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Part I

Type Classes
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Classes

Polymorphism captures similar structures over different

values, while type classes capture similar operations

over different structures. [1]

Type classes enrich the type system with function overloading

and bring together ad-hoc vs. parametric polymorphism. They

were introduced into Haskell by Wadler and Blott [3].

class Eq a where

(==), (/=) :: a -> a -> Bool

-- Minimal complete definition: (==) or (/=)

x == y = not (x /= y)

x /= y = not (x == y)
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Qualified Types

Qualified types limit their polymorphism of to given type classes.

(==) :: Eq a => a -> a -> Bool

(+) :: Num a => a -> a -> a

elem :: Eq a => a -> [a] -> Bool

elem = any . (==)

any :: (a -> Bool) -> [a] -> Bool

any p = or . map p

nubBy :: (a -> a -> Bool) -> [a] -> [a]

nub :: Eq a => [a] -> [a]

nub ≡ nubBy (==)
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Subclassing

class (Eq a, Show a) => Num a where

(+), (-), (*) :: a -> a -> a

negate :: a -> a

abs, signum :: a -> a

-- Minimal complete definition: except negate or (-)

x - y = x + negate y

negate x = 0 - x

class Eq a => Ord a where

compare :: a -> a -> Ordering

(<), (<=), (>=), (>) :: a -> a -> Bool

max, min :: a -> a -> a
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-- Minimal complete definition: (<=) or compare

compare x y | x == y = EQ

| x <= y = LT

| otherwise = GT

x <= y = compare x y /= GT

x < y = compare x y == LT

x >= y = compare x y /= LT

x > y = compare x y == GT

max x y | x <= y = y

| otherwise = x

min x y | x <= y = x

| otherwise = y



Instances

Type’s membership into a class and the instances of methods

can be either declared or derived.

data Tree a = Node a [Tree a] deriving Show

instance Show a => Show (Tree a) where show = showTree

showTree (Node a t) = show a ++ "<"

++ concat (map showTree t)

++ ">"

shows :: Show a => a -> String -> String

shows = showsPrec 0
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Part II

Pretty-Printing
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Pretty-Printing

Explore Text.PrettyPrint by Hughes and Peyton Jones, and

compare it with the paper by Wadler [2] and Leijen’s PPrint.

class Pretty a where pretty :: a -> Doc

instance Show Doc where

showsPrec _ = displayS . renderPretty 0.4 80

instance Pretty a => Pretty (Tree a) where

pretty (Node a t) = pretty a <> text "<"

<> foldr ((<>) . pretty) empty t

<> text ">"
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Pretty-Printing

Explore Text.PrettyPrint by Hughes and Peyton Jones, and

compare it with the paper by Wadler [2] and Leijen’s PPrint.

class Pretty a where pretty :: a -> Doc

instance Show Doc where

showsPrec _ = displayS . renderPretty 0.4 80

instance Pretty a => Pretty (Tree a) where

pretty (Node a t) = pretty a <> encloseSep (text "<")

(text ">")

empty (map pretty t)
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