SMT and Hybrid systems of the QTLeap project in the WMT16 IT-task

Rosa Del Gaudio¹, Gorka Labaka², Eneko Agirre², Petya Osenova³, Kiril Simov³, Martin Popel⁴, Dieke Oele⁵, Gertjan van Noord⁶, Luís Gomes⁶, João Rodrigues⁶, Steven Neale⁶, João Silva⁶, Andreia Querido⁶, Nuno Rendeiro⁶, António Branco⁶

rosa.gaudio@psmedico.pt, {gorka.labaka, e.agirre}@ehu.eus, {petya, kiril}@bulleerbank.org, popel@ufal.mff.cuni.cz, {d.oele, g.van.noord}@rug.nl, luisgomes@gmail.com, joao.rodrigues, steven.neale, jsilva, andreia.querido, nuno.rendeiro, antonio.branco}@di.fc.ul.pt

¹Higher Functions Sistemas Inteligentes, Lisbon, Portugal - ²University of the Basque Country, UPV/EHU, San Sebastian, Spain - ³Linguistic Modelling Department, ILCT-BAS, Sofia, Bulgaria - ⁴Charles University in Prague, Faculty of Mathematics and Physics,UFAL, Czechia - ⁵Rijksuniversiteit Groningen, Groningen, The Netherlands - ⁶Universidade de Lisboa, Departamento de Informática, Faculdade de Ciências

Introduccion: the QTLeap Project

The QTLeap (http://www.qtleap.eu) project focuses on the development of an articulated methodology for machine translation that explores deep language engineering approaches and sophisticated semantic datasets.

In this paper, we present the systems developed by the University of Basque Country for Basque and Spanish, Charles University in Prague for Czech, by University of Groningen for Dutch, by University of Lisbon for Portuguese and by ILCT-BAS of the Bulgarian Academy of Sciences for Bulgarian.

For each language two different systems were submitted: a phrase-based MT system built using Moses, and a system exploiting deep language engineering approaches, that in all the languages but Bulgarian was implemented using TectoMT.

Baseline: Moses

All the systems based on Moses have been trained on a phrase-based model by Giza++ or mGiza with "growdiag-final-and" symmetrization and "msd-bidirectional-fe" reordering. For the language pairs where big quantities of domain-specific monolingual data were available separate language models (domain-specific and generic) were interpolated against our ICT domain-specific development set.

QTLeap: TectoMT

The deep translation is based on the TectoMT system, an open-source MT system based on the Treex platform for general natural-language processing. TectoMT uses a combination of rule-based and statistical modules, with a statistical transfer based on HMTM at the level of a deep, so-called tectogrammatical, representation of sentence structure. The general TectoMT pipeline is language independent, and consists of analysis, deep transfer, and synthesis steps.

Results

QTLeap system significantly better than the baseline Moses for 5 out of 6 languages

<table>
<thead>
<tr>
<th>Systems</th>
<th>Basque</th>
<th>Bulgarian</th>
<th>Czech</th>
<th>Dutch</th>
<th>Spanish</th>
<th>Portuguese</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BLEU</td>
<td>TrueSkill</td>
<td>BLEU</td>
<td>TrueSkill</td>
<td>BLEU</td>
<td>TrueSkill</td>
</tr>
<tr>
<td>Moses</td>
<td>8.3</td>
<td>-1.570</td>
<td>16.6</td>
<td>5.262</td>
<td>20.8</td>
<td>-0.616</td>
</tr>
<tr>
<td>TectoMT</td>
<td>10.3</td>
<td>+1.570</td>
<td>-</td>
<td>-</td>
<td>21.5</td>
<td>0.130</td>
</tr>
<tr>
<td>DeepMoses</td>
<td>-</td>
<td>-</td>
<td>15.3</td>
<td>-5.262</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Discussion

For Dutch, the Moses system outperforms the TectoMT only when considering the BLUE score. Better results, in terms of BLEU-score, were obtained in the opposite translation direction which indicates that more effort should be put into this translation direction.

Regarding Bulgarian, the current drop might be overcome by improving the WordNet information for Bulgarian, its mapping to the English WordNets as well as the processing pipelines. Also, the train of this system should use more more data and exploit other bilingual dictionaries.

The development is currently supported by the QTLeap 7th FP project No. 610516 (http://qtleap.eu).