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Perils of human translation

● Fluency vs. Adequacy
Fluency

Adequacy

not always
  achievable

  

        in translation
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Types of manual MT evaluation

● REF-based … show candidate and (human) reference
● SRC-based … show candidate and source sentence
● REF&SRC-based … show both
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Types of manual MT evaluation

● REF-based … show candidate and (human) reference
● SRC-based … show candidate and source sentence
● REF&SRC-based … show both

● RR = Relative Ranking … relative, ordinal, N systems
● DA = Direct Assessment … “absolute”, continuous, 1 system
● RankME = rank-based magnitude estimation … continuous, N sys
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Types of manual MT evaluation

● REF-based … show candidate and (human) reference
● SRC-based … show candidate and source sentence
● REF&SRC-based … show both

● Sentence-level
● Document-level … single score per document 
● Document-aware … show whole documents, scores per sentence

● RR = Relative Ranking … relative, ordinal, N systems
● DA = Direct Assessment … “absolute”, continuous, 1 system
● RankME = rank-based magnitude estimation … continuous, N sys
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Example: REF&SRC sent-level RR (WMT10–16)
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Example: SRC doc-level DA (WMT19)
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Example: pseudo doc-aware DA (WMT19)
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Example: pseudo doc-aware DA (WMT19)

sentences in doc order, but one sentence per screen and no undo/back button
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Example: SRC doc-aware 10-RankME
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Perils of manual MT evaluation

Each type of evaluation is biased towards some systems.

● REF-based … similarity to human errors (or post-editing)
● SRC-based … problems with non-professional evaluators
● REF&SRC-based … both

● Sent-level … false positives and false negatives (fluency+adeq.)
● Doc-level … too coarse, psychological problems
● Doc-aware … how to approximate doc-level? Avg, min…?

● RR … tiny improvements/errors same as big ones
● DA … fluency and serious adequacy errors only (but faster)
● RankME … slower, difficult if N>3
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Which system is better? Median vs Mean?
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Perils of automatic evaluation

BLEU (& other REF-similarity metrics) has 3 issues:
● Not enough REFs, i.e. low coverage of correct translations.
● Differences in BLEU do not correlate with Human scores
 (even with enough REFs).

● Human REFs may be worse than MT.

If REF is a translation:
● It may not be adequate and fluent (if non-professional translator).

If REF is the original sentence (reverse-direction eval):
● SRC is not original, thus may not have the same meaning as REF
● SRC is likely not representative of the expected use case   
 (domain/country & translationese)

● (tiny) risk of non-perfect adequacy+fluency of REF relative to the intent
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BLEU does not correlate with humans for strong systems

Pearson
correlation
with human
scores

From WMT19 Metrics task (Ma et al., 2019), EN-DE

1

0

-1

20                        16                        12                         8                          4
# top systems

http://statmt.org/wmt19/pdf/53/WMT02.pdf#page=17
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Domain&orig-lang effect: BLEU WMT18 EN→DE

sacrebleu
 --detail
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Is NMT better in fluency or adequacy?
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Is NMT better in fluency or adequacy?
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Is NMT better in fluency or adequacy?
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Domain effect: manual doc-level adequacy
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Domain effect: manual sent-level adequacy
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Domain effect: manual doc-level fluency
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Domain effect: manual sent-level fluency
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Overall quality = x*adequacy + (1-x)*fluency?
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Overall quality = x*adequacy + (1-x)*fluency?
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Overall quality = x*adequacy + (1-x)*fluency?
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Perils of adequacy w.r.t. purpose/localization

Burning Man →  Matějská pouť (St. Matthew‘s Funfair)


