def

.�ú
G.�
�Q �« ↩arabīy .Arabic .Adjective

.�ð wa- .and .Coordination

.Q �¢ �	k ẖaṭar .danger .Masc.Plur.Def

.X
��Y �ë haddad .to threaten .Ind.Sim.Act

.�ù
 ë� hiya .it .PersPronoun

.�ù
 ë� hiya .it .PersPronoun

Figure 5. A tectogrammatical representation of the sentence In the section on
literature, the magazine presented the issue of the Arabic language and the

dangers that threaten it.

8.3. Tectogrammatics

e analytical syntax is yet a precursor to the deep syntactic annotation (Sgall, Panevová,
and Hajičová, 2004, Mikulová and others, 2006) with the following characteristics:

deleted nodes only autosemantic lexemes and coordinative nodes are involved in tectogram-
matics; synsemantic lexemes, such as prepositions or particles, are deleted from the trees
and may be instead reflected in the values of deep grammatical categories, called gram-
matemes, that are associated with the relevant autosemantic nodes

inserted nodes autosemantic lexemes that do not appear explicitly in the surface syntax, yet
that are required as obligatory by valency frames or by other criteria of tectogrammatical
well-formedness, are inserted into the deep syntactic structures; the elided lexemes may
be copies of other explicit nodes, or may be restored even as generic or unspecified

24



Otakar Smrž Functional Arabic Morphology (5–30)

functors are the tectogrammatical functions describing deep dependency relations; the under-
lying theory distinguishes arguments (inner participants: ACTor, PATient, ADDRessee,
ORIGin, EFFect) and adjuncts (free modifications, e.g.: LOCation, CAUSe, MAN-
Ner, TimeWHEN, ReSTRictive, APPurtenance) and specifies the type of coordination
(e.g. CONJunctive, DISJunctive, ADVerSative, ConSeQuential)

grammatemes are the deep grammatical features that are necessary for proper generation of
the surface form of an utterance, given the tectogrammatical tree as well, cf. (Hajič et al.,
2004b)

coreference pronouns are matched with the lexical mentions they refer to; we distinguish
grammatical coreference (the coreferent is determined by grammar) and textual corefer-
ence (otherwise); in Figure 5, the densely dotted arc indicates grammatical coreference,
the loosely dotted curve denotes textual coreference

Compare the representations in Figures 4 and 5. Note the differences in the set of nodes
actually represented, esp. the restored ADDRessee which is omitted in the surface form of the
sentence, but is obligatory in the valency frame of the semantics of the PREDicate.

8.4. Dependency and Inherent vs. Inflectional Properties

Analytical syntax makes the agreement relations more obvious. We can oen use those re-
lations to infer information on inherent lexical properties as to gender, number, and human-
ness, as other words in the relation can, with their inflectional or inferred inherent properties,
provide enough constraints.

So this problem is a nice example for constraint programming. Our experiments with the
treebank so far have been implemented in Perl, and the inference algorithm was not optimal.
Neither was the handling of constraints that (perhaps by an error in the annotation) contradict
the other ones. Anyway, we did arrive at promising preliminary results.

ese experiments have not been fully completed, though, and their revision is needed.
In view of that, we consider formulating the problem in the Mozart/Oz constraint-based pro-
gramming environment ((Van Roy and Haridi, 2004), chapters 9 and 12).

8.5. Tectogrammatics and Derivational Morphology

We can define default derivations of participles and deverbal nouns, the maṣdars, or con-
sider transformations of patterns between different derivational forms, like in the case of Czech
where lexical-semantic shis are also enforced in the valency theory (cf. (Žabokrtský, 2005)).
If the default happens to be inappropriate, then a lexical entry can be extended to optionally
include the lexicalized definition of the information that we might require.

e concrete transformations that should apply on the tectogrammatical level are a research
in progress, performed by the whole PADT team.

e ability to do the transformations, however, is expected in near future as a direct exten-
sion of the ElixirFM system.

25



PBML 88 DECEMBER 2007

9. Encode Arabic

is chapter contains details about the implementations related to processing the ArabTEX
notation and its extensions. e mentioned soware is open-source and is available via http:
//sourceforge.net/projects/encode-arabic/.

Extending ArabTEX e alocal package implements some of the notational extensions of
Encode Arabic to work in ArabTEX.

e acolor package adds colorful typesetting to ArabTEX. anks are due to Karel Mokrý
who implemented the core of this functionality originally.

Independent Libraries e Perl implementation of Encode Arabic is documented at http:
//search.cpan.org/dist/Encode-Arabic/.

In the thesis, we present parts of the implementation of our Haskell library for processing
the Arabic language in the ArabTEX transliteration (Lagally, 2004), a non-trivial and multi-
purpose notation for encoding Arabic orthographies and phonetic transcriptions in parallel.
Our approach relies on the Pure Functional Parsing library developed in (Ljunglöf, 2002),
which we accommodate to our problem and partly extend. We promote modular design in
systems for modeling or processing natural languages.

Conclusion

In the thesis, we developed the theory of Functional Arabic Morphology and designed
ElixirFM as its high-level functional and interactive implementation written in Haskell.

Next to numerous theoretical points on the character of Arabic morphology and its re-
lation to syntax, we proposed a model that represents the linguistic data in an abstract and
extensible notation that encodes both orthography and phonology, and whose interpretation
is customizable. We developed a domain-specific language in which the lexicon is stored and
which allows easy manual editing as well as automatic verification of consistency. We believe
that the modeling of both the written language and the spoken dialects can share the presented
methodology.

ElixirFM and its lexicons are licensed under GNU GPL and are available on http://
sourceforge.net/projects/elixir-fm/. e implementations of Encode Arabic, Mor-
phoTrees, and the ArabTEX extensions are published likewise.

We intend to improve our work further and integrate ElixirFM closely withMorphoTrees as
well as with both levels of syntactic representation in the Prague Arabic Dependency Treebank.

Acknowledgement e research for the thesis was supported by theMinistry of Education of
the Czech Republic (MSM 0021620838), by the Grant Agency of Charles University in Prague
(UK 373/2005), and by the Grant Agency of the Czech Academy of Sciences (1ET101120413).

26



Otakar Smrž Functional Arabic Morphology (5–30)

Bibliography

Al-Sughaiyer, Imad A. and Ibrahim A. Al-Kharashi. 2004. Arabic Morphological Analysis Techniques:
A Comprehensive Survey. Journal of the American Society for Information Science and Technology,
55(3):189–213.

Badawi, Elsaid, Mike G. Carter, and Adrian Gully. 2004. Modern Written Arabic: A Comprehensive
Grammar. Routledge.

Baerman, Matthew, Dunstan Brown, and Greville G. Corbett. 2006. e Syntax-Morphology Interface. A
Study of Syncretism. Cambridge Studies in Linguistics. Cambridge University Press.

Beesley, Kenneth R. 1998. Arabic Morphology Using Only Finite-State Operations. In COLING-ACL’98
Proceedings of the Workshop on Computational Approaches to Semitic languages, pages 50–57.

Beesley, Kenneth R. 2001. Finite-State Morphological Analysis and Generation of Arabic at Xerox Re-
search: Status and Plans in 2001. In EACL 2001Workshop Proceedings on Arabic Language Processing:
Status and Prospects, pages 1–8, Toulouse, France.

Beesley, Kenneth R. and Lauri Karttunen. 2003. Finite State Morphology. CSLI Studies in Computational
Linguistics. CSLI Publications, Stanford, California.

Buckwalter, Tim. 2002. Buckwalter Arabic Morphological Analyzer Version 1.0. LDC catalog number
LDC2002L49, ISBN 1-58563-257-0.

Cavalli-Sforza, Violetta, Abdelhadi Soudi, and Teruko Mitamura. 2000. Arabic Morphology Generation
Using a Concatenative Strategy. In Proceedings of NAACL 2000, pages 86–93, Seattle.

Chalabi, Achraf. 2004. Sakhr Arabic Lexicon. InNEMLAR International Conference on Arabic Language
Resources and Tools, pages 21–24. ELDA.

Crochemore, Maxime, Costas S. Iliopoulos, Yoan J. Pinzon, and James F. Reid. 2000. A Fast and Practical
Bit-Vector Algorithm for the Longest Common Subsequence Problem. In Proceedings of the 11th
Australasian Workshop On Combinatorial Algorithms, Hunter Valley, Australia.

Dada, Ali. 2007. Implementation of the Arabic Numerals and their Syntax in GF. In ACL 2007 Pro-
ceedings of the Workshop on Computational Approaches to Semitic Languages: Common Issues and
Resources, pages 9–16, Prague, Czech Republic, June. Association for Computational Linguistics.

Debusmann, Ralph. 2006. Extensible Dependency Grammar: A Modular Grammar Formalism Based On
Multigraph Description. Ph.D. thesis, Saarland University.

Ditters, Everhard. 2001. A Formal Grammar for the Description of Sentence Structure in Modern
Standard Arabic. In EACL 2001 Workshop Proceedings on Arabic Language Processing: Status and
Prospects, pages 31–37, Toulouse, France.

ElDada, Ali andAarneRanta. 2006. Open SourceArabicGrammars inGrammatical Framework. InPro-
ceedings of the Arabic Language Processing Conference (JETALA), Rabat, Morocco, June 2006. IERA.

El-Sadany, Tarek A. and Mohamed A. Hashish. 1989. An Arabic morphological system. IBM Systems
Journal, 28(4):600–612.

Fischer, Wolfdietrich. 2001. A Grammar of Classical Arabic. Yale Language Series. Yale University Press,
third revised edition. Translated by Jonathan Rodgers.

27



PBML 88 DECEMBER 2007

Forsberg, Markus and Aarne Ranta. 2004. Functional Morphology. In Proceedings of the Ninth ACM
SIGPLAN International Conference on Functional Programming, ICFP 2004, pages 213–223. ACM
Press.

Habash, Nizar. 2004. Large Scale Lexeme Based Arabic Morphological Generation. In JEP-TALN 2004,
Session Traitement Automatique de l’Arabe, Fes, Morocco, April 2004.

Habash, Nizar, Owen Rambow, and George Kiraz. 2005. Morphological Analysis and Generation for
Arabic Dialects. In Proceedings of the ACL Workshop on Computational Approaches to Semitic Lan-
guages, pages 17–24, Ann Arbor, Michigan. Association for Computational Linguistics.

Hajič, Jan, Otakar Smrž, TimBuckwalter, andHubert Jin. 2005. Feature-Based Tagger of Approximations
of Functional Arabic Morphology. In Proceedings of the FourthWorkshop on Treebanks and Linguistic
eories (TLT 2005), pages 53–64, Barcelona, Spain.

Hajič, Jan, Otakar Smrž, Petr Zemánek, Petr Pajas, Jan Šnaidauf, Emanuel Beška, Jakub Kráčmar, and
Kamila Hassanová. 2004a. Prague Arabic Dependency Treebank 1.0. LDC catalog number
LDC2004T23, ISBN 1-58563-319-4.

Hajič, Jan, Otakar Smrž, Petr Zemánek, Jan Šnaidauf, and Emanuel Beška. 2004b. Prague Arabic Depen-
dency Treebank: Development in Data and Tools. In NEMLAR International Conference on Arabic
Language Resources and Tools, pages 110–117. ELDA.

Hajičová, Eva and Petr Sgall. 2003. Dependency Syntax in Functional Generative Description. In De-
pendenz und Valenz – Dependency and Valency, volume I. Walter de Gruyter, pages 570–592.

Holes, Clive. 2004. Modern Arabic: Structures, Functions, and Varieties. Georgetown Classics in Arabic
Language and Linguistics. Georgetown University Press.

Huet, Gérard. 2002. e Zen Computational Linguistics Toolkit. ESSLLI Course Notes, FoLLI, the
Association of Logic, Language and Information.

Kay, Martin. 1987. Nonconcatenative Finite-State Morphology. In Proceedings of the ird Conference of
the European Chapter of the ACL (EACL-87), pages 2–10, Copenhagen, Denmark. ACL.

Kiraz, George Anton. 2001. Computational Nonlinear Morphology with Emphasis on Semitic Languages.
Studies in Natural Language Processing. Cambridge University Press.

Lagally, Klaus. 1992. ArabTEX: Typesetting Arabic with Vowels and Ligatures. In EuroTEX 92, page 20,
Prague, Czechoslovakia, September 14–18.

Lagally, Klaus. 2004. ArabTEX: Typesetting Arabic and Hebrew, User Manual Version 4.00. Technical
Report 2004/03, Fakultät Informatik, Universität Stuttgart, March 11.

Ljunglöf, Peter. 2002. Pure Functional Parsing. An Advanced Tutorial. Licenciate thesis, Göteborg Uni-
versity & Chalmers University of Technology.

Manning, Christopher D. and Hinrich Schütze. 1999. Foundations of Statistical Natural Language Pro-
cessing. MIT Press, Cambridge.

McCarthy, John and Alan Prince. 1990. Foot and Word in Prosodic Morphology: e Arabic Broken
Plural. Natural Language and Linguistic eory, 8:209–283.

McCarthy, John J. 1981. A Prosodic eory of Nonconcatenative Morphology. Linguistic Inquiry,
12:373–418.

28



Otakar Smrž Functional Arabic Morphology (5–30)

Mikulová, Marie et al. 2006. A Manual for Tectogrammatical Layer Annotation of the Prague Depen-
dency Treebank. Technical report, Charles University in Prague.

Nelken, Rani and Stuart M. Shieber. 2005. Arabic Diacritization Using Finite-State Transducers. In
Proceedings of the ACL Workshop on Computational Approaches to Semitic Languages, pages 79–86,
Ann Arbor.

Othman, Eman, Khaled Shaalan, and Ahmed Rafea. 2003. A Chart Parser for Analyzing Modern Stan-
dard Arabic Sentence. In Proceedings of the MT Summit IX Workshop on Machine Translation for
Semitic Languages: Issues and Approaches, pages 37–44.

Panevová, Jarmila. 1980. Formy a funkce ve stavbě české věty [Forms and Functions in the Structure of the
Czech Sentence]. Academia.

Ramsay, Allan and Hanady Mansur. 2001. Arabic morphology: a categorial approach. In EACL 2001
Workshop Proceedings on Arabic Language Processing: Status and Prospects, pages 17–22, Toulouse,
France.

Sgall, Petr. 1967. Generativní popis jazyka a česká deklinace [Generative Description of Language and
Czech Declension]. Academia.

Sgall, Petr, Eva Hajičová, and Jarmila Panevová. 1986. e Meaning of the Sentence in Its Semantic and
Pragmatic Aspects. D. Reidel & Academia.

Sgall, Petr, Jarmila Panevová, and Eva Hajičová. 2004. Deep Syntactic Annotation: Tectogrammatical
Representation and Beyond. In HLT-NAACL 2004 Workshop: Frontiers in Corpus Annotation, pages
32–38. Association for Computational Linguistics.

Smrž, Otakar. 2007. Functional Arabic Morphology. Formal System and Implementation. Ph.D. thesis,
Charles University in Prague.

Smrž, Otakar and Petr Pajas. 2004. MorphoTrees of Arabic and eir Annotation in the TrEd Environ-
ment. In NEMLAR International Conference on Arabic Language Resources and Tools, pages 38–41.
ELDA.

Stump, Gregory T. 2001. Inflectional Morphology. Aeory of Paradigm Structure. Cambridge Studies in
Linguistics. Cambridge University Press.

Van Roy, Peter and Seif Haridi. 2004. Concepts, Techniques, and Models of Computer Programming. MIT
Press, Cambridge, March.

Yaghi, Jim and Sane Yagi. 2004. Systematic Verb Stem Generation for Arabic. In COLING 2004 Compu-
tational Approaches to Arabic Script-based Languages, pages 23–30, Geneva, Switzerland.

Žabokrtský, Zdeněk. 2005. Valency Lexicon of Czech Verbs. Ph.D. thesis, Charles University in Prague.

Žabokrtský, Zdeněk and Otakar Smrž. 2003. Arabic Syntactic Trees: from Constituency to Dependency.
In EACL 2003 Conference Companion, pages 183–186, Budapest, Hungary.

29



PBML 88 DECEMBER 2007

30


