
Haskell and Domain-Specific Languages

Haskell nejen pro informatiky

Otakar Smrž

Institute of Formal and Applied Linguistics

Faculty of Mathematics and Physics

Charles University in Prague

otakar.smrz@mff.cuni.cz

https://wiki.ufal.ms.mff.cuni.cz/courses:pfl080

Otakar Smrž (Charles University) PFL080 Haskell and DSL October 11, 2007 1 / 17

otakar.smrz@mff.cuni.cz
https://wiki.ufal.ms.mff.cuni.cz/courses:pfl080

Part I

Introduction

Otakar Smrž (Charles University) PFL080 Haskell and DSL October 11, 2007 2 / 17

Declarative Programming

Declarative operation is one that is independent of any

execution state outside of itself, is itself stateless, and is

deterministic.

Important properties of declarative programming [4]:

declarative programs are compositional

reasoning about declarative programs is simple

Further classification of declarative languages as in [4]:

descriptive vs. programmable

observational vs. definitional

Declarative Programming

Declarative operation is one that is independent of any

execution state outside of itself, is itself stateless, and is

deterministic.

Important properties of declarative programming [4]:

declarative programs are compositional

reasoning about declarative programs is simple

Further classification of declarative languages as in [4]:

descriptive vs. programmable

observational vs. definitional

Declarative Programming

Declarative operation is one that is independent of any

execution state outside of itself, is itself stateless, and is

deterministic.

Important properties of declarative programming [4]:

declarative programs are compositional

reasoning about declarative programs is simple

Further classification of declarative languages as in [4]:

descriptive vs. programmable

observational vs. definitional

Functional Programming

Functional programming is declarative. Functional operations

are void of side-effects and the order of evaluation is irrelevant.

Programs are referentially transparent.

Programs and their components are modeled as functions from

input arguments to output results.

Functions are first-class values, i.e. can be returned as well as

passed as arguments to higher-order functions.

Functional languages contribute greatly to modularity

. . . Modularity is the key to successful programming. [2]

http://www.md.chalmers.se/˜rjmh/Papers/whyfp.html

http://www.md.chalmers.se/~rjmh/Papers/whyfp.html

Functional Programming

Functional programming is declarative. Functional operations

are void of side-effects and the order of evaluation is irrelevant.

Programs are referentially transparent.

Programs and their components are modeled as functions from

input arguments to output results.

Functions are first-class values, i.e. can be returned as well as

passed as arguments to higher-order functions.

Functional languages contribute greatly to modularity

. . . Modularity is the key to successful programming. [2]

http://www.md.chalmers.se/˜rjmh/Papers/whyfp.html

http://www.md.chalmers.se/~rjmh/Papers/whyfp.html

Functional Programming

Functional programming is declarative. Functional operations

are void of side-effects and the order of evaluation is irrelevant.

Programs are referentially transparent.

Programs and their components are modeled as functions from

input arguments to output results.

Functions are first-class values, i.e. can be returned as well as

passed as arguments to higher-order functions.

Functional languages contribute greatly to modularity

. . . Modularity is the key to successful programming. [2]

http://www.md.chalmers.se/˜rjmh/Papers/whyfp.html

http://www.md.chalmers.se/~rjmh/Papers/whyfp.html

Domain-Specific Languages

A domain-specific language (DSL) is a programming

language or executable specification language that

offers, through appropriate notations and abstractions,

expressive power focused on, and usually restricted to, a

particular problem domain. [3]

DSLs can be embedded in some general-purpose language,

such as Haskell . . .

Haskell

Haskell is a purely functional programming language based on

typed λ-calculus, with lazy evaluation of expressions and many

impressive higher-order features.

Haskell computes using definitions rather than the

assignments found in traditional languages. [1]

Haskell is named after the logician H. B. Curry (1900–1982) . . .

curry :: ((a, b) -> c) -> a -> b -> c

curry f x y = f (x, y)

Haskell

Haskell is a purely functional programming language based on

typed λ-calculus, with lazy evaluation of expressions and many

impressive higher-order features.

Haskell computes using definitions rather than the

assignments found in traditional languages. [1]

Haskell is named after the logician H. B. Curry (1900–1982) . . .

curry :: ((a, b) -> c) -> a -> b -> c

curry f x y = f (x, y)

Haskell

Haskell is a purely functional programming language based on

typed λ-calculus, with lazy evaluation of expressions and many

impressive higher-order features.

Haskell computes using definitions rather than the

assignments found in traditional languages. [1]

Haskell is named after the logician H. B. Curry (1900–1982) . . .

curry :: ((a, b) -> c) -> a -> b -> c

curry f x y = f (x, y)

Haskell

Haskell is a purely functional programming language based on

typed λ-calculus, with lazy evaluation of expressions and many

impressive higher-order features.

Haskell computes using definitions rather than the

assignments found in traditional languages. [1]

Haskell is named after the logician H. B. Curry (1900–1982) . . .

curry :: ((a, b) -> c) -> (a -> b -> c)

curry f = \ x y -> f (x, y)

Haskell

Haskell is a purely functional programming language based on

typed λ-calculus, with lazy evaluation of expressions and many

impressive higher-order features.

Haskell computes using definitions rather than the

assignments found in traditional languages. [1]

Haskell is named after the logician H. B. Curry (1900–1982) . . .

curry :: ((a, b) -> c) -> (a -> (b -> c))

curry f = \ x -> \ y -> f (x, y)

Haskell

Haskell is a purely functional programming language based on

typed λ-calculus, with lazy evaluation of expressions and many

impressive higher-order features.

Haskell computes using definitions rather than the

assignments found in traditional languages. [1]

Haskell is named after the logician H. B. Curry (1900–1982) . . .

curry :: (((a, b) -> c) -> (a -> (b -> c)))

curry = \ f -> \ x -> \ y -> f (x, y)

Online Resources

Haskell Website http://www.haskell.org/

Hugs Haskell Interpreter http://www.haskell.org/hugs/

Glasgow Haskell Compiler/Interpreter

http://www.haskell.org/ghc/

Bibliography on Haskell Research

http://haskell.readscheme.org/

A Gentle Introduction to Haskell

http://www.haskell.org/tutorial/

Yet Another Haskell Tutorial

http://darcs.haskell.org/yaht/yaht.pdf

http://www.haskell.org/
http://www.haskell.org/hugs/
http://www.haskell.org/ghc/
http://haskell.readscheme.org/
http://www.haskell.org/tutorial/
http://darcs.haskell.org/yaht/yaht.pdf

Online Resources

Haskell Website http://www.haskell.org/

Hugs Haskell Interpreter http://www.haskell.org/hugs/

Glasgow Haskell Compiler/Interpreter

http://www.haskell.org/ghc/

Bibliography on Haskell Research

http://haskell.readscheme.org/

A Gentle Introduction to Haskell

http://www.haskell.org/tutorial/

Yet Another Haskell Tutorial

http://darcs.haskell.org/yaht/yaht.pdf

http://www.haskell.org/
http://www.haskell.org/hugs/
http://www.haskell.org/ghc/
http://haskell.readscheme.org/
http://www.haskell.org/tutorial/
http://darcs.haskell.org/yaht/yaht.pdf

Online Resources

Haskell Website http://www.haskell.org/

Hugs Haskell Interpreter http://www.haskell.org/hugs/

Glasgow Haskell Compiler/Interpreter

http://www.haskell.org/ghc/

Bibliography on Haskell Research

http://haskell.readscheme.org/

A Gentle Introduction to Haskell

http://www.haskell.org/tutorial/

Yet Another Haskell Tutorial

http://darcs.haskell.org/yaht/yaht.pdf

http://www.haskell.org/
http://www.haskell.org/hugs/
http://www.haskell.org/ghc/
http://haskell.readscheme.org/
http://www.haskell.org/tutorial/
http://darcs.haskell.org/yaht/yaht.pdf

Online Resources

Haskell Website http://www.haskell.org/

Hugs Haskell Interpreter http://www.haskell.org/hugs/

Glasgow Haskell Compiler/Interpreter

http://www.haskell.org/ghc/

Bibliography on Haskell Research

http://haskell.readscheme.org/

A Gentle Introduction to Haskell

http://www.haskell.org/tutorial/

Yet Another Haskell Tutorial

http://darcs.haskell.org/yaht/yaht.pdf

http://www.haskell.org/
http://www.haskell.org/hugs/
http://www.haskell.org/ghc/
http://haskell.readscheme.org/
http://www.haskell.org/tutorial/
http://darcs.haskell.org/yaht/yaht.pdf

Other Courses

University of Pennsylvania http://www.cis.upenn.edu/

˜bcpierce/courses/advprog/

Saarland University http://www.st.cs.uni-sb.de/edu/

seminare/2005/advanced-fp/

Chalmers University http://www.cs.chalmers.se/Cs/

Grundutb/Kurser/afp/

Charles University http:

//kam.mff.cuni.cz/˜rakdver/teaching.html

http://www.cis.upenn.edu/~bcpierce/courses/advprog/
http://www.cis.upenn.edu/~bcpierce/courses/advprog/
http://www.st.cs.uni-sb.de/edu/seminare/2005/advanced-fp/
http://www.st.cs.uni-sb.de/edu/seminare/2005/advanced-fp/
http://www.cs.chalmers.se/Cs/Grundutb/Kurser/afp/
http://www.cs.chalmers.se/Cs/Grundutb/Kurser/afp/
http://kam.mff.cuni.cz/~rakdver/teaching.html
http://kam.mff.cuni.cz/~rakdver/teaching.html

Other Courses

University of Pennsylvania http://www.cis.upenn.edu/

˜bcpierce/courses/advprog/

Saarland University http://www.st.cs.uni-sb.de/edu/

seminare/2005/advanced-fp/

Chalmers University http://www.cs.chalmers.se/Cs/

Grundutb/Kurser/afp/

Charles University http:

//kam.mff.cuni.cz/˜rakdver/teaching.html

http://www.cis.upenn.edu/~bcpierce/courses/advprog/
http://www.cis.upenn.edu/~bcpierce/courses/advprog/
http://www.st.cs.uni-sb.de/edu/seminare/2005/advanced-fp/
http://www.st.cs.uni-sb.de/edu/seminare/2005/advanced-fp/
http://www.cs.chalmers.se/Cs/Grundutb/Kurser/afp/
http://www.cs.chalmers.se/Cs/Grundutb/Kurser/afp/
http://kam.mff.cuni.cz/~rakdver/teaching.html
http://kam.mff.cuni.cz/~rakdver/teaching.html

Other Courses

University of Pennsylvania http://www.cis.upenn.edu/

˜bcpierce/courses/advprog/

Saarland University http://www.st.cs.uni-sb.de/edu/

seminare/2005/advanced-fp/

Chalmers University http://www.cs.chalmers.se/Cs/

Grundutb/Kurser/afp/

Charles University http:

//kam.mff.cuni.cz/˜rakdver/teaching.html

http://www.cis.upenn.edu/~bcpierce/courses/advprog/
http://www.cis.upenn.edu/~bcpierce/courses/advprog/
http://www.st.cs.uni-sb.de/edu/seminare/2005/advanced-fp/
http://www.st.cs.uni-sb.de/edu/seminare/2005/advanced-fp/
http://www.cs.chalmers.se/Cs/Grundutb/Kurser/afp/
http://www.cs.chalmers.se/Cs/Grundutb/Kurser/afp/
http://kam.mff.cuni.cz/~rakdver/teaching.html
http://kam.mff.cuni.cz/~rakdver/teaching.html

Part II

Types and Polymorphism

Otakar Smrž (Charles University) PFL080 Haskell and DSL October 11, 2007 9 / 17

Types

Types are disjoint sets of uniquely identified values.

Data types describe data structures, the function type -> can

be viewed as an encapsulated operation that would map input

values to output values.

The structure of a program must conform to the type system,

and conversely, types of expressions can be inferred from the

structure of the program. The verification of this important formal

property is referred to as type checking.

Types

Types are disjoint sets of uniquely identified values.

Data types describe data structures, the function type -> can

be viewed as an encapsulated operation that would map input

values to output values.

The structure of a program must conform to the type system,

and conversely, types of expressions can be inferred from the

structure of the program. The verification of this important formal

property is referred to as type checking.

Values can be defined on the symbolic level, and can be

atomic or structured. Numbers, characters, lists of values, sets,

finite maps, trees, etc. are all different data types.

data Language = Arabic | Korean | Farsi | Czech | English

data Family = Semitic | IndoEuropean | Altaic

data Answer = Yes | No | Web

isFamily :: Language -> Family -> Answer

isFamily Arabic Semitic = Yes

isFamily Czech Altaic = No

isFamily _ _ = Web

Values can be defined on the symbolic level, and can be

atomic or structured. Numbers, characters, lists of values, sets,

finite maps, trees, etc. are all different data types.

data Language = Arabic | Korean | Farsi | Czech | English

data Family = Semitic | IndoEuropean | Altaic

data Answer = Yes | No | Web

isFamily :: Language -> Family -> Answer

isFamily Arabic Semitic = Yes

isFamily Czech Altaic = No

isFamily _ _ = Web

Polymorphism

Polymorphism means that types can be parametrized with other

types. This implementation of lists is an example thereof:

data List a = Item a (List a) | End

In other words, lists of some type a consist of an Item joining the

value of type a with the rest of List a, which repeats until the

End. Lists like these are homogeneous—all elements of a given

list must have the same type a.

In Haskell, lists are predefined and recognize the : and [] values

instead of Item and End.

Polymorphism

Polymorphism means that types can be parametrized with other

types. This implementation of lists is an example thereof:

data List a = Item a (List a) | End

In other words, lists of some type a consist of an Item joining the

value of type a with the rest of List a, which repeats until the

End. Lists like these are homogeneous—all elements of a given

list must have the same type a.

In Haskell, lists are predefined and recognize the : and [] values

instead of Item and End.

Polymorphism

Polymorphism means that types can be parametrized with other

types. This implementation of lists is an example thereof:

data List a = Item a (List a) | End

In other words, lists of some type a consist of an Item joining the

value of type a with the rest of List a, which repeats until the

End. Lists like these are homogeneous—all elements of a given

list must have the same type a.

In Haskell, lists are predefined and recognize the : and [] values

instead of Item and End.

Part III

Laziness

Otakar Smrž (Charles University) PFL080 Haskell and DSL October 11, 2007 13 / 17

Sieve of Eratosthenes

primes :: [Int]

primes = sieve [2 ..]

sieve :: [Int] -> [Int]

sieve (x:xs) = x : sieve [y | y <- xs, y ‘rem‘ x /= 0]

isPrime :: Int -> Bool

isPrime x = x ‘elemInc‘ primes

where elemInc x (y:ys) | x > y = elemInc x ys

| x == y = True

| otherwise = False

elemInc _ [] = False

Sieve of Eratosthenes

primes :: [Int]

primes = sieve [2 ..]

sieve :: [Int] -> [Int]

sieve (x:xs) = x : sieve [y | y <- xs, y ‘rem‘ x /= 0]

isPrime :: Int -> Bool

isPrime x = x ‘elemInc‘ primes

where elemInc x (y:ys) | x > y = elemInc x ys

| x == y = True

| otherwise = False

elemInc _ [] = False

Fibonacci Numbers

Infinite lists are called streams. Their lazy evaluation is essential

not only for these implementations, but is in general a very

powerful feature promoting modularity and abstraction.

fib = 1 : 1 : [a + b | (a, b) <- zip fib (tail fib)]

fib =⇒ [1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...]

Obviously, not all implementations in Haskell are efficient . . .

fibonacci 1 = 1

fibonacci 2 = 1

fibonacci x | x > 2 = fibonacci (x - 1) +

fibonacci (x - 2)

| otherwise = 0

Fibonacci Numbers

Infinite lists are called streams. Their lazy evaluation is essential

not only for these implementations, but is in general a very

powerful feature promoting modularity and abstraction.

fib = 1 : 1 : [a + b | (a, b) <- zip fib (tail fib)]

fib =⇒ [1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...]

Obviously, not all implementations in Haskell are efficient . . .

fibonacci 1 = 1

fibonacci 2 = 1

fibonacci x | x > 2 = fibonacci (x - 1) +

fibonacci (x - 2)

| otherwise = 0

Pascal’s Triangle

pascalRows, pascalDiag :: [[Integer]]

pascalRows = [1] : [zipWith (+) ([0] ++ r) (r ++ [0]) |

r <- pascalRows]

pascalDiag = [1, 1 ..] : [q | d <- pascalDiag, let

q = zipWith (+) d (0 : q)]

pascalRows !! x !! y == pascalDiag !! y !! (x - y)

== binomial x y

binomial x y | y < 0 || x < y = 0

| otherwise = product [y + 1 .. x] ‘div‘

product [1 .. x - y]

product = foldl’ (*) 1 -- strict foldl using $!

Pascal’s Triangle

pascalRows, pascalDiag :: [[Integer]]

pascalRows = [1] : [[1] ++ zipWith (+) r (tail r) ++ [1]

| r <- pascalRows]

pascalDiag = [1, 1 ..] : [q | d <- pascalDiag, let

q = zipWith (+) d (0 : q)]

pascalRows !! x !! y == pascalDiag !! y !! (x - y)

== binomial x y

binomial x y | y < 0 || x < y = 0

| otherwise = product [y + 1 .. x] ‘div‘

product [1 .. x - y]

product = foldl’ (*) 1 -- strict foldl using $!

Pascal’s Triangle

pascalRows, pascalDiag :: [[Integer]]

pascalRows = [1] : [[1] ++ zipWith (+) (init r) (tail r)

++ [1] | r <- pascalRows]

pascalDiag = [1, 1 ..] : [q | d <- pascalDiag, let

q = zipWith (+) d (0 : q)]

pascalRows !! x !! y == pascalDiag !! y !! (x - y)

== binomial x y

binomial x y | y < 0 || x < y = 0

| otherwise = product [y + 1 .. x] ‘div‘

product [1 .. x - y]

product = foldl’ (*) 1 -- strict foldl using $!

Pascal’s Triangle

pascalRows, pascalDiag :: [[Integer]]

pascalRows = [1] : [zipWith (+) ([0] ++ r) (r ++ [0]) |

r <- pascalRows]

pascalDiag = [1, 1 ..] : [q | d <- pascalDiag, let

q = zipWith (+) d (0 : q)]

pascalRows !! x !! y == pascalDiag !! y !! (x - y)

== binomial x y

binomial x y | y < 0 || x < y = 0

| otherwise = product [y + 1 .. x] ‘div‘

product [1 .. x - y]

product = foldl’ (*) 1 -- strict foldl using $!

Pascal’s Triangle

pascalRows, pascalDiag :: [[Integer]]

pascalRows = [1] : [zipWith (+) ([0] ++ r) (r ++ [0]) |

r <- pascalRows]

pascalDiag = [1, 1 ..] : [q | d <- pascalDiag, let

q = zipWith (+) d (0 : q)]

pascalRows !! x !! y == pascalDiag !! y !! (x - y)

== binomial x y

binomial x y | y < 0 || x < y = 0

| otherwise = product [y + 1 .. x] ‘div‘

product [1 .. x - y]

product = foldl’ (*) 1 -- strict foldl using $!

Pascal’s Triangle

pascalRows, pascalDiag :: [[Integer]]

pascalRows = [1] : [zipWith (+) ([0] ++ r) (r ++ [0]) |

r <- pascalRows]

pascalDiag = [1, 1 ..] : [q | d <- pascalDiag, let

q = zipWith (+) d (0 : q)]

pascalRows !! x !! y == pascalDiag !! y !! (x - y)

== binomial x y

binomial x y | y < 0 || x < y = 0

| otherwise = product [y + 1 .. x] ‘div‘

product [1 .. x - y]

product = foldl’ (*) 1 -- strict foldl using $!

References

Paul Hudak, John Peterson, and Joseph Fasel.

A Gentle Introduction to Haskell 98.

http://www.haskell.org/tutorial/, 1999.

John Hughes.

Why Functional Programming Matters.

Computer Journal, 32(2):98–107, 1989.

Arie van Deursen, Paul Klint, and Joost Visser.

Domain-Specific Languages: An Annotated Bibliography.

SIGPLAN Notices, 35(6):26–36, June 2000.

Peter Van Roy and Seif Haridi.

Concepts, Techniques, and Models of Computer

Programming.

MIT Press, Cambridge, March 2004.

http://www.haskell.org/tutorial/

	Introduction
	Types and Polymorphism
	Laziness

