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Abstract—Optical Music Recognition is one of the fields where
synthetic data is effectively utilized for training deep learning
recognition models. Due to the lack of manually annotated
data, the training data is generated by an automatic procedure
which produces real-looking images of music scores in large
quantities. Mashcima, a system for synthesizing training data for
handwritten music recognition, generates complete music scores
but the individual symbols are not synthetic, they are sampled
from real symbol datasets. In this paper, we explore the impact of
utilizing an adversarial autoencoder within the symbol synthesis
pipeline. We show that in some cases the use of an autoencoder
may not only be motivated by the creation of latent-space symbol
embeddings but also by improved recognition accuracy.

Index Terms—Optical Music Recognition, Synthetic Training
Data, Data Augmentation, Deep Learning

I. INTRODUCTION

Synthetic training data is used in many areas of computer
vision to train deep neural models, especially for tasks where
obtaining sufficient amounts of manually annotated training
data is prohibitively costly. This includes, e.g., handwritten text
recognition [1]–[4], natural scene recognition [5], optical flow
estimation [6], [7], and Optical Music Recognition (OMR)
where several synthetic datasets of typeset (i.e. not handwrit-
ten) music were published recently, e.g., PrIMuS, DeepScores,
DoReMi, or the Baró’s dataset of historical documents [8]–
[12].

For handwritten music, a synthesizer called Mashcima [13]
was proposed. The current version is capable of synthesizing
binarized images of singular staves of monophonic music.
It exploits existing images of individual symbols and places
them onto an empty staff according to a given annotation.
The symbol images are taken as-is from the MUSCIMA++
dataset [15], [16]. The synthesizing process is performed in
three stages as described by Mayer et al. [14]: 1) Symbol
synthesis, 2) Layout synthesis, 3) Postprocessing.

In this paper, we tackle the first stage of the Mashcima’s
pipeline and try to improve the synthesis by generating symbol
images using adversarial autoencoders (AAE) [18]. For com-

This work described in this paper has been supported by the Czech
Ministry of Culture (project NAKI no. DH23P03OVV008), Charles University
(project GA UK no. 289623), and has been using data provided by the
LINDAT/CLARIAH-CZ Research Infrastructure (https://lindat.cz), supported
by the Ministry of Education, Youth and Sports of the Czech Republic (project
no. LM2018101).

Fig. 1. Symbol interpolation using an autoencoder. Raw autoencoder output
(top) and binarized using 0.5 threshold (bottom).

parison, we evaluate this approach using the same recognition
model and datasets as in the original Mashcima paper [13].

II. METHODOLOGY

An autoencoder is an unsupervised model that learns to
compress given data to a lower-dimensional (latent) space
while preserving the underlying structure of the data [21].
The model extracts useful characteristics of the data along the
latent space dimensions (e.g., symbol slant, size, thickness)
and then can generate symbols it has not seen in the training
data, by doing interpolation in the latent space (see Figure 1).

There are many ways to build an autoencoder, utilizing
convolutional networks, adversarial loss, or variational loss
[18]–[21]. To limit the scope of this paper, we decided to
explore adversarial autoencoders only (AAE) [18], since our
early experiments showed a marginally better performance
over variational autoencoders (VAE) [19].

In our experiments, we employ an AAE model with the
encoder producing an L-dimensional continuous embedding
vector and a C-dimensional categorical vector containing the
symbol class (see Table II for the complete list). The decoder
takes these two vectors and reconstructs the input image.
The discriminator works only with the continuous embedding
vector and forces it to have the standard normal distribution.
The categorical vector is trained in a supervised fashion.
Both the encoder and the decoder are convolutional (with the
exception of the inner-most layer), and the discriminator is
a single-hidden-layer fully-connected network. The model is
described in more detail in Figure 2 and Table I.
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Fig. 2. Architecture of our AAE model. The input symbol (e.g., a quarter
note) has its origin (notehead center) aligned with the center of the canvas. The
canvas resolution is 126x459 pixels. The encoder models a Gaussian posterior,
so the output is a Gaussian mean and a standard deviation vectors that are
then sampled. The embedding vector has a categorical and a continuous part
and the continuous part is shaped by a fully-connected discriminator network.

A. Symbol dataset mixing

To allow comparison with the Mashcima baseline [13], we
use its subset of the MUSCIMA++ dataset as the training
dataset for our autoencoder. MUSCIMA++ contains handwrit-
ten symbol images from the CVC-MUSCIMA dataset [16].
We also use the Rebelo symbol dataset [17] to expand the
amount of symbols for training. The Rebelo dataset contains
typeset symbols, which should help with the performance
on the PrIMuS typeset evaluation dataset, as defined in the
original Mashcima paper [13]. To explore all the effects, we
mix these datasets in various different ways (see Figure 5) but
we always generate the same amount of symbols as there are
in the default Mashcima symbol repository (for each symbol
category separately). These counts can be seen in the first
column of Table II. These Mashcima symbols are all the
available MUSCIMA++ symbols, except for those that come
from writers used in the CVC-MUSCIMA evaluation dataset,
as defined in the original Mashcima paper (writers 13, 17, 20,
34, 41, 49) [13].

Whenever we mix two symbol sources, we do this in a one-
to-one ratio (represented by the

⊕
symbol in Figure 5). If

one of the two sources does not have enough symbols, we
repeatedly loop over the source. This means that symbols
from the Rebelo dataset may be used multiple times. The
training dataset for an autoencoder is constructed by these
same rules as the final symbol repository used for the music
score synthesis, unless the autoencoder is trained from a single
dataset, in which case we just use the dataset as is, with
no repetition nor mixing. Whenever a symbol needs to be
obtained from an autoencoder, its latent space is sampled via
the standard normal distribution and then decoded. It is also
binarized using a 0.5 threshold, so that the synthetic image
has the same appearance as the original MUSCIMA++ and
Rebelo images.

B. Symbol selection and image preparation

In music notation, there are many dot-like and line-like
symbols that are unsuitable for generation by convolutional

TABLE I
LAYERS OF THE ADVERSARIAL AUTOENCODER.

Layer Shape Note

Input H × W × 1

Convolution H/3 × W/3 × 4 Kernel 5×5, Stride 3
Convolution H/9 × W/9 × 16 Kernel 5×5, Stride 3
Convolution H/27 × W/27 × 64 Kernel 5×5, Stride 3

Flatten H/27 × W/27 × 64
(2x) Fully connected L + C (one for σ, one for µ)
Normal distribution L + C

Latent space

Fully connected H/27 × W/27 × 64
Reshape H/27 × W/27 × 64

Transposed conv H/9 × W/9 × 16 Kernel 5×5, Stride 3
Transposed conv H/3 × W/3 × 4 Kernel 5×5, Stride 3
Transposed conv H × W × 1 Kernel 5×5, Stride 3

The discriminator takes in only the continuous embedding vector part
(of size L) and applies two fully connected layers with dimensions
128 and 1 (the second one being the output layer). H and W stand for
canvas width and height respectively and L and C stand for the sizes
of the continuous and categorical embedding vector parts. C is equal
to the number of symbol classes trained.
The last layer of both the decoder and the discriminator use the
sigmoid activation function. The layer generating standard deviation
(σ) has the exponential activation function, and the one generating
mean (µ) has no activation function (linear). All other layers use the
ReLU activation function. Each inner convolution layer (including
transposed convolutions) is also followed by a batch normalization
layer.

neural networks. We do not synthesize these. From the rest of
the music symbols, we choose to generate only those easily
obtainable from the Rebelo dataset [17]. The resulting 12
symbol classes are listed in Table II.

The Mashcima synthesizer requires each symbol to have its
origin point located. This is often the point that is aligned with
the staff lines. MUSCIMA++ already has origins computed,
but we need to do so for Rebelo as well. For quarter rests,
whole notes1, C-clefs, we choose the center of the image as the
origin point. In accidentals and half notes, we find the ”hole”
by traditional computer vision methods and pick its center.
In the quarter and eighth notes, we find the point that’s most
distant from the symbol edge. Finally, for F-clef, we choose
the rightmost point of the non-dotted part situated vertically
between the dots, and for G-clef, we choose the center of the
most ”circular” part of the image found by the Hough circles
filter [22], [23].

We align all symbols such that their origin is in the center of
the image from the perspective of the autoencoder. This way,
we do not need to predict the origin via regression. Notes with
stems are also normalized such that the stem always points up
(eighth notes are separated into two symbol classes because
the flag either points left or right). We also find the tip of the

1Whole notes are not present in the Rebelo dataset, but we created them
from half notes by removing the stem.
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TABLE II
SYMBOL COUNTS IN UTILIZED SYMBOL DATASETS

Sybmol MUSCIMA++ REBELO proc. (REBELO)
Quarter note 15 424 634 (873)
Eighth note (up) 1 697 173 (395)Eighth note (down) 105
Sharp 1 689 706 (761)
Whole note 1 183 537 (—–)
Flat 1 064 544 (559)
Natural 1 021 589 (639)
Half note 845 541 (625)
Quarter rest 553 389 (389)
G-clef 341 407 (414)
F-clef 250 38 ( 38)
C-clef 155 130 (130)

quarter note’s stem (for the synthesis of beams) as the topmost
pixel of the note’s image.

We do not adjust for DPI since both datasets have com-
parable symbol sizes (in pixels). There are some symbols
from Rebelo that appear small, possibly due to a lower DPI,
but it only makes the dataset more diverse and the resulting
recognition model more robust. The autoencoder produces
images of size 162x459 pixels, which is the smallest rectangle
that fits all centered training images.

C. Autoencoder training

With the symbols prepared, the autoencoder can be trained.
The training process is described in the AAE paper in the
supervised section [18]. We use the Adam optimizer [24] with
the learning rate 0.001 and the decays of momentum 0.9 and
0.999. We train it for 150 epochs and use batches of 50 images.
Occasionally, the autoencoder has problems converging, which
manifests by producing black images. We sidestepped this
problem by running the experiments with multiple seeds and
taking only those that converged.

D. Synthetic symbol evaluation

Once the autoencoder is trained, we use it to synthesize
the final set of symbols used for music score synthesis. We
modified the Mashcima code to load our own symbols instead
of the MUSCIMA++ symbols. The rest of the synthesizer
remained unmodified.

Mashcima uses the PrIMuS dataset for obtaining the training
melodies (annotations). The second half of the annotations
is randomly generated. These annotations are used with the
synthetic symbols to produce the synthetic images. All of this
is identical to the original version of Mashcima [13]. We use
only half the available PrIMuS annotations, analogous to the
experiment 3 of the paper. Our experiment A is the exact
replication of the experiment 3 from the Mashcima paper.

The recognition model is a CRNN neural network, that takes
in the entire staves of music and returns the corresponding
annotation (a sequence of tokens in the Mashcima encoding).
The evaluation is performed using Symbol Error Rate (SER),
which is the number of mistakes divided by the length of the
gold annotation. The number of mistakes is computed as the
Levenshtein distance [25].

Fig. 3. Symbols sampled from the AAE with latent dimensions from left
to right: 2, 2, 4, 4, 6, 6, 8, 8, 10, 10. As the dimension increases so does
variability but also noisiness.

Fig. 4. Staves with symbols generated by AAE with dimension 2 (top) and
10 (bottom). The smaller dimension has prettier symbols with minimal noise.
The larger dimension has symbols more noisy and some are unrecognizable
(e.g. the clef). Quarter notes are also noisy, which is not the case above.

The evaluation datasets are identical to those from the
Mashcima paper, namely a subset of the CVC-MUSCIMA
dataset (has the same appearance as the MUSCIMA++ sym-
bols), a subset of the typeset images from the PrIMuS dataset
(has typeset appearance), and three music sheets of handwrit-
ten music titled Cavatina (referred to as out-of-domain test set
by the original paper). This makes our experiments directly
comparable with that paper.

III. EXPERIMENTS

There are many questions we want to explore. We want to
know what impact has the addition of an autoencoder to the
symbol synthesis. We utilize two datasets, one handwritten,
one typeset. We want to explore how their combination affects
the performance. We also want to find the optimal dimension
of the autoencoder’s latent space.

The following experiments differ in the way in which the
symbol repository is prepared, but then the music image
synthesis, training of the recognition model, and its evaluation
are identical for all of them. Each experiment is executed 4
times, and the mean and standard deviation are computed.

A. Latent space dimension

We initially wanted to explore dimensions 2, 5, 10, 20,
50, 100, 200, 500, 1000, but experiments with dimension 20
and above never converged. The autoencoder always produced
black images. Therefore, we only explore dimensions 2, 4, 6,
8, 10. We evaluate using the same setup as in experiment E
in Figure 5.

By looking at the synthetic images for various latent space
dimensions, one can see that smaller dimensions make the
symbols better looking, but more uniform. Larger dimensions
make them more diverse, but also more faulty, noisy, and less
comprehensible.
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TABLE III
ERROR RATE (%) FOR GIVEN AUTOENCODER LATENT SPACE DIMENSION

Dimension CVC-MUSCIMA PrIMuS Cavatina
2 39.33 ± 0.47 75.10 ± 2.51 65.81 ± 1.77
4 32.05 ± 1.28 64.15 ± 2.66 64.50 ± 1.59
6 32.66 ± 0.66 58.53 ± 7.01 59.76 ± 1.60
8 30.54 ± 1.16 59.67 ± 7.20 57.22 ± 1.94

10 30.05 ± 0.70 57.48 ± 1.59 55.96 ± 2.67

One would expect that the presence of incomprehensible
symbols would worsen the recognition model performance,
but the evaluation results (Table III) show the opposite effect
across all three evaluation datasets. This means that synthetic
symbols need not be realistic or good-looking in order to be
useful.

Based on the results, we fix the latent space dimension at
10 for all of the following experiments.

B. Topology experiments

To explore the effect of the autoencoder and each dataset,
we designed a set of eight experiments. The way in which the
datasets are combined, autoencoder trained, and then sampled
is captured in Figure 5. Results of these experiments are
present in Table IV.

Fig. 5. Topologies of performed experiments. MC and RE are MUSCIMA++
and Rebelo symbol datasets. The subscript is the portion of the dataset used.
Circular arrow means we sample the dataset more than once. Oplus combines
symbols one to one. AAE is trained by incoming arrows and sampled by
outgoing arrows. The final symbols used for synthesis exit the diagram at the
very bottom. Looking at the experiments: going from top to bottom, we add
the autoencoder; going from left to right we combine datasets in various ways.
Experiments D and H are something in between so they are placed aside.

First, we consider the effect of adding an autoencoder,
which corresponds to comparing experiments A-C to E-G.
You can see the error rate increase on the CVC-MUSCIMA
evaluation dataset, when the symbols from MUSCIMA++
are used (A,E and C,G). The same effect happens on the
Cavatina test set. However, on the PrIMuS test set, the error
rate decreases (for A,E and C,G). It seems that when the
training and evaluation symbols come from the same domain,
the autoencoder does not help, but it helps with generalization
to other domains.

If we look at the experiments that use only Rebelo symbols
(B,F), we see an error rate decrease for the PrIMuS test set

TABLE IV
ERROR RATES (%) FOR PROPOSED SYMBOL GENERATION TOPOLOGIES

M:

A B C D
25.02 ±1.19 39.47 ±0.83 26.98 ±1.49 24.67 ±0.89
30.81 ±0.86 38.19 ±0.83 33.29 ±2.19 30.50 ±0.56

E F G H

P:

A B C D
61.17 ±6.23 77.60 ±7.84 62.63 ±6.78 53.85 ±5.21

58.62 ±8.10 67.03 ±2.98 52.61 ±1.24 58.29 ±6.85
E F G H

C:

A B C D
49.65 ±1.61 57.17 ±2.56 50.17 ±2.42 49.14 ±1.29
56.23 ±1.49 57.30 ±1.51 57.02 ±2.60 53.43 ±2.61

E F G H

M = CVC-MUSCIMA P = PrIMuS C = Cavatina

(and a stagnation for CVC-MUSCIMA and Cavatina). This
is a decrease for the same domain evaluation. But this might
be caused by the differences in the size of the MUSCIMA++
and Rebelo datasets (see Table II). For a smaller dataset, like
Rebelo, the autoencoder seems to help, but for a larger dataset,
like MUSCIMA++, it seems to hurt.

This hypothesis also holds when we look at the best topolo-
gies for a given test set (table numbers in bold). For CVC-
MUSCIMA and Cavatina, the best result is obtained by ex-
periment D. For PrIMuS by experiment G. The D experiment
uses MUSCIMA++ without an autoencoder, but Rebelo with
an autoencoder, thus avoiding the MUSCIMA++ autoencoder
harm, and utilizing the Rebelo autoencoder generalization
help. The G experiment utilizes one autoencoder that creates
the generalization effect on Rebelo and also generalizes using
MUSCIMA++ without overfitting on it (like the experiment D
does).

The last thing to note is that the experiment A is the baseline
from the original Mashcima paper [13], and we managed
to surpass it on all three evaluation datasets (exp. D or G).
Moreover, the autoencoder played an important role in this,
because the simple dataset combination (exp. C) is always
worse than the baseline. This indicates that the best way to
incorporate smaller symbol datasets (such as Rebelo) into the
synthesis pipeline is via autoencoder training.

IV. CONCLUSION

While utilizing autoencoders for music symbol synthesis is
not a silver bullet, we showed that they are helpful in situations
where the symbol dataset is small, or the evaluation dataset
comes from a different domain than the training dataset.
Another important observation is that although the synthetic
symbols may look noisy they probably make the recognition
model more robust. The use of autoencoders may also be
motivated by other reasons, such as the use of the latent space
for controlling the handwriting style. This possibility may be
explored in some future work.
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[15] Jan Hajič jr., and Pavel Pecina, “The MUSCIMA++ Dataset for Hand-
written Optical Music Recognition” 14th IAPR International Conference
on Document Analysis and Recognition (ICDAR), Kyoto, Japan, 2017,
pp. 39-46

[16] Alicia Fornés, Anjan Dutta, Albert Gordo, and Josep Lladós, “CVC-
MUSCIMA: A ground truth of handwritten music score images for
writer identification and staff removal” International Journal on Doc-
ument Analysis and Recognition, vol. 15, pp. 243-251, 2011

[17] Ana Rebelo, Guilherme Artur Capela, and Jaime Cardoso, “Optical
recognition of music symbols”, International Journal on Document
Analysis and Recognition (IJDAR), vol. 13, pp. 19-31, 2010

[18] Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly, and Ian Goodfellow
(2015) “Adversarial autoencoders” arXiv preprint arXiv:1511.05644

[19] Diederik Kingma, and Max Welling, “Auto-Encoding Variational
Bayes”, 2nd International Conference on Learning Representations
(ICLR), Banff, Canada, 2014.

[20] Anders Boesen, Lindbo Larsen, Søren Kaae Sønderby, Hugo Larochelle,
and Ole Winther (2016) “Autoencoding beyond pixels using a learned
similarity metric” arXiv preprint arXiv:1512.09300

[21] Dor Bank, Noam Koenigstein, and Raja Giryes (2020) “Autoencoders”
arXiv preprint arXiv:2003.05991

[22] , Paul Hough (1962) “Method and means for recognizing complex
patterns” patent no. US3069654A

[23] H.K. Yuen, John Princen, John Illingworth, and Josef Kittler, “Compar-
ative study of hough transform methods for circle finding”, Image and
Vision Computing, vol. 8, pp. 71–77, 1990

[24] Diederik Kingma, and Jimmy Ba, “Adam: A method for stochastic
optimization”, 3rd International Conference on Learning Representations
(ICLR), San Diego, USA, 2015

[25] Vladimir Levenshtein, “Binary codes capable of correcting spurious
insertions and deletions of ones”, Problems of Information Transmission,
1965

Proceedings of the 5th International Workshop on Reading Music Systems, 2023

24


