
Haskell and Domain-Specific Languages

Haskell nejen pro informatiky

Otakar Smrž

Institute of Formal and Applied Linguistics

Faculty of Mathematics and Physics

Charles University in Prague

otakar.smrz@mff.cuni.cz

https://wiki.ufal.ms.mff.cuni.cz/courses:pfl080

Otakar Smrž (Charles University) PFL080 Haskell and DSL October 18, 2007 1 / 9

otakar.smrz@mff.cuni.cz
https://wiki.ufal.ms.mff.cuni.cz/courses:pfl080


Part I

Higher-Order Functions

Otakar Smrž (Charles University) PFL080 Haskell and DSL October 18, 2007 2 / 9



Function Composition

One of the most fancy higher-order functions is function

composition:

(.) :: (a -> b) -> (c -> a) -> (c -> b)

(f . g) x = f (g x)

. . . which is unlike function application:

($) :: (a -> b) -> a -> b

f $ x = f x

Recall fixity declarations, sections and the ‘‘ and () notations.

Visit Wikipedia for the explanation of η-conversion, β-reduction,

and α-conversion in the lambda calculus.

http://en.wikipedia.org/wiki/Lambda_calculus
http://en.wikipedia.org/wiki/Lambda_calculus


Function Composition

One of the most fancy higher-order functions is function

composition:

(.) :: (a -> b) -> (c -> a) -> c -> b

(.) f g x = f (g x)

. . . which is unlike function application:

($) :: (a -> b) -> a -> b

f $ x = f x

Recall fixity declarations, sections and the ‘‘ and () notations.

Visit Wikipedia for the explanation of η-conversion, β-reduction,

and α-conversion in the lambda calculus.

http://en.wikipedia.org/wiki/Lambda_calculus
http://en.wikipedia.org/wiki/Lambda_calculus


Function Composition

One of the most fancy higher-order functions is function

composition:

(.) :: (a -> b) -> (c -> a) -> (c -> b)

(f . g) x = f (g x)

. . . which is unlike function application:

($) :: (a -> b) -> a -> b

f $ x = f x

Recall fixity declarations, sections and the ‘‘ and () notations.

Visit Wikipedia for the explanation of η-conversion, β-reduction,

and α-conversion in the lambda calculus.

http://en.wikipedia.org/wiki/Lambda_calculus
http://en.wikipedia.org/wiki/Lambda_calculus


Function Composition

One of the most fancy higher-order functions is function

composition:

(.) :: (a -> b) -> (c -> a) -> (c -> b)

(f . g) x = f (g x)

. . . which is unlike function application:

($) :: (a -> b) -> (a -> b)

($) f = f

Recall fixity declarations, sections and the ‘‘ and () notations.

Visit Wikipedia for the explanation of η-conversion, β-reduction,

and α-conversion in the lambda calculus.

http://en.wikipedia.org/wiki/Lambda_calculus
http://en.wikipedia.org/wiki/Lambda_calculus


Function Composition

One of the most fancy higher-order functions is function

composition:

(.) :: (a -> b) -> (c -> a) -> (c -> b)

(f . g) x = f (g x)

. . . which is unlike function application:

($) :: (a -> b) -> (a -> b)

($) f = f

Recall fixity declarations, sections and the ‘‘ and () notations.

Visit Wikipedia for the explanation of η-conversion, β-reduction,

and α-conversion in the lambda calculus.

http://en.wikipedia.org/wiki/Lambda_calculus
http://en.wikipedia.org/wiki/Lambda_calculus


Function Composition

One of the most fancy higher-order functions is function

composition:

(.) :: (a -> b) -> (c -> a) -> (c -> b)

(f . g) x = f (g x)

. . . which is unlike function application:

($) :: (a -> b) -> (a -> b)

($) f = f

Recall fixity declarations, sections and the ‘‘ and () notations.

Visit Wikipedia for the explanation of η-conversion, β-reduction,

and α-conversion in the lambda calculus.

http://en.wikipedia.org/wiki/Lambda_calculus
http://en.wikipedia.org/wiki/Lambda_calculus


Functions on Functions

Higher-order functions are those functions that take other

functions as arguments.

Explore the Hugs definitions of the following functions:

(.), ($), flip, const, id

curry, uncurry, iterate, until

map, filter, zipWith

foldr, foldl, foldr1, foldl1, scanr, scanl, unfoldr, unzip

takeWhile, dropWhile, span, break, groupBy, nubBy

and, or, all, any, maximum, minimum

concat, length, elem, notElem, reverse

product, sum, foldl’, ($!)



Functions on Functions

Higher-order functions are those functions that take other

functions as arguments.

Explore the Hugs definitions of the following functions:

(.), ($), flip, const, id

curry, uncurry, iterate, until

map, filter, zipWith

foldr, foldl, foldr1, foldl1, scanr, scanl, unfoldr, unzip

takeWhile, dropWhile, span, break, groupBy, nubBy

and, or, all, any, maximum, minimum

concat, length, elem, notElem, reverse

product, sum, foldl’, ($!)



Functions on Functions

Higher-order functions are those functions that take other

functions as arguments.

Explore the Hugs definitions of the following functions:

(.), ($), flip, const, id

curry, uncurry, iterate, until

map, filter, zipWith

foldr, foldl, foldr1, foldl1, scanr, scanl, unfoldr, unzip

takeWhile, dropWhile, span, break, groupBy, nubBy

and, or, all, any, maximum, minimum

concat, length, elem, notElem, reverse

product, sum, foldl’, ($!)



Functions on Functions

Higher-order functions are those functions that take other

functions as arguments.

Explore the Hugs definitions of the following functions:

(.), ($), flip, const, id

curry, uncurry, iterate, until

map, filter, zipWith

foldr, foldl, foldr1, foldl1, scanr, scanl, unfoldr, unzip

takeWhile, dropWhile, span, break, groupBy, nubBy

and, or, all, any, maximum, minimum

concat, length, elem, notElem, reverse

product, sum, foldl’, ($!)



Functions on Functions

Higher-order functions are those functions that take other

functions as arguments.

Explore the Hugs definitions of the following functions:

(.), ($), flip, const, id

curry, uncurry, iterate, until

map, filter, zipWith

foldr, foldl, foldr1, foldl1, scanr, scanl, unfoldr, unzip

takeWhile, dropWhile, span, break, groupBy, nubBy

and, or, all, any, maximum, minimum

concat, length, elem, notElem, reverse

product, sum, foldl’, ($!)



Functions on Functions

Higher-order functions are those functions that take other

functions as arguments.

Explore the Hugs definitions of the following functions:

(.), ($), flip, const, id

curry, uncurry, iterate, until

map, filter, zipWith

foldr, foldl, foldr1, foldl1, scanr, scanl, unfoldr, unzip

takeWhile, dropWhile, span, break, groupBy, nubBy

and, or, all, any, maximum, minimum

concat, length, elem, notElem, reverse

product, sum, foldl’, ($!)



Functions on Functions

Higher-order functions are those functions that take other

functions as arguments.

Explore the Hugs definitions of the following functions:

(.), ($), flip, const, id

curry, uncurry, iterate, until

map, filter, zipWith

foldr, foldl, foldr1, foldl1, scanr, scanl, unfoldr, unzip

takeWhile, dropWhile, span, break, groupBy, nubBy

and, or, all, any, maximum, minimum

concat, length, elem, notElem, reverse

product, sum, foldl’, ($!)



Functions on Functions

Higher-order functions are those functions that take other

functions as arguments.

Explore the Hugs definitions of the following functions:

(.), ($), flip, const, id

curry, uncurry, iterate, until

map, filter, zipWith

foldr, foldl, foldr1, foldl1, scanr, scanl, unfoldr, unzip

takeWhile, dropWhile, span, break, groupBy, nubBy

and, or, all, any, maximum, minimum

concat, length, elem, notElem, reverse

product, sum, foldl’, ($!)



Functions on Functions

Higher-order functions are those functions that take other

functions as arguments.

Explore the Hugs definitions of the following functions:

(.), ($), flip, const, id

curry, uncurry, iterate, until

map, filter, zipWith

foldr, foldl, foldr1, foldl1, scanr, scanl, unfoldr, unzip

takeWhile, dropWhile, span, break, groupBy, nubBy

and, or, all, any, maximum, minimum

concat, length, elem, notElem, reverse

product, sum, foldl’, ($!)



Correctness

We can use equational reasoning to prove functions’ properties.

flip . flip ∼= id

(flip . flip) f ≡ f

map f . map g ≡ map (f . g)

notElem ≡ (.) not . elem

reverse ≡ foldl (flip (:)) []

Why did we write ∼= somewhere, and not ≡ everywhere?



Correctness

We can use equational reasoning to prove functions’ properties.

flip . flip ∼= id

(flip . flip) f ≡ f

map f . map g ≡ map (f . g)

notElem ≡ (.) not . elem

reverse ≡ foldl (flip (:)) []

Why did we write ∼= somewhere, and not ≡ everywhere?



Correctness

We can use equational reasoning to prove functions’ properties.

flip . flip ∼= id

(flip . flip) f ≡ f

map f . map g ≡ map (f . g)

notElem ≡ (.) not . elem

reverse ≡ foldl (flip (:)) []

Why did we write ∼= somewhere, and not ≡ everywhere?



Correctness

We can use equational reasoning to prove functions’ properties.

flip . flip ∼= id

(flip . flip) f ≡ f

map f . map g ≡ map (f . g)

notElem ≡ (.) not . elem

reverse ≡ foldl (flip (:)) []

Why did we write ∼= somewhere, and not ≡ everywhere?



Correctness

We can use equational reasoning to prove functions’ properties.

flip . flip ∼= id

(flip . flip) f ≡ f

map f . map g ≡ map (f . g)

notElem ≡ (.) not . elem

reverse ≡ foldl (flip (:)) []

Why did we write ∼= somewhere, and not ≡ everywhere?



Correctness

We can use equational reasoning to prove functions’ properties.

flip . flip ∼= id

(flip . flip) f ≡ f

map f . map g ≡ map (f . g)

notElem ≡ (.) not . elem

reverse ≡ foldl (flip (:)) []

Why did we write ∼= somewhere, and not ≡ everywhere?



Correctness

We can use equational reasoning to prove functions’ properties.

flip . flip ∼= id (flip . flip) f ≡ f

map f . map g ≡ map (f . g)

notElem ≡ (.) not . elem

reverse ≡ foldl (flip (:)) []

Why did we write ∼= somewhere, and not ≡ everywhere?



Part II

Tree Structures

Otakar Smrž (Charles University) PFL080 Haskell and DSL October 18, 2007 6 / 9



Trees

Write functions for folding and linearizing trees of these types:

data Tree a = Node a [Tree a]

data BinTree a b = Fork a (BinTree a b) (BinTree a b) |

Leaf b

Colored red-black trees can implement sets and finite maps.

Study the zipper representation of trees by Huet [1].



Trees

Write functions for folding and linearizing trees of these types:

data Tree a = Node a [Tree a]

data BinTree a b = Fork a (BinTree a b) (BinTree a b) |

Leaf b

Colored red-black trees can implement sets and finite maps.

Study the zipper representation of trees by Huet [1].



Trees

Write functions for folding and linearizing trees of these types:

data Tree a = Node a [Tree a]

data BinTree a b = Fork a (BinTree a b) (BinTree a b) |

Leaf b

Colored red-black trees can implement sets and finite maps.

Study the zipper representation of trees by Huet [1].



Trees

Write functions for folding and linearizing trees of these types:

data Tree a = Node a [Tree a]

data BinTree a b = Fork a (BinTree a b) (BinTree a b) |

Leaf b

Colored red-black trees can implement sets and finite maps.

Study the zipper representation of trees by Huet [1].



Trees

Write functions for folding and linearizing trees of these types:

data Tree a = Node a [Tree a]

data BinTree a b = Fork a (BinTree a b) (BinTree a b) |

Leaf b

Colored red-black trees can implement sets and finite maps.

Study the zipper representation of trees by Huet [1].



HaXml

HaXml is a library for processing XML and DTD that provides

interesting DSL for document transformations.

data Element = Elem Name [Attribute] [Content]

data Content = CElem Element

| CText String

type CFilter = Content -> [Content]

Read the paper by Wallace and Runciman [2] and try out

Text.XML.HaXml.



HaXml

HaXml is a library for processing XML and DTD that provides

interesting DSL for document transformations.

data Element = Elem Name [Attribute] [Content]

data Content = CElem Element

| CText String

type CFilter = Content -> [Content]

Read the paper by Wallace and Runciman [2] and try out

Text.XML.HaXml.



HaXml

HaXml is a library for processing XML and DTD that provides

interesting DSL for document transformations.

data Element = Elem Name [Attribute] [Content]

data Content = CElem Element

| CText String

type CFilter = Content -> [Content]

Read the paper by Wallace and Runciman [2] and try out

Text.XML.HaXml.



HaXml

HaXml is a library for processing XML and DTD that provides

interesting DSL for document transformations.

data Element = Elem Name [Attribute] [Content]

data Content = CElem Element

| CText String

type CFilter = Content -> [Content]

Read the paper by Wallace and Runciman [2] and try out

Text.XML.HaXml.



References

Gérard Huet.

Functional Pearl. The Zipper.

Journal of Functional Programming, 5(7):549–554, 1997.

Malcolm Wallace and Colin Runciman.

Haskell and XML: Generic combinators or type-based

translation?

In Proceedings of the Fourth ACM SIGPLAN International

Conference on Functional Programming (ICFP‘99), pages

148–159. ACM Press, 1999.


	Higher-Order Functions
	Tree Structures

