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Outline

• basic properties of XML
• syntactic requirements
• well-formedness vs. validity
• pros and cons
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Markup languages

• a markup language - a set of rules for annotating a text (=adding information into it)
• marks must be syntactically distinguishable from the text (hence, some kind of escaping

is always needed)
• markup can specify a formatting of text segments, or their meaning (semantics), or both
• a markup language can be line oriented or not
• typically at least partially ”recursive” (a CFG is needed for parsing it)
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History

• markup used since 1960s
• markup = inserted marks into a plain-text document
• e.g. for formatting purposes (e.g. TEXin  (1977

• 1969 – GML – Generalized Markup Language
• Goldfarb, Mosher and Lorie, legal texts for IBM

• 1986 – SGML – Standard Generalized Markup Language, ISO 8879
• too complicated!

• 1992 – HTML (Hypertext Markup Language) 
• only basics from SGML, very simple

• 1996 – W3C new directions for a new markup language specified, major design decisions
• 1998 – XML 1.0
• 2004 – XML 1.1, only tiny changes, XML 2.0 not under serious consideration now
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eXtensible Markup Language

• Language – a convention capturing a certain subset of Σ*; it can be decided whether a
string does or doesn’t belong to the language,

• Markup – additional information inserted into the text in a form of textual marks, which
are, however, distinguishable from the text itself.

• eXtensible – complexity can be scaled up according to your needs (as opposed to, e.g.,
HTML or markdown, whose mark inventories cannot be changed by users)
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Advantages of XML

• open file format, specification for free from W3C (as opposed to some proprietary file
formats of database engines or text editors)

• easily understandable, self-documented files
• text-oriented – no specialized tools required, abundance of text editors
• possibly more semantic information content (compared e.g. to formatting markups -

e.g. “use a 14pt font for this” vs “this is a subsection heading”)
• easily convertible to other formats
• easy and efficient parsing / structure checking
• support for referencing
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Relational Databases vs. XML

Credit: kosek.cz
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Relational Databases vs. XML

Relational databases
• basic data unit – a table consisting of tuples of values for pre-defined “fields”
• tables could be interlinked
• binary file format highly dependent on particular software
• emphasis on computational efficiency (indexing)

XML
• hierarchical (tree-shaped) data structure
• inherent linear ordering
• self-documented file format independent of implementation of software
• no big concerns with efficiency (however, given the tree-shaped prior, some solutions are

better than others)
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XML: quick syntax tour
Basic notions:
• XML document is a text file in the XML format.
• Documents consists of nested elements.
• Boundaries of an element given by a start tag and an end tags.
• Another information associated with an element can be stored in element attributes.

<?xml version="1.0" encoding="UTF-8"?>
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<course id="NPFL092">
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<semester>winter</semester><hours_per_week>1/2</hours_per_week>
<department>Institute of Formal and Applied Linguistics</department>
<teachers>

<teacher>Rudolf Rosa</teacher>
<teacher>Zdeněk Žabokrtský</teacher>

</teachers>
</course>

</my_courses>
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XML: quick syntax tour (2)

• Tags:
• Start tag <element_name>
• End tag </element_name>
• Empty element <element_name/>

• Elements can be embedded, but they cannot cross → XML document = tree of
elements

• There must be exactly one root element.
• Special symbols < and > must be encoded using entities (“escape sequences”) &lt; and

&gt; , & → &amp;
• Attribute values must be enclosed in quotes or apostrophes; (another needed entities:

&quot; and &apos;) 
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Time for a question

• What is the shortest length of an XML file?

11/ 29



XML: quick syntax tour (3)

• XML document can contain instructions for xml processor
• the most frequent instruction – a declaration header:

<?xml version=”1.0” encoding=”utf-8” ?>
• document type declaration:

<!DOCTYPE MojeKniha SYSTEM ”MojeKniha.DTD”>
• Comments (not allowed inside tags, cannot contain –)

<!-- bla bla bla -->
• If the document conforms to all syntactic requirements: a well-formed XML document
• Well-formedness does not say anything about the content (element and attribute

names, the way how elements are embedded...)
• Checking the well-formedness using the Unix command line:

> xmllint --noout my-xml-file.xml

12/ 29



Time for an exercise

• Use a text editor for creating an XML file, then check whether it is well formed.
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Need to describe the content formally too?

• well-formedness – only conforming the basic XML syntactic rules, nothing about the
content structure

• but what if you need to specify the structure
• several solutions available

• DTD – Document Type Definition
• other XML schema languages such as RELAX NG (REgular LAnguage for XML Next

Generation) or XSD (XML Schema Definition)

14/ 29



DTD – Document Type Definition

DTD
• Came from SGML
• Formal set of rules for describing document structure
• Declares element names, their embeding, attribute names and values…
• example: a document consisting of a sequence of chapters, each chapter contains a title

and a sequence of sections, sections contain paragraphs...
DTD location
• external DTD – a stand-off file
• internal DTD – inside the XML document
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DTD Validation

• the process of checking whether a document fulfills the DTD requirements
• if OK: the document is valid with respect to the given DTD
• of course, only a well-formed document can be valid
• checking the validity from the command line:

> xmllint --noout --dtdvalid my-dtd-file.dtd my-xml-file.xml

• an unfortunate terminological confusion: you can often see the term ‘validation’ or
‘validator’ used in the sense of well-formedness checking/checker
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DTD structure

• Four types of declarations
• Declaration of elements <!ELEMENT …>
• Declaration of attributes <!ATTLIST …>
• Declaration of entities
• Declaration of notations
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Declaration of elements

• Syntax: <!ELEMENT name content>
• A name must start with a letter, can contain numbers and some special symbols .-_:
• Empty element: <!ELEMENT název EMPTY>
• Element without content limitations: <!ELEMENT název ANY>
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Declaration of elements  (2)

• Text containing elements
• Reserved name PCDATA (Parseable Character DATA) 
• Example: <!ELEMENT title (#PCDATA)>

• Element content description – regular expressions
• Sequence connector ,
• Alternative connector |
• Quantity ? + *
• Mixed content example: <!ELEMENT emph (#PCDATA|sub|super)* >
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Declaration of attributes

• Syntax: <!ATTLIST element_name declaration_of_attributes>
• declaration of an attribute

• attribute name
• attribute type
• default value (optional)

• example: <!ATTLIST author firstname CDATA surname CDATA>
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Declaration of attributes (2)

• Selected types of attribute content:
• CDATA – the value is character data
• ID – the value is a unique id
• IDREF – the value is the id of another element
• IDREFS – the value is a list of other ids
• NMTOKEN – the value is a valid XML name
• …

• Some optional information can be given after the type:
• #REQUIRED – the attribute is required
• …
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A DTD example (credit: w3schools.com)

<!DOCTYPE TVSCHEDULE [

<!ELEMENT TVSCHEDULE (CHANNEL+)>
<!ELEMENT CHANNEL (BANNER,DAY+)>
<!ELEMENT BANNER (#PCDATA)>
<!ELEMENT DAY (DATE,(HOLIDAY|PROGRAMSLOT+)+)>
<!ELEMENT HOLIDAY (#PCDATA)>
<!ELEMENT DATE (#PCDATA)>
<!ELEMENT PROGRAMSLOT (TIME,TITLE,DESCRIPTION?)>
<!ELEMENT TIME (#PCDATA)>
<!ELEMENT TITLE (#PCDATA)>
<!ELEMENT DESCRIPTION (#PCDATA)>

<!ATTLIST TVSCHEDULE NAME CDATA #REQUIRED>
<!ATTLIST CHANNEL CHAN CDATA #REQUIRED>
<!ATTLIST PROGRAMSLOT VTR CDATA #IMPLIED>
<!ATTLIST TITLE RATING CDATA #IMPLIED>
<!ATTLIST TITLE LANGUAGE CDATA #IMPLIED>
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An external DTD

• a separate file,
• could be referred from an XML file using a processing instruction:

<!DOCTYPE nameofmyrootelement SYSTEM ”mydtdfile.dtd”>
• DTD example (credit: w3schools.com):

<!ELEMENT note (to,from,heading,body)>
<!ELEMENT to (#PCDATA)>
<!ELEMENT from (#PCDATA)>
<!ELEMENT heading (#PCDATA)>
<!ELEMENT body (#PCDATA)>
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An internal DTD included inside XML file (credit: w3schools.com)

• included into an XML file
• Example (credit: w3schools.com):

<?xml version="1.0"?>
<!DOCTYPE note [
<!ELEMENT note (to,from,heading,body)>
<!ELEMENT to (#PCDATA)>
<!ELEMENT from (#PCDATA)>
<!ELEMENT heading (#PCDATA)>
<!ELEMENT body (#PCDATA)>
]>
<note><to>Tove</to><from>Jani</from>
<heading>Reminder</heading>
<body>Don't forget me this weekend</body>
</note>
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Time for a question

• When would you prefer to store DTD internally and when externally?
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DTD pros and cons

• positive: very simple, concise syntax
• negative: a DTD itself is not an XML file
• negative: DTD much less expressive compared to e.g. to XML Schema
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Time for an exercise

• What can go wrong with an XML file if you check its well-formedness and validity. How
would you check whether the requirements are fulfilled?
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Criticism of XML

• quite verbose (well, you can always compress your XML files, but still)
• computationally demanding when it comes to huge data and/or limited hardware

capacity
• relatively complex
• redundant
• simpler and less lengthy alternatives are popular now now such as

• JSON – suitable for interchange of structure data
• markdown – for textual documents with simple structure
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Introduction to XML

Summary
1. XML = an easy-to-process file format
2. platform-independent
3. self-documented structure (if properly-designed)
4. thus excellent for data exchange
5. createable using any text editor, readable by naked eye
6. tree-shaped logical skeleton
7. open specification, no specialized software needed
8. a bit too verbose, not optimal if speed is an issue
9. standard libraries existing in most programming languages (next

week)
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