Machine Translation and Discriminative Models Tree-to-tree transfer and Discriminative learning

Martin Popel

ÚFAL (Institute of Formal and Applied Linguistics)
Charles University in Prague

March 23rd 2015, Seminar of Formal Linguistics, Prague

Outline

- Intro
 - TectoMT schema
 - Isomorphic transfer
 - Moses
- Quiz
- MT as labeling

- TectoMT over years
 - 2008 baseline transfer
 - 2009 HMTM
 - 2010 MaxEnt
 - 2012 TectoMoses
 - 2012 Gibbs
 - 2013 Easy-first
 - 2013 Interpol
 - 2014 VowpalWabbit

TectoMT: analysis, transfer, synthesis

TectoMT: isomorphic transfer (1-1 node mapping)

Phrase-based Statistical Machine Translation

Intro

- currently most popular approach (Moses toolkit)
- no linguistic analysis needed (just tokenization)
- translates each phrase independently (except for LM)
- many segmentations to phrases considered, only one used

Is it possible to translate prime as vláda?

• In which context?

Is it possible to translate *prime* as *vláda*?

In which context?
 prime minister
 předseda vlády

Quiz

Is it possible to translate prime as vláda?

- In which context? prime minister předseda vlády
- How to formalize such translation rule?

```
lemma=vláda
      lemma=prime
     formeme=adj:attr
                               formeme=n:2
parent lemma=minister
                          parent lemma=předseda
```

TectoMT over years

Quiz: English-Czech translation

Intro

Is it possible to translate prime as vláda?

- In which context?
 prime minister
 předseda vlády
- How to formalize such translation rule?

This is still isomorphic transfer, unlike *prime minister* \Rightarrow *premiér*.

Is it possible to translate find as přijít?

• In which context?

Is it possible to translate find as přijít?

• In which context? (on t-layer, find = find_out)

Is it possible to translate find as přijít?

In which context? (on t-layer, find≠find_out)
 Agatha found that book interesting.
 Agátě přišla ta kniha zajímavá.

Is it possible to translate find as přijít?

- In which context? (on t-layer, find≠find_out)
 Agatha found that book interesting.
 Agátě příšla ta kniha zajímavá.
- How to formalize such translation rule?

Intro

Is it possible to translate find as přijít?

- In which context? (on t-layer, find≠find_out) Agatha[n:subj] found that book[n:obj] interesting[adj:compl]. Agátĕ[n:3] přišla ta kniha[n:1] zajímavá[adj:1].
- How to formalize such translation rule?

```
\begin{array}{c} \text{child1\_formeme} = n:subj \\ \text{lemma} = \overbrace{\textit{find}} \\ \text{child2\_formeme} = n:obj \\ \text{child3\_formeme} = adj:compl \\ \end{array} \Rightarrow \begin{array}{c} \text{child1\_formeme} = n:3 \\ \text{lemma} = \overbrace{\textit{prijit}} \\ \text{child2\_formeme} = n:1 \\ \text{child3\_formeme} = adj:1 \\ \end{array}
```

(adj:compl means predicative adjective)

Representation of t-layer

lemma and formeme as two attributes

Representation of t-layer

lemma and formeme as interleaved "sub-nodes"

```
v:fin
find
n:subj
Agatha
book
adj:attr
this
```

Representation of t-layer

lemma and formeme as interleaved "sub-nodes"

grammatemes:

- translated in postprocessing (current approach)
- as subnodes (leaves, children of lemmas)
- encoded within lemma, but only if grammateme changed

Handling non-isomorphic transfer

- preprocessing or postprocessing within transfer (current approach)
- natively in the main transfer algorithm
- convert training data to isomorphic trees [not tried yet]
 - n-1 alignment: add special [delete_node] label to the target side
 - 1-n alignment: encode added nodes (L+F) into the "main" lemma
 - encode topology change: as_child, as_sibling, as_parent

TectoMT transfer over years

year	BLEUdiff	method
2008		initial baseline
2009	+1.5	HMTM (TreeViterbi, TreeLM)
2010	+0.8	HMTM + MaxEnt
2012	-2.2	TectoMoses
2012	NA	Gibbs sampling treelets
2013	-3.0	Easy-first treelets
2013	-2.0	Interpol treelets
2014	+0.1	VowpalWabbit

TectoMT transfer over years

year	BLEUdiff	method	
2008		initial baseline	
2009	+1.5	HMTM (TreeViterbi, TreeLM)	
2010	+0.8	HMTM + MaxEnt	
2012	-2.2	TectoMoses	
2012	NA	Gibbs sampling treelets	
2013	-3.0	Easy-first treelets	
2013	-2.0	Interpol treelets	
2014	+0.1	VowpalWabbit	
	+0.9	other improvements in 2010–2014	

TectoMT transfer over years

year	BLEUdiff	method	
2008		initial baseline	
2009	+1.5	HMTM (TreeViterbi, TreeLM)	
2010	+0.8	HMTM + MaxEnt	
2012	-2.2	TectoMoses	
2012	NA	Gibbs sampling treelets	
2013	-3.0	Easy-first treelets	
2013	-2.0	Interpol treelets	
2014	+0.1	VowpalWabbit	
	+0.9	other improvements in 2010–2014	
2015	+8.6	QTLeap en→cs in two months	

Quiz

- "static" translation model $P(target|source) = \frac{\#(source, target)}{\#(source)}$
- first translate formemes, then lemmas
- use only the top variant

WMT 2009 en→cs results

	BLEU	human score
Moses (CUNI)	14.2	61
Google	13.6	66
Moses (UEdin)	13.5	53
Eurotran XP	9.5	67
PC Translator	9.4	67
TectoMT	7.3	48

2009: Hidden Markov Tree Model (HMTM)

- still using "static" translation models, but also
- TreeLM (target lemma-formeme and parent-child compatibility)
- best labeling is found via HMTM (Tree Viterbi)

2010: Maximum Entropy translation model

- still using HMTM (and generative TreeLM),
- but the "static" model P(lemma | src | lemma) interpolated with
- context-sensitive discriminative (MaxEnt) model P(lemma | src | lemma, other features)

He agreed with the unions to cut all overtime.

Dohodl se s odborv na zrušení všech přesčasů.

2012: TectoMoses

- substitute transfer (MaxEnt+HMTM) in TectoMT with
- phrase-based decoding (Moses) of linearized t-trees
- 2 factors: lemma and formeme, but joint (L+F) n-gram LM better
- project dependencies and use TectoMT synthesis

2012–2013: Gibbs sampling and CRP segmentations

- example of treelet-based transfer, P(trg treelet | src treelet)
- Bayesian approach
- use Chinese Restaurant Process on parallel treebank to learn
 - optimal segmentation to treelet pairs
 - optimal translations
- use Gibbs sampling both in training and decoding

Problems

- Pitman–Yor instead of Chinese Restaurant (heavy tail)
- Slice sampling or annealing instead of Gibbs (local maxima)
- We want cut+grass=sekat+tráva and cut+taxes=snížit+daně, but CRP/PYP prefers more reusable segments grass=tráva, taxes=daně (and cut=sekat, cut=snížit). CRP/PYP knows nothing about translation (cf. Chung et al. 2013: Sampling tree fragments from forests).

2013: Easy-first treelet-based transfer

- easy-first decoding of overlapping treelets
- guided learning of both
 - how to translate each treelet
 - in which order
- Handles non-isomorphic transfer natively (not tried).
- How to integrate TreeLM (for partial translations)?

2013: Interpolation treelet-based transfer (Interpol)

- similar to easy-first decoding
 - one feature (weight): source treelet size
 - many other features (lexicalized, PoS tags,...)
 - combinations and quantizations of features
- all matching "rules" applied, their scores interpolated
- does not handle non-isomorphism
- no guided learning

Example

Intro

```
score(zajímavá) = P_{MaxEnt}(zajímavá | interesting)
```

- $+ w_L s(interesting \Rightarrow zajímavá)$
- $+ w_{Lf}$ s(interesting adj:compl \Rightarrow zajímavá adj:1)
- + w_{Lf} s(interesting adj:compl \Rightarrow zajímavá adj:attr)
- + w_{Lfl} s(interesting adj:compl find⇒zajímavá adj:1 přijít)
- + w_{IfI} s(interesting adj:compl find \Rightarrow zajímavá adj:attr najít)
- + w_{Lfff} s(interesting adj:compl find v:fin⇒zajímavá adj:1 přijít v:fin)

How is Interpol (2013) different from MaxEnt (2010)?

How is Interpol (2013) different from MaxEnt (2010)?

The Logic, or There and Back Ägäin

How is Interpol (2013) different from MaxEnt (2010)?

Chế Logic, or Chéré ảnd Báck Ágain

- Interpol can be trained with MaxEnt (multinomial logit)
- HMTM can be applied on top of Interpol
- Interpol is equivalent to the 2010 approach with additional features

"Summary" features

- feature value precomputed on whole training data,
 relative frequency, or rather (#(src,trg) 1)/#(src)
- dense feature (unlike sparse lexicalized higher-order features)
- Moses also uses "summary" features (TM-forward, TM-backward, LM)

2014: VowpalWabbit-based transfer

- VW is an ultra-fast and modular machine learning toolkit
- optimized SGD (AdaGrad, dense+sparse features,...)
- cost-sensitive one-against-all reduction to binary classification
- logistic loss enables probabilistic interpretation (for HMTM)
- all lemmas in one model, fixed memory requirements
- label-dependent features (features shared for more lemmas)

Thank you

