
Haskell and Domain-Specific Languages

Haskell nejen pro informatiky

Otakar Smrž

Institute of Formal and Applied Linguistics

Faculty of Mathematics and Physics

Charles University in Prague

otakar.smrz@mff.cuni.cz

https://wiki.ufal.ms.mff.cuni.cz/courses:pfl080

Otakar Smrž (Charles University) PFL080 Haskell and DSL October 25, 2007 1 / 10

otakar.smrz@mff.cuni.cz
https://wiki.ufal.ms.mff.cuni.cz/courses:pfl080


Part I

Type Classes

Otakar Smrž (Charles University) PFL080 Haskell and DSL October 25, 2007 2 / 10



Classes

Polymorphism captures similar structures over different

values, while type classes capture similar operations

over different structures. [1]

Type classes enrich the type system with function overloading

and bring together ad-hoc vs. parametric polymorphism. They

were introduced into Haskell by Wadler and Blott [3].

class Eq a where

(==), (/=) :: a -> a -> Bool

-- Minimal complete definition: (==) or (/=)

x == y = not (x /= y)

x /= y = not (x == y)



Classes

Polymorphism captures similar structures over different

values, while type classes capture similar operations

over different structures. [1]

Type classes enrich the type system with function overloading

and bring together ad-hoc vs. parametric polymorphism. They

were introduced into Haskell by Wadler and Blott [3].

class Eq a where

(==), (/=) :: a -> a -> Bool

-- Minimal complete definition: (==) or (/=)

x == y = not (x /= y)

x /= y = not (x == y)



Classes

Polymorphism captures similar structures over different

values, while type classes capture similar operations

over different structures. [1]

Type classes enrich the type system with function overloading

and bring together ad-hoc vs. parametric polymorphism. They

were introduced into Haskell by Wadler and Blott [3].

class Eq a where

(==), (/=) :: a -> a -> Bool

-- Minimal complete definition: (==) or (/=)

x == y = not (x /= y)

x /= y = not (x == y)



Qualified Types

Qualified types limit their polymorphism of to given type classes.

(==) :: Eq a => a -> a -> Bool

(+) :: Num a => a -> a -> a

elem :: Eq a => a -> [a] -> Bool

elem = any . (==)

any :: (a -> Bool) -> [a] -> Bool

any p = or . map p

nubBy :: (a -> a -> Bool) -> [a] -> [a]

nub :: Eq a => [a] -> [a]

nub ≡ nubBy (==)



Qualified Types

Qualified types limit their polymorphism of to given type classes.

(==) :: Eq a => a -> a -> Bool

(+) :: Num a => a -> a -> a

elem :: Eq a => a -> [a] -> Bool

elem = any . (==)

any :: (a -> Bool) -> [a] -> Bool

any p = or . map p

nubBy :: (a -> a -> Bool) -> [a] -> [a]

nub :: Eq a => [a] -> [a]

nub ≡ nubBy (==)



Qualified Types

Qualified types limit their polymorphism of to given type classes.

(==) :: Eq a => a -> a -> Bool

(+) :: Num a => a -> a -> a

elem :: Eq a => a -> [a] -> Bool

elem = any . (==)

any :: (a -> Bool) -> [a] -> Bool

any p = or . map p

nubBy :: (a -> a -> Bool) -> [a] -> [a]

nub :: Eq a => [a] -> [a]

nub ≡ nubBy (==)



Qualified Types

Qualified types limit their polymorphism of to given type classes.

(==) :: Eq a => a -> a -> Bool

(+) :: Num a => a -> a -> a

elem :: Eq a => a -> [a] -> Bool

elem = any . (==)

any :: (a -> Bool) -> [a] -> Bool

any p = or . map p

nubBy :: (a -> a -> Bool) -> [a] -> [a]

nub :: Eq a => [a] -> [a]

nub ≡ nubBy (==)



Subclassing

class (Eq a, Show a) => Num a where

(+), (-), (*) :: a -> a -> a

negate :: a -> a

abs, signum :: a -> a

-- Minimal complete definition: except negate or (-)

x - y = x + negate y

negate x = 0 - x

class Eq a => Ord a where

compare :: a -> a -> Ordering

(<), (<=), (>=), (>) :: a -> a -> Bool

max, min :: a -> a -> a



Subclassing

class (Eq a, Show a) => Num a where

(+), (-), (*) :: a -> a -> a

negate :: a -> a

abs, signum :: a -> a

-- Minimal complete definition: except negate or (-)

x - y = x + negate y

negate x = 0 - x

class Eq a => Ord a where

compare :: a -> a -> Ordering

(<), (<=), (>=), (>) :: a -> a -> Bool

max, min :: a -> a -> a



-- Minimal complete definition: (<=) or compare

compare x y | x == y = EQ

| x <= y = LT

| otherwise = GT

x <= y = compare x y /= GT

x < y = compare x y == LT

x >= y = compare x y /= LT

x > y = compare x y == GT

max x y | x <= y = y

| otherwise = x

min x y | x <= y = x

| otherwise = y



Instances

Type’s membership into a class and the instances of methods

can be either declared or derived.

data Tree a = Node a [Tree a] deriving Show

instance Show a => Show (Tree a) where show = showTree

showTree (Node a t) = show a ++ "<"

++ concat (map showTree t)

++ ">"

shows :: Show a => a -> String -> String

shows = showsPrec 0



Instances

Type’s membership into a class and the instances of methods

can be either declared or derived.

data Tree a = Node a [Tree a]

instance Show a => Show (Tree a) where show = showTree

showTree (Node a t) = show a ++ "<"

++ concat (map showTree t)

++ ">"

shows :: Show a => a -> String -> String

shows = showsPrec 0



Instances

Type’s membership into a class and the instances of methods

can be either declared or derived.

data Tree a = Node a [Tree a]

instance Show a => Show (Tree a) where showsPrec _ =

showsTree

showsTree (Node a t) = shows a . ("<" ++)

. flip (foldr showsTree) t

. (">" ++)

shows :: Show a => a -> String -> String

shows = showsPrec 0



Instances

Type’s membership into a class and the instances of methods

can be either declared or derived.

data Tree a = Node a [Tree a]

instance Show a => Show (Tree a) where showsPrec _ =

showsTree

showsTree (Node a t) = shows a . ("<" ++)

. flip (foldr showsTree) t

. (">" ++)

shows :: Show a => a -> String -> String

shows = showsPrec 0



Part II

Pretty-Printing

Otakar Smrž (Charles University) PFL080 Haskell and DSL October 25, 2007 8 / 10



Pretty-Printing

Explore Text.PrettyPrint by Hughes and Peyton Jones, and

compare it with the paper by Wadler [2] and Leijen’s PPrint.

class Pretty a where pretty :: a -> Doc

instance Show Doc where

showsPrec _ = displayS . renderPretty 0.4 80

instance Pretty a => Pretty (Tree a) where

pretty (Node a t) = pretty a <> text "<"

<> foldr ((<>) . pretty) empty t

<> text ">"



Pretty-Printing

Explore Text.PrettyPrint by Hughes and Peyton Jones, and

compare it with the paper by Wadler [2] and Leijen’s PPrint.

class Pretty a where pretty :: a -> Doc

instance Show Doc where

showsPrec _ = displayS . renderPretty 0.4 80

instance Pretty a => Pretty (Tree a) where

pretty (Node a t) = pretty a <> text "<"

<> foldr ((<>) . pretty) empty t

<> text ">"



Pretty-Printing

Explore Text.PrettyPrint by Hughes and Peyton Jones, and

compare it with the paper by Wadler [2] and Leijen’s PPrint.

class Pretty a where pretty :: a -> Doc

instance Show Doc where

showsPrec _ = displayS . renderPretty 0.4 80

instance Pretty a => Pretty (Tree a) where

pretty (Node a t) = pretty a <> text "<"

<> foldr ((<>) . pretty) empty t

<> text ">"



Pretty-Printing

Explore Text.PrettyPrint by Hughes and Peyton Jones, and

compare it with the paper by Wadler [2] and Leijen’s PPrint.

class Pretty a where pretty :: a -> Doc

instance Show Doc where

showsPrec _ = displayS . renderPretty 0.4 80

instance Pretty a => Pretty (Tree a) where

pretty (Node a t) = pretty a <> text "<"

<> foldr ((<>) . pretty) empty t

<> text ">"



Pretty-Printing

Explore Text.PrettyPrint by Hughes and Peyton Jones, and

compare it with the paper by Wadler [2] and Leijen’s PPrint.

class Pretty a where pretty :: a -> Doc

instance Show Doc where

showsPrec _ = displayS . renderPretty 0.4 80

instance Pretty a => Pretty (Tree a) where

pretty (Node a t) = pretty a <> encloseSep (text "<")

(text ">")

empty (map pretty t)



References

Paul Hudak.

The Haskell School of Expression: Learning Functional

Programming through Multimedia.

Cambridge University Press, 2000.

Philip Wadler.

A Prettier Printer.

In Jeremy Gibbons and Oege de Moor, editors, The Fun of

Programming, Cornerstones of Computing, pages 223–243.

Palgrave Macmillan, March 2003 2003.

Philip Wadler and Stephen Blott.

How to Make Ad-Hoc Polymorphism Less Ad Hoc.

In Conference Record of the 16th Annual ACM Symposium

on Principles of Programming Languages, pages 60–76.

ACM, January 1989.


	Type Classes
	Pretty-Printing

