NPFL092 Technology for Natural Language Processing

Introduction to XML

Zden&k Zabokrtsky, Rudolf Rosa

& November 24, 2020

v Charles University @ (HEOO)
—_— Faculty of Mathematics and Physics
L aculty of Y BY NC SA
EUROPEAN UNION

"t

7 - i

FA LANGTECH e St rd e Institute of Formal and Applied Linguistics A a—————
Dot e o

<?7xml version="1.0" encoding="UTF-8"7>
<my_courses>

<course id="NPFL092">
<name>NLP Technology</name>
<semester>winter</semester><hours_per_week>1/2</hours_per_week>
<department>Institute of Formal and Applied Linguistics</department>
<teachers>
<teacher>Rudolf Rosa</teacher>
<teacher>Zden&k Zabokrtskj</teacher>
</teachers>
</course>

</my_courses>

1/ 29

basic properties of XML
syntactic requirements
well-formedness vs. validity

pros and cons

2/ 29

a markup language - a set of rules for annotating a text (=adding information into it)

marks must be syntactically distinguishable from the text (hence, some kind of escaping
is always needed)

markup can specify a formatting of text segments, or their meaning (semantics), or both
a markup language can be line oriented or not

typically at least partially "recursive” (a CFG is needed for parsing it)

3/ 29

markup used since 1960s

® markup = inserted marks into a plain-text document
® e.g. for formatting purposes (e.g. TeXin (1977

1969 — GML — Generalized Markup Language
® Goldfarb, Mosher and Lorie, legal texts for IBM
1986 — SGML — Standard Generalized Markup Language, ISO 8879
® too complicated!
1992 — HTML (Hypertext Markup Language)
® only basics from SGML, very simple
1996 — W3C new directions for a new markup language specified, major design decisions
1998 — XML 1.0

2004 — XML 1.1, only tiny changes, XML 2.0 not under serious consideration now

4/ 29

® |anguage — a convention capturing a certain subset of X*; it can be decided whether a
string does or doesn't belong to the language,

® Markup — additional information inserted into the text in a form of textual marks, which
are, however, distinguishable from the text itself.

e eXtensible — complexity can be scaled up according to your needs (as opposed to, e.g.,
HTML or markdown, whose mark inventories cannot be changed by users)

5/ 29

open file format, specification for free from W3C (as opposed to some proprietary file
formats of database engines or text editors)

easily understandable, self-documented files
text-oriented — no specialized tools required, abundance of text editors

possibly more semantic information content (compared e.g. to formatting markups -
e.g. “use a 14pt font for this” vs "this is a subsection heading")

easily convertible to other formats
easy and efficient parsing / structure checking

support for referencing

6/ 29

Relational Databases vs. XML

-

Databazova tabulka
Piijmeni Jméno E- mail Telefan
Jan in@seznam.cz | 0603123456
[Tarel@post.c2 | D602967654)

Movak
Prochézkzi_) [Karel _>

Stejna data v podobé XML dokumentu

<adresars
<osoha>
<pELiimeni>ovak</ pfijwenis>
<JjwEnosJan</ Jwéno>
<email>jnBseznam. cz</emails>
<telefon-0E03123456</telefon>

</ogchax
<osohas

P <prijmeni>Prochazka</prijmenis
<qmwEno>FKarel</jméno>

P <emwailrkarelfpost.cz</emails

» <telefon0E028987654</ telefons

Credit

>

</oscha>
</adresat>

. kosek.cz

7/ 29

Relational databases
® basic data unit — a table consisting of tuples of values for pre-defined “fields”
® tables could be interlinked
® binary file format highly dependent on particular software
® emphasis on computational efficiency (indexing)
XML
® hierarchical (tree-shaped) data structure
® inherent linear ordering
® self-documented file format independent of implementation of software

® no big concerns with efficiency (however, given the tree-shaped prior, some solutions are
better than others)

8/ 29

Basic notions:
e XML document is a text file in the XML format.
® Documents consists of nested elements.
® Boundaries of an element given by a start tag and an end tags.
[]

Another information associated with an element can be stored in element attributes.

<?xml version="1.0" encoding="UTF-8"7>
<my_courses>
<course id="NPFL092">
<name>NLP Technology</name>
<semester>winter</semester><hours_per_week>1/2</hours_per_week>
<department>Institute of Formal and Applied Linguistics</department>
<teachers>
<teacher>Rudolf Rosa</teacher>
<teacher>Zden&k Zabokrtskj</teacher>
</teachers>
</course>
</my_courses>

9/ 29

Tags:
® Start tag <element_name>
® End tag </element_name>
® Empty element <element_name/>

Elements can be embedded, but they cannot cross — XML document = tree of
elements

There must be exactly one root element.

Special symbols < and > must be encoded using entities (“escape sequences”) < and
> , & — &

Attribute values must be enclosed in quotes or apostrophes; (another needed entities:
" and ')

10/ 29

Time for a question

® What is the shortest length of an XML file?

11/ 29

XML document can contain instructions for xml processor
the most frequent instruction — a declaration header:
<?xml version="1.0" encoding="utf-8" 7>
document type declaration:
<IDOCTYPE MojeKniha SYSTEM "MojeKniha.DTD">
Comments (not allowed inside tags, cannot contain —)
<!-- bla bla bla -->
If the document conforms to all syntactic requirements: a well-formed XML document

Well-formedness does not say anything about the content (element and attribute
names, the way how elements are embedded...)

Checking the well-formedness using the Unix command line:

> xmllint --noout my-xml-file.xml

12/ 29

Time for an exercise

® Use a text editor for creating an XML file, then check whether it is well formed.

13/ 29

® well-formedness — only conforming the basic XML syntactic rules, nothing about the
content structure

® but what if you need to specify the structure
® several solutions available
® DTD — Document Type Definition

® other XML schema languages such as RELAX NG (REgular LAnguage for XML Next
Generation) or XSD (XML Schema Definition)

14/ 29

DTD
® Came from SGML
® Formal set of rules for describing document structure
® Declares element names, their embeding, attribute names and values...

® example: a document consisting of a sequence of chapters, each chapter contains a title
and a sequence of sections, sections contain paragraphs...

DTD location
® external DTD — a stand-off file
® internal DTD - inside the XML document

15/ 29

the process of checking whether a document fulfills the DTD requirements
if OK: the document is valid with respect to the given DTD

of course, only a well-formed document can be valid

checking the validity from the command line:

> xmllint -—noout --dtdvalid my-dtd-file.dtd my-xml-file.xml

an unfortunate terminological confusion: you can often see the term ‘validation’ or
‘validator’ used in the sense of well-formedness checking/checker

16/ 29

Four types of declarations

Declaration of elements <!ELEMENT ..>
Declaration of attributes <!ATTLIST ..>
Declaration of entities

Declaration of notations

17/ 29

Syntax: <!ELEMENT name content>

A name must start with a letter, can contain numbers and some special symbols .-_:

Empty element: <!ELEMENT nazev EMPTY>
Element without content limitations: <!ELEMENT nazev ANY>

18/ 29

Text containing elements

® Reserved name PCDATA (Parseable Character DATA)
® Example: <!ELEMENT title (##PCDATA)>

Element content description — regular expressions

Sequence connector ,

Alternative connector |

Quantity ? + *

Mixed content example: <!ELEMENT emph (#PCDATA|sub|super)* >

19/ 29

® Syntax: <!ATTLIST element_name declaration_of_attributes>
® declaration of an attribute

® attribute name
® attribute type
® default value (optional)

® example: <!ATTLIST author firstname CDATA surname CDATA>

20/ 29

® Selected types of attribute content:

CDATA - the value is character data

ID — the value is a unique id

IDREF — the value is the id of another element
IDREFS - the value is a list of other ids
NMTOKEN - the value is a valid XML name

® Some optional information can be given after the type:
e HAREQUIRED - the attribute is required

21/ 29

<!DOCTYPE

<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT

<IATTLIST
<IATTLIST
<IATTLIST
<IATTLIST
<IATTLIST

-

TVSCHEDULE [

TVSCHEDULE (CHANNEL+)>

CHANNEL (BANNER,DAY+)>

BANNER (#PCDATA)>

DAY (DATE, (HOLIDAY|PROGRAMSLOT+)+)>
HOLIDAY (#PCDATA)>

DATE (#PCDATA)>

PROGRAMSLOT (TIME,TITLE,DESCRIPTION?)>
TIME (#PCDATA)>

TITLE (#PCDATA)>

DESCRIPTION (#PCDATA)>

TVSCHEDULE NAME CDATA #REQUIRED>
CHANNEL CHAN CDATA #REQUIRED>
PROGRAMSLOT VTR CDATA #IMPLIED>
TITLE RATING CDATA #IMPLIED>
TITLE LANGUAGE CDATA #IMPLIED>

22/ 29

® 3 separate file,
® could be referred from an XML file using a processing instruction:
<IDOCTYPE nameofmyrootelement SYSTEM "mydtdfile.dtd">
® DTD example (credit: w3schools.com):
<!ELEMENT note (to,from,heading,body)>
<!ELEMENT to (#PCDATA)>
<!ELEMENT from (#PCDATA)>

<!ELEMENT heading (#PCDATA)>
<!ELEMENT body (#PCDATA)>

23/ 29

An internal DTD included inside XML file (credit: w3schools.com)

® included into an XML file

® Example (credit: w3schools.com):

<?7xml version="1.0"7>

<!DOCTYPE
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
1>

note [

note (to,from,heading,body)>
to (#PCDATA)>

from (#PCDATA)>

heading (#PCDATA)>

body (#PCDATA)>

<note><to>Tove</to><from>Jani</from>
<heading>Reminder</heading>

<body>Don't forget me this weekend</body>

</note>

24/ 29

Time for a question

® When would you prefer to store DTD internally and when externally?

25/ 29

® positive: very simple, concise syntax
® negative: a DTD itself is not an XML file

® negative: DTD much less expressive compared to e.g. to XML Schema

26/ 29

® What can go wrong with an XML file if you check its well-formedness and validity. How
would you check whether the requirements are fulfilled?

27/ 29

quite verbose (well, you can always compress your XML files, but still)
computationally demanding when it comes to huge data and/or limited hardware
capacity

relatively complex

redundant

simpler and less lengthy alternatives are popular now now such as
® JSON - suitable for interchange of structure data
® markdown — for textual documents with simple structure

28/ 29

Introduction to XML

Summary

© 0o N o Ok =

XML = an easy-to-process file format
platform-independent

self-documented structure (if properly-designed)

thus excellent for data exchange

createable using any text editor, readable by naked eye
tree-shaped logical skeleton

open specification, no specialized software needed

a bit too verbose, not optimal if speed is an issue

standard libraries existing in most programming languages (next
week)

https://ufal.cz/courses/npf1092

https://ufal.cz/courses/npfl092

