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Declarative Programming

Declarative operation is one that is independent of any

execution state outside of itself, is itself stateless, and is

deterministic.

Important properties of declarative programming [4]:

declarative programs are compositional

reasoning about declarative programs is simple

Further classification of declarative languages as in [4]:

descriptive vs. programmable

observational vs. definitional
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Functional Programming

Functional programming is declarative. Functional operations

are void of side-effects and the order of evaluation is irrelevant.

Programs are referentially transparent.

Programs and their components are modeled as functions from

input arguments to output results.

Functions are first-class values, i.e. can be returned as well as

passed as arguments to higher-order functions.

Functional languages contribute greatly to modularity

. . . Modularity is the key to successful programming. [2]

http://www.md.chalmers.se/˜rjmh/Papers/whyfp.html
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Domain-Specific Languages

A domain-specific language (DSL) is a programming

language or executable specification language that

offers, through appropriate notations and abstractions,

expressive power focused on, and usually restricted to, a

particular problem domain. [3]

DSLs can be embedded in some general-purpose language,

such as Haskell . . .



Haskell

Haskell is a purely functional programming language based on

typed λ-calculus, with lazy evaluation of expressions and many

impressive higher-order features.

Haskell computes using definitions rather than the

assignments found in traditional languages. [1]

Haskell is named after the logician H. B. Curry (1900–1982) . . .

curry :: ((a, b) -> c) -> a -> b -> c

curry f x y = f (x, y)
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Online Resources

Haskell Website http://www.haskell.org/

Hugs Haskell Interpreter http://www.haskell.org/hugs/

Glasgow Haskell Compiler/Interpreter

http://www.haskell.org/ghc/

Bibliography on Haskell Research

http://haskell.readscheme.org/

A Gentle Introduction to Haskell

http://www.haskell.org/tutorial/

Yet Another Haskell Tutorial

http://darcs.haskell.org/yaht/yaht.pdf
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˜bcpierce/courses/advprog/

Saarland University http://www.st.cs.uni-sb.de/edu/
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Grundutb/Kurser/afp/

Charles University http:
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Types

Types are disjoint sets of uniquely identified values.

Data types describe data structures, the function type -> can

be viewed as an encapsulated operation that would map input

values to output values.

The structure of a program must conform to the type system,

and conversely, types of expressions can be inferred from the

structure of the program. The verification of this important formal

property is referred to as type checking.
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Values can be defined on the symbolic level, and can be

atomic or structured. Numbers, characters, lists of values, sets,

finite maps, trees, etc. are all different data types.

data Language = Arabic | Korean | Farsi | Czech | English

data Family = Semitic | IndoEuropean | Altaic

data Answer = Yes | No | Web

isFamily :: Language -> Family -> Answer

isFamily Arabic Semitic = Yes

isFamily Czech Altaic = No

isFamily _ _ = Web
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Polymorphism

Polymorphism means that types can be parametrized with other

types. This implementation of lists is an example thereof:

data List a = Item a (List a) | End

In other words, lists of some type a consist of an Item joining the

value of type a with the rest of List a, which repeats until the

End. Lists like these are homogeneous—all elements of a given

list must have the same type a.

In Haskell, lists are predefined and recognize the : and [] values

instead of Item and End.
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Sieve of Eratosthenes

primes :: [Int]

primes = sieve [ 2 .. ]

sieve :: [Int] -> [Int]

sieve (x:xs) = x : sieve [ y | y <- xs, y ‘rem‘ x /= 0 ]

isPrime :: Int -> Bool

isPrime x = x ‘elemInc‘ primes

where elemInc x (y:ys) | x > y = elemInc x ys

| x == y = True

| otherwise = False

elemInc _ [] = False



Sieve of Eratosthenes

primes :: [Int]

primes = sieve [ 2 .. ]

sieve :: [Int] -> [Int]

sieve (x:xs) = x : sieve [ y | y <- xs, y ‘rem‘ x /= 0 ]

isPrime :: Int -> Bool

isPrime x = x ‘elemInc‘ primes

where elemInc x (y:ys) | x > y = elemInc x ys

| x == y = True

| otherwise = False

elemInc _ [] = False



Fibonacci Numbers

Infinite lists are called streams. Their lazy evaluation is essential

not only for these implementations, but is in general a very

powerful feature promoting modularity and abstraction.

fib = 1 : 1 : [ a + b | (a, b) <- zip fib (tail fib) ]

fib =⇒ [1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ... ]

Obviously, not all implementations in Haskell are efficient . . .

fibonacci 1 = 1

fibonacci 2 = 1

fibonacci x | x > 2 = fibonacci (x - 1) +

fibonacci (x - 2)

| otherwise = 0
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Pascal’s Triangle

pascalRows, pascalDiag :: [[Integer]]

pascalRows = [1] : [ zipWith (+) ([0] ++ r) (r ++ [0]) |

r <- pascalRows ]

pascalDiag = [1, 1 ..] : [ q | d <- pascalDiag, let

q = zipWith (+) d (0 : q) ]

pascalRows !! x !! y == pascalDiag !! y !! (x - y)

== binomial x y

binomial x y | y < 0 || x < y = 0

| otherwise = product [y + 1 .. x] ‘div‘

product [1 .. x - y]

product = foldl’ (*) 1 -- strict foldl using $!
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