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Function Composition

One of the most fancy higher-order functions is function

composition:

(.) :: (a -> b) -> (c -> a) -> (c -> b)

(f . g) x = f (g x)

. . . which is unlike function application:

($) :: (a -> b) -> a -> b

f $ x = f x

Recall fixity declarations, sections and the ‘‘ and () notations.

Visit Wikipedia for the explanation of η-conversion, β-reduction,

and α-conversion in the lambda calculus.

http://en.wikipedia.org/wiki/Lambda_calculus
http://en.wikipedia.org/wiki/Lambda_calculus


Function Composition

One of the most fancy higher-order functions is function

composition:

(.) :: (a -> b) -> (c -> a) -> c -> b

(.) f g x = f (g x)

. . . which is unlike function application:

($) :: (a -> b) -> a -> b

f $ x = f x

Recall fixity declarations, sections and the ‘‘ and () notations.

Visit Wikipedia for the explanation of η-conversion, β-reduction,

and α-conversion in the lambda calculus.

http://en.wikipedia.org/wiki/Lambda_calculus
http://en.wikipedia.org/wiki/Lambda_calculus


Function Composition

One of the most fancy higher-order functions is function

composition:

(.) :: (a -> b) -> (c -> a) -> (c -> b)

(f . g) x = f (g x)

. . . which is unlike function application:

($) :: (a -> b) -> a -> b

f $ x = f x

Recall fixity declarations, sections and the ‘‘ and () notations.

Visit Wikipedia for the explanation of η-conversion, β-reduction,

and α-conversion in the lambda calculus.

http://en.wikipedia.org/wiki/Lambda_calculus
http://en.wikipedia.org/wiki/Lambda_calculus


Function Composition

One of the most fancy higher-order functions is function

composition:

(.) :: (a -> b) -> (c -> a) -> (c -> b)

(f . g) x = f (g x)

. . . which is unlike function application:

($) :: (a -> b) -> (a -> b)

($) f = f

Recall fixity declarations, sections and the ‘‘ and () notations.

Visit Wikipedia for the explanation of η-conversion, β-reduction,

and α-conversion in the lambda calculus.

http://en.wikipedia.org/wiki/Lambda_calculus
http://en.wikipedia.org/wiki/Lambda_calculus


Function Composition

One of the most fancy higher-order functions is function

composition:

(.) :: (a -> b) -> (c -> a) -> (c -> b)

(f . g) x = f (g x)

. . . which is unlike function application:

($) :: (a -> b) -> (a -> b)

($) f = f

Recall fixity declarations, sections and the ‘‘ and () notations.

Visit Wikipedia for the explanation of η-conversion, β-reduction,

and α-conversion in the lambda calculus.

http://en.wikipedia.org/wiki/Lambda_calculus
http://en.wikipedia.org/wiki/Lambda_calculus


Function Composition

One of the most fancy higher-order functions is function

composition:

(.) :: (a -> b) -> (c -> a) -> (c -> b)

(f . g) x = f (g x)

. . . which is unlike function application:

($) :: (a -> b) -> (a -> b)

($) f = f

Recall fixity declarations, sections and the ‘‘ and () notations.

Visit Wikipedia for the explanation of η-conversion, β-reduction,

and α-conversion in the lambda calculus.

http://en.wikipedia.org/wiki/Lambda_calculus
http://en.wikipedia.org/wiki/Lambda_calculus


Functions on Functions

Higher-order functions are those functions that take other

functions as arguments.

Explore the Hugs definitions of the following functions:

(.), ($), flip, const, id

curry, uncurry, iterate, until

map, filter, zipWith

foldr, foldl, foldr1, foldl1, scanr, scanl, unfoldr, unzip

takeWhile, dropWhile, span, break, groupBy, nubBy

and, or, all, any, maximum, minimum

concat, length, elem, notElem, reverse

product, sum, foldl’, ($!)
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Correctness

We can use equational reasoning to prove functions’ properties.

flip . flip ∼= id

(flip . flip) f ≡ f

map f . map g ≡ map (f . g)

notElem ≡ (.) not . elem

reverse ≡ foldl (flip (:)) []

Why did we write ∼= somewhere, and not ≡ everywhere?
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Trees

Write functions for folding and linearizing trees of these types:

data Tree a = Node a [Tree a]

data BinTree a b = Fork a (BinTree a b) (BinTree a b) |

Leaf b

Colored red-black trees can implement sets and finite maps.

Study the zipper representation of trees by Huet [1].
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HaXml

HaXml is a library for processing XML and DTD that provides

interesting DSL for document transformations.

data Element = Elem Name [Attribute] [Content]

data Content = CElem Element

| CText String

type CFilter = Content -> [Content]

Read the paper by Wallace and Runciman [2] and try out

Text.XML.HaXml.
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