Tips and Tricks of the Prague Arabic Dependency Trebank

Otakar Smrz
Institute of Formal and Applied Linguistics
Faculty of Mathematics and Physics
Charles University in Prague
otakar.smrz@mff.cuni.cz

In this paper, we report on several software implementations thaawe developed within
Prague Arabic Dependency Treebank or some other projects concernettatitc Natural
Language Processing. We try to guide the reader through somaattasks and note the
solutions that we have designed and used. We as well point to thirdepanmputational
systems that the research community might exploit in the future work in tlais fiel

Arabic, dependency grammar, treebank, language annotation and processing, application programming.

1. INTRODUCTION

The interests of applied computational linguistics are incregstnghing toward languages commonly
denoted as ‘lesser-studied’. Out of these, the Arabic language bkasréeeiving more and more
attention, and has already been in the center of many signific@atrcd projects. Yet, processing Arabic
and dealing with its linguistic data resources does not usually bétortige ready-to-use skills of
computational linguists.

Recently, there have been conference tutorials that map the avadablrces and overview the
general problems to solve for this language. Some of these evedtsotde descriptive rather than
constructive—they do not set up a task, discuss some method for Ilsé&rifi and show the viability of
the results, nor the general applicability of the approach.

On the contrary, the present contribution would like to offer more ingmbtthe solutions to
selected non-trivial issues in computational processing of Aralmiging from linguistic morphological
analysis to dependency parsing, from customization of annotation envirortmentematic taggers and
parsers, from design of lexicons to management of treebanks. BHm elkthis exposure is very limited,
nonetheless, this paper is intended to be a guide to the reader, not a textbook.

We will deliver some of our experience with building the Pragusbiar Dependency Treebank
(Haji¢ et al. 2004, [1], [2]) and making use of it for various computational aigics (Hajt et al.
2005). PADT now consists of the morphological and the analytical lefdisguistic annotations, and
the third level, that of the underlying syntax and information strucisifeeing established. There is an
original suite of software tools for visualizing and editing, adl \as automated processing and
maintenance of the treebank’s data, which we would demonstrate in action.

We would also like to promote related technologies that are beindodedeby other research
teams. We will refer to the work of (Lagally 2004, 1994) in dataareetoding and compilation of
lexical resources, of (Forsberg and Ranta 2004, El Dada and Ranta 2d06xtional modeling of
morphology and syntax, or of (Smith et al. 2005, Habash and Rambow 2005) irbidisaion of
Arabic and its further linguistic treatment.

2. PROBLEMS AND SOLUTIONS

The problems around representing the Arabic script on different omeragstems and in individual
applications no longer seem to be an issue. The Unicode standard is ysowalddy supported, and data
are mostly exchanged in UTF-8 or UTF-16 encodings. Even though disptagngght-to-left cursive
script on graphical interfaces involves its set of low-level prableve will not be concerned with these.
Instead, we will pay attention to the processing ofcetentsof textual documents, as well as of other
resources of written or transcribed linguistic data.

$regexR = gr/(?: \p{Arabic} |

[\x{064B}-\x{0652}\x{0670}\x{0657} \x{0656}\x{0640}] |
\p{InArabicPresentationFormsA} |
\p{InArabicPresentationFormsB})+/ X;

using \p{InArabic} is too general, incl udes punctuation

$regexL = qrA\p{Latin}+/;

$regexN = qr/[0-9]+ (?: [\.\,\x{060C}\x{066B}\x{066 C} [0-9]+)7? |
[\x{0660}-\x{0669}]+
(?: \\,\x{060C}\x{066B}\x{066 CH
[\x{0660}- \x{0669}]+)?/x;
$regexP = gr/[.,;:1?""\(O\NM\N<\SWW~\@ \# \B\LOVNENA\ \=\+\-] |
[\x{O0AB}\x{00BB}\x{060C}\x{061B}\x{06 1F}H/X;

FIGURE 1. Regular expressions in Perl for identification of Arabic orthogiahword:
$regexR , words in the Latin alphab&egexL , numbers using alternative digits and dec
points $regexN , and various punctuation symbdisegexP . Note the comment below 1
definition of $regexR.

2.1 Text Processing

Let us assume that textual data, regardless of the applicatieditor in which they were created, are
internally accessible to a programmer as strings of chasaaie are converted into formats that are
transparent and allow external processing, such as data in varidugprfzaguages or plain text files the
encoding of which is compliant with the Universal Character Set of Unicode.

Most commonly, the data will directly reflect the originabBic orthography. In that case, several
text-processing operations on the data are of interest, such as:

a) identification of orthographical words in contrast to punctuation sywnaod numbers, or
words in non-Arabic alphabets,

b) normalization of the textual data, e.g. removal of diacritiepli@ vowelization marks),
removal of padding characters (like ‘tatweel’, a stretchable atimgeline) and substitution of
ligature characters with equivalent sequences of graphemic characters,

c) conversion of the orthography into transliteration or, if possible, into phonetic ipdioscr

The first of the tasks can be quite easily solved thanks to #ssifttation of the Unicode
characters into subsets. In Figure 1, we show definitions of thearegxpressions in Perl that identify
the particular kind of substrings in the data. Analogous implementatmsbe expressed in other
programming languages, too.

The normalization of data essentially reduces to substring suiosts as well, and so does the
problem of conversion into transliterations, esp. if only some one-to-oppimgaof characters is
required. Yet, efficiency of processing can become an issue (consbated passes, one per replace
call, through data of huge size), and some unified approach to transforming the texomig/mandy.

In our programming library for Perl called Encode::Arabic (®ecB.3), we have implemented a
mechanism that can be used to perform the normalization, without theuprogr's need to know any
details about the characters that are actually concerned. As shéfgure 2, one can exploit the mode-
dependent conversion between the orthography and the Buckwalter transliteration (BuQ@g).

In certain contexts, representing the Arabic language in a awtdifferent from the original
orthography, yet a notation that allows to be translated into the aafifogrcan bring advantages both
for human and computer processing, and can offer extended options for rthesishata for multiple
purposes. In particular, we note the ArabTeX meta-transliteration of the lar(¢jaggdy 2004, 1994).

use Encode::Arabic :modes’;

enmode “buckwalter”, “default”, “XML-style”;

demode “buckwalter”, “nosukuun”, “XML-style”, “nota tweel”;

$script_new = decode “buckwalter”, encode “buckwalt er”, $script_old;

Suppose $script_old contains the text in Arabic ¢ haracters that translates
into the Buckwalter transliteration as

#

encode “buckwalter”, $script_old --->

“AigoraOo h™*aA {I_ n~a_S~abi___ {notibaAhK.”
#

Then $script_new contains the version of the orig inal text in Arabic again
from which the wasl a, sukuun,and tatweel characters are removed.

#

encode “buckwalter”, $script_new --->

“AigraO h™*aA Aln~a S~a biAntibaAhK.”

FIGURE 2: Example of using Encode::Arabic (Smrz 2003-20@6connection with variol
modes that enable the user to carry out certain kinds of naanah of the text without conce
for particular implementation details.

2.2 Morphological Analysis

Prague Arabic Dependency Treebank (Elajfi al. 2004, Smrz et al. 2006) is a project of analyzing large
amounts of linguistic data in Modern Written Arabic in terms of firenal representation of language
that originates in the Functional Generative Description (Sgall et al. 1986o¥#agnd Sgall 2003).

The formal representation delivers the linguistic meaning of whatxpressed by the surface
realization, i.e. the natural language. The description is alsongestg enable synthesizing the natural
language out of the formal representations. By constructing thieatdeewe provide a resource for
computational learning of the correspondences between both languages, the natural amdlthe for

The linguistic analysis takes place in three stages: thpholmgical level (inflection of lexemes),
the analytical level (surface syntax), and the tectogramahdgicel (underlying syntax). Within the scope
of this paper, we will take a closer look at our approach to morphology and the analytaal synt

The first step in our formal analysis of written (or even, tabhed spoken) language is the
recovery of the grammatical categories that the word formrg gathe context, and of the subsuming
lexemes of these forms.

Thus, from a non-vocalized Arabic text, we obtain the abstract iatmmthat is relevant for
further processing of the discourse, and for syntactic analysisriicytar. Moreover, morphological
analysis can be reversed into generation in most computational morghblwgidels. Due to that, we
can produce the phonologically qualified, fully vocalized version of the text as anotller res

Morphologically annotated data are used as training exampleagigers, which are systems that
can do automatic morphological analysis and its context-aware ligpaation. There is a number of
taggers already developed for Arabic on the basis of treebankss{Habd Rambow 2005, Smith et al.
2005, Hajé et al. 2005).

Morphological analysis in PADT is pioneering the MorphoTrees techr{fgionez and Pajas 2004,
Smrz in prep.). For every word form found in a sentence, MorphoTrees zwghni list of its possible
morphological readings into a hierarchy, and allow the annotator ensytite and speed up the choice
of the analysis that is appropriate in the context. Restridiegibdes and their subtrees in a cascading
style according to various criteria, esp. limiting them to thaesbf grammatical categories that must be
satisfied, is a very efficient way to cope with otherwise enormous morphologibajuity in Arabic.

Figure 3 illustrates the hierarchy further. The analyzed ortpbgravord constitutes the root of the
hierarchy, the full forms and morphological tags of the analyzintastic tokens project into its leaves.
Lexemes occupy the first level above the leaves, then there iewbleof canonical non-vocalized
spelling of the tokens, and the level of partitioning of the original word into such token forms.

1Y u” |lyg” 11y s IlYulJ My vy g _l Dlng

| | / \ | / \ -
1Y d” 1y L_JH 1z J VS I1Y ulj Ily L_;l VAT Oly M_’H

| | . | | | |
ulm qla :‘T aly d1 al N 7 Jl 5la Jl =3la & va éj waliya

FIGURE 3: MorphoTrees analyses of the orthographic waid and its spelling variants. T
morphological tags in the leaves are schematized to trianbhesbold lines in the hierarc
indicate the annotation in the context, i.e. the choice of the soliytign ’ilayya ‘to me'.

The underlying morphological analyzer that has been used in Morph@rnedke Prague Arabic
Dependency Treebank annotations so far, is the Buckwalter Arabic Morablagalyzer (Buckwalter
2002, 2004). The output of Buckwalter morphology has to be transformed into wiradl\ftenctional
approximationof the morphology, and what we describe in (Smrz and Pajas 2004, dtlaji. 2005).
However, a novel computational morphological model of Functional Arabic Margyaolk being
designed and implemented (Smrz in prep.). The MorphoTrees techniquiidedhas a feature of this
new system. Nonetheless, MorphoTrees can be modified to fit other morphologicaisiorsres well.

The software tools that take a text file with some minimehgraph-structure markup and produce
a file with MorphoTrees analyses in the format for the TrEd atinatanvironment (Section 3.1), are
available upon request from the authors. Some of these tools ar&edsly @aresent in the distribution of
the Prague Arabic Dependency Treebank 1.0 ¢Hdjal. 2004), and are open-source.

2.3 Syntactic Parsing

The tokens, equipped with their disambiguated grammatical and lexigahation, enter the annotation
of analytical syntax (Zabokrtsky and Smrz 2003, Smrz et al. 2006). |&hi$ is formalized into
dependency trees the nodes of which are the tokens. Relations betweenamodésssified with
analytical syntactic functions. More precisely, it is the wisnibtree of a dependent node that fulfills the
particular syntactic function with respect to the governing node.

Both clauses and nominal expressions can assume the same anaigttons—the attributive
clause in our example in Figure 4 is Atr, just like in the case of the nominal attribatein.

The coordination relation is different from the dependency relation.ekeywwe can depict it in
the tree-like manner, too. The coordinative node becomes Coord, and thesstliaireze the members
of the coordination are marked as such (cf. dashed edges in the exdbeplendents modifying the
coordination as a whole would attach directly to the Coord node, yet wouldenoharked as
coordinants—therefrom, the need for distinguishing coordination and pure dependency in the trees.

The immediate-dominance relation that we capture in the annotatioddpendent of the linear
ordering of words in an utterance, i.e. the linear-precedence reldtos, the expressiveness of the
dependency grammar is stronger than that of phrase-structure doeg¢egrammar. The dependency
trees can become non-projective by featuring crossing dependencids, reftects the possibility for
dependency descriptions to relax word order while preserving the links of gramigateanment.

For more detailed discussion of formal properties of dependency giramas well as for modular
computational treatment of these systems, cf. esp. (Debusmann 2006).

Dependency parsing has been attracting a lot of attention in tReréearch. The most recent
references relevant to Arabic include (Corston-Olivier et al. 2@a®)ang el al. 2006), as well as papers
in (eds. Marquez and Klein 2006).

3 wa- and C-——————

S in Pp——————-

;.;lf milaff collection /file-of N-—-———- 2R

Atr “T"Séﬁ al-*adabi the-literature N--—————- 2D

b tarahat it-presented VP-A-3F3--

fb’-.:ﬂ al-magallaty the-magazine N-—-—- F31D

i;:aj gadiyata issue-of N—— F34R

Atr ;L.TJ’T al-lugati the-language N--—-—-— FS2D

i’\D Atr a:.f..»"’,.i.!f al-arabiyati the-Arabic A-—— FS2D

Coord 3 wa- and C——————

JU’u-;\ri al-:ahtari the-dangers N-————— 2D

ﬂﬁ allatt that SR-——-FS—-

33:':' tuhaddidu they-threaten VIIA-3F3—

b -ha it S8-—--3FS4-

L AuxK .. B
FIGURE 4: Analytical annotation of the sentence ‘In the section on literathee magazir
presented the issue of the Ai@banguage and the dangers that threaten it.’. The ane
function Pred denotes the main predicate, Sb is subject, Obj is dlgecstands for adverbi:
AuxP, AuxY and AuxK are auxiliary functions of specific kinds. Graatioal categories &

encoded using the positional notation explained in {Hajal. 2005).

2.4 Lexicon Design

One of the essential components in a language processing systeniasicon. Unless other resources
are available from which the complete information can be exttabtelding a large-scale lexicon is time
consuming and requires a lot of expertise. Therefore, the reusability of the lexafeexireme interest.

The most respected and reused computational lexicon of Arabid ideteloped by (Buckwalter
2002, 2004) as part of the morphological analyzer. The lexicon consistsistfad fully vocalized
morphological stems classified for the purposes of inflectionalysisadnd accompanied with Arabic
lemmas and English glosses. Information on morphological roots is there as veelst &b lsome extent.

Buckwalter lexicon has been utilized by others in the MAGEADesysfor modeling of the
morphology of Arabic dialects (Habash and Rambow 2006). The version oéxicen (Buckwalter
2002) that is published under the GNU General Public License is l@sonain lexical source for
Functional Arabic Morphology (Smrz in prep.).

However, the original lexicon is considerably restructured in opteimentation, besides being
updated with new kinds of linguistic information. The design principleswkdollow while creating this
resource include:

a) use of a representation of the linguistic data that is noth@diteral Arabic orthography, but a
more abstract and extensible notation that encodes both orthography and ph@mloglgose
interpretation is customizable

b) organization of the lexicon so that there is preferably no duplicat information and so that
the lexicon can possibly be divided into separate units, as well imsebeked with external
modules providing e.g. other lexicons

c) definition of such format of the lexicon so that editing and undetistg the data is not
inappropriately difficult, and using such data markup whose syntather éightweight, or can
be edited/verified with some automatic tools, or both

Similar principles were advocated for in e.g. (Lagally 1994), and drarhply with the modern
recommendations found in general in software engineering. Let usomenti concrete choices and the
advantages that these principles bring us in the particular casdeasfigning the Arabic morphological
lexicon.

ad a) We use the ArabTeX notation for encoding Arabic (Lagally 2004; Bnprep.), into which we
can transform the fully vocalized stems of the Buckwalter texgpuite easily. The major point is that
modeling the morphology of Arabic is musimplerin a notation that is close to phonology and
abstracts away from the orthography. We need not care in the morghblogidel what carrier for
‘hamza’ there has to be in any word form, or whether consonantal doubltagimg place after a
morphological operation, and thus rewriting of the second consonant to ‘shaduzéded, etc.
Another important achievement is that tlentical morphological model can be instantiated both for
the orthography and for some given phonological transcription that migtatther available—that
depends only on how we interpret the ArabTeX notation at the point wieeaeitamatically compile
the morphological generators/analyzers out of our morphological model!

ad b) We organize our data into records whose structure allows amueeriand sharing of information.
The records build up a set of modules understood by the Haskell prografangqupge. The
modules can not only lempiledas part of the complex morphological model, but also, they can be
loaded into annteractiveinterpreter of Haskell (i.e., Hugs or GHCI, [8]) or parsed/loadeddoye
other program. By defining a library of utility functions, the lexkiclata can bejueried sorted,
counted, oexportedto various formats (XML, LaTeX, etc.) for further external processing.

ad ¢) The format of the lexicon must conform to the requirementsaskdt, once we use its module
system. However, this does not present a limitation. On the corttrarg,are two aspects of Haskell
that we can further exploit. Haskell allows us to define the #edcambedded domain-specific
language(Hudak 1998) for encoding the structure of the data in the lexicongmweefine our own
constructor functions and combining operators, i.e. delimiters of theolegiitems). It also requires
that the types of the individual pieces of information be consistenthidtype-checkingf the data
of the lexicon, the validity of the records in the lexicon is guastand errors of many kinds,
syntactic as well as semantic, are thus effectively eliminated.

2.5 Treebank Management

The treebank annotations must also be handled with proper care fasahedness and completeness.
Let us make a few remarks about the life cycle of the data in the treebank.

The original textual data come from the raw-text corpora puldighe the Linguistic Data
Consortium, mostly included in the Arabic Gigaword collection (Getafl. 2006). From every document
selected for annotation, the MorphoTrees file for TrEd is generdétbdn its annotation is completed,
the analytical file is generated. The procedure goes up to tectogrammatiatteon, of course.

As each level of annotation depends on the data of the precedingtle/ghportant to implement
tools for automated synchronization of the data and for migration of aiongtdo files of modified
content or format. We have developed such tools, and incorporated them @l$oEd; the graphical
annotation environment.

All documents that constitute the treebank are registered irs@weontrol system (we use SVN,
[9]), so that changes and differences can easily be tracked dowhg amnnotations evolve. The
differencing tools for text files are, however, not most suitaimei$ing with the ordered tree structures
that we have. We are therefore going to improve some of thengxastnotation modes in TrEd to make
comparison of documents even more transparent and comfortable.

We also have tools that check the consistency of annotation on evely dearacterize the
document as to the number of words annotated, or show the missing annotations, the comments, etc.

3. COMPUTATIONAL SYSTEMS

3.1 TrEd - Annotation Environment

The indispensable annotation environment for PADT and various other treebprijects is the TrEd
tree editor authored by Petr Pajas. TrEd is not only a fully progeble and customizable graphical user
interface based on Perl/Tk, but also an excellent suite of egilfor automated, optionally parallel,
processing of the data.

One can reuse as well as write his/her own TrEd macrosibeoutines in Perl) that implement
consistency checks, do miscellaneous batch processing, perform sealehteeannotation differences.
It is also possible to design one’s own special-purpose annotation matkfifipg new macros and
associating them through keyboard shortcuts with the graphical edit@sstyle the appearance of the
trees or graphs depending on the type of data, to interface the \eiitaxternal programs, etc., etc.
TrEd is documented and available online ([3]), being published under GNU General PuligeLice

3.2 Netgraph — Search Engine

Netgraph is a client—server application for efficient searcimngeebanks developed byiJMirovsky
and Roman Ondruska. It provides the user with an easy-to-learn gragumcgllanguage that does not
presume any programming skills. The client application is implemented in Javaaaadable on ([4]).

3.3 Encode Arabic — Data Conversion

The Encode::Arabic module for Perl ([6]) supports miscellaneous nadgescessing the non-trivial, yet
ingenious ArabTeX encoding notation of the Arabic script and/or its pleotratiscriptions (Lagally
2004). Encode::Arabic covers the Buckwalter transliteration as(&etkwalter 2002). Apart from the
programming module, there is also a web interface ([5]) useful for converting stiarict pasted text.

Encode Arabic is newly implemented also in Haskell. The programiibrary as well as some
compiled executables will be published along with (Smrz in prep.).

3.4 Other Research Systems

Let us finally draw attention to several other interesting softveystems reusable in processing Arabic.
Typesetting Arabic (as well as Farsi, Urdu, etc.) with Arab{leagally 2004, [7]) may be the preferred
option when presenting complex data (cf. e.g. Figures 3 and 4 producediwitlystem). Higher-level
processing of the language is addressed in (El Dada and Ranta 20@@rd-@nsd Ranta 2004) and
(Debusmann 2006), who develop computational linguistic models in declarative and abiingst se

4. CONCLUSION

We have presented a mixture of tips and tricks concerning setesteivial problems in computational
processing of Arabic. We described novelties in morphological modetidgessed dependency parsing,
promoted modern technologies and referred to several software systems impoftatiér research.

ACKNOWLEDGEMENTS

This research has been supported by the Ministry of Education of tbeh Gzepublic, project
MSM0021620838, by the Grant Agency of Charles University in Prague, ptdge&73/2005, and by
the Grant Agency of the Czech Academy of Sciences, project 1IET101120413.

URL LINKS

[1] http://ufal.mff.cuni.cz/padt/online/

[2] http://ufal.mff.cuni.cz/padt/

[3] http://ufal.mff.cuni.cz/~pajas/tred/

[4] http://quest.ms.mff.cuni.cz/netgraph/

[5] http://ufal.mff.cuni.cz/~smrz/Encode/Arabic/

[6] http://search.cpan.org/dist/Encode-Arabic/

[7] ftp://ftp.informatik.uni-stuttgart.de/pub/arabtex/arabtex.htm
[8] http://www.haskell.org/

[9] http://subversion.tigris.org/

REFERENCES

Buckwalter, Tim (2002).Buckwalter Arabic Morphological Analyzer 1.0.DC catalog number
LDC2002L49, ISBN 1-58563-257-0.

Buckwalter, Tim (2004).Buckwalter Arabic Morphological Analyzer 2.0.DC catalog number
LDC2004L02, ISBN 1-58563-324-0.

Chiang, David and Mona Diab and Nizar Habash and Owen Rambow and SaSubaif (2006).
‘Parsing Arabic Dialects’. IiProceedings of the 11th Conference of the European Chapter of the
Association for Computational Linguistigsages 369-376, Trento, Italy.

Corston-Oliver, Simon and Anthony Aue and Kevin Duh and Eric Ringger (200&itilingual
Dependency Parsing using Bayes Point MachinesProteedings of HLT-NAACL 200fages
160-167, New York.

El Dada, Ali and Aarne Ranta (2006). ‘Implementing an Open Source CARdBource Grammar in
Grammatical Framework’. IRroceedings of the XXth Arabic Linguistics SymposBemjamins.

Debusmann, Ralph (2006gxtensible Dependency Grammar: A Modular Grammar Formalism Based
On Multigraph DescriptionPhD. thesis, Saarland University, Germany.

Forsberg, Markus and Aarne Ranta (2004). ‘Functional MorphologyPréceedings of ICFP 2004
pages 213-223. ACM Press.

Graff, David and Ke Chen and Junbo Kong and Kazuaki Maeda (28@&hic Gigaword Second
Edition. LDC catalog number LDC2006T02, ISBN 1-58563-371-2.

Habash, Nizar and Owen Rambow (2005). ‘Arabic Tokenization, Part-of{sp&agging and
Morphological Disambiguation in One Fell Swoop’.RPnoceedings of the 43rd Annual Meeting
of the Association for Computational Linguistics ACL 2Qi#ges 573-580, Ann Arbor.

Habash, Nizar and Owen Rambow (2006). ‘MAGEAD: A Morphological Analgrel Generator for the
Arabic Dialects’. In Proceedings of the 21st International Conference on Computational
Linguistics and 44th Annual Meeting of the A@hges 681-688, Sydney, Australia.

Haji¢, Jan and Otakar Smrz and Tim Buckwalter and Hubert Jin (2005). ‘Edzdsed Tagger of
Approximations of Functional Arabic Morphology’. iroceedings of TLT 200%ages 53-64,
Barcelona, Spain.

Haji¢, Jan and Otakar Smrz and Petr Zeméanek and Petr Pajas and dmufSaad Emanuel BeSka and
Jakub Kr&mar and Kamila Hassanova (200Rrague Arabic Dependency Treebank.1.DC
catalog number LDC2004T23, ISBN 1-58563-319-4.

Hajicova, Eva and Petr Sgall (2003). ‘Dependency Syntax in Functional Geaebascription’. In
Dependenz und Valenz — Dependency and Valeotyme |, pages 570-592. Walter de Gruyter.

Hudak, Paul (1998). ‘Modular Domain Specific Languages and ToolsPrérceedings of the Fifth
International Conference on Software Reyseges 134-142. IEEE Computer Society Press.

Lagally, Klaus (1994)Using TeX as a Tool in the Production of a Multi-Lingual Dictiondrgchnical
Report 1994/15, Fakultat Informatik, Universitat Stuttgart.

Lagally, Klaus (2004)ArabTeX: Typesetting Arabic and Hebrew, User Manual Version Z@¢hnical
Report 2004/03, Fakultat Informatik, Universitat Stuttgart.

Marquez, Lluis and Dan Klein, eds. (200Byoceedings of CoNLL-X, the Tenth Conference on Natural
Language LearningACL, New York.

Sgall, Petr and Eva Hapva and Jarmila Panevova (1986lhe Meaning of the Sentence in Its Semantic
and Pragmatic Aspect®. Reidel & Academia.

Smith, Noah A. and David A. Smith and Roy W. Tromble (2005). ‘Context-Basmgbhological
Disambiguation with Random Fields’. IRroceedings of HLT/EMNLP 200%ages 475-482,
Vancouver, Canada.

Smrz, Otakar (in prep.)Functional Arabic Morphology. Formal System and ImplementatiimD.
thesis, Charles University in Prague, Czech Republic.

Smrz, Otakar and Petr Pajas (2004). ‘MorphoTrees of Arabic and Ameiotation in the TrEd
Environment’. InProceedings of the NEMLAR Conference 2@ges 38—41, Egypt.

Smrz, Otakar and Petr Zemanek and Jakukidad and Viktor Bielicky (2006). ‘Information Structure
with the Prague Arabic Dependency Treebank'. Rnoceedings of the Conference on
Communication and Information Structure in Spoken Arabatlege Park, Maryland.

Zabokrtsky, Zdetk and Otakar Smrz (2003). ‘Arabic Syntactic Trees: from Constijueioc
Dependency’. IEACL 2003 Conference Companjgages 183-186, Budapest, Hungary.

