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Abstract
In this paper, we deal with extraction of textual information from scene images. So far, the task of Scene Text Recognition (STR) has
only been focusing on recognition of isolated words and, for simplicity, it omits words which are too short. Such an approach is not
suitable for further processing of the extracted text. We define a new task which aims at extracting coherent blocks of text from scene
images with regards to their future use in natural language processing tasks, mainly machine translation. For this task, we enriched the
annotation of existing STR benchmarks in English and Czech and propose a string-based evaluation measure that highly correlates with
human judgment.
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1. Introduction
Scene Text Recognition (STR) is a subfield of artificial in-
telligence that has been studied for a long time (Gómez
and Karatzas, 2014) with a recent advances achieved by
employing deep learning methods(Jaderberg et al., 2014b).
With the increasing volume of pictures taken by hand-held
devices, scene text (ST) became an interesting potential
source of text for processing by Natural Language Pro-
cessing (NLP) methods. Nevertheless, most of the previ-
ously published work strictly focus on recognition of iso-
lated words and do not view the recognized words as utter-
ances that belong into a particular language context. An-
other drawback of the state-of-the-art STR methods is that
the benchmarks usually omit short (mostly function) words,
for which they claim there is not enough visual evidence to
be recognized. Most NLP methods usually deal with ei-
ther text that can be split into sentences or directly with text
on sentence level. ST on the other hand, consists of rather
short chunks, such as proper names, isolated noun phrases
or very short sentences. To machine-translate the ST we
need to be able to recognize these chunks properly.
The only work mentioning Machine Translation (MT) of
ST (Bijalwan and Aggarwal, 2014) we are aware of uses
only simple rules for forming coherent text and pass the text
to a statistical MT system. No systematic evaluation of the
process is given. There exist few mobile applications for
MT of ST1 which very likely work similarly. As far as we
know, no one approached this problem more systematically.
In the next section, we briefly summarize the state of the
art in ST localization and recognition. Section 3. brings a
syntactic definition of connected text blocks and introduces
a dataset for training automatic coherent text recognition
from scene images by enriching existing STR benchmarks.
In Section 4., we propose an automatic evaluation metric
that allows fast comparison of methods.

1Google Goggles (http://www.google.com/mobile/
goggles) and Bing Translator for Windows Phones (http://
www.bing.com/translator/phone/) are the applications
we know about.

Figure 1: Examples of ST images from the ICDAR Focused
Scene Text Dataset.

2. Scene Text Localization and Recognition
Unlike the well-solved problem of optical character recog-
nition, STR is a more challenging and still not satisfiably
solved task. The text is usually placed on heterogeneous
background with many distortions including shadows, re-
flections, and deformations (see the examples in Figure 1).
Text extraction from scene images is usually divided into
separate steps of text localization and recognition. Even
though methods for unbounded recognition (Bissacco et al.,
2013; Jaderberg et al., 2014a) exist, the recognition typ-
ically uses a limited vocabulary (Roy et al., 2014; Jader-
berg et al., 2014b). The state-of-the-art methods are sum-
marized, e.g., in the 2015 ICDAR Robust Reading Compe-
tition results (Karatzas et al., 2015).

3. Coherent Text Reading
Our goal is to indetify blocks of coherent text which can be
further used in NLP tasks. We thus want to find the mini-
mum coherent text blocks closed on syntactic dependencies
(as perceived by an annotator, not automatically computed).
Our original idea of the coherent text blocks was semanti-
cally motivated. We observed that ST frequently has a hi-
erarchical nature. Signboards often contain lists of offered
goods or services (coordinated on the same level), with a
name of a venue as a kind of headline of the list on which
the items depend. This hierarchy induces a natural order
in which readers read the words. Annotating this would be
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Figure 2: Example of an image with focused ST (left) and
image with incidental ST (right). The word bounding boxes
are highlighted by colorful boxes.

very laborious. Moreover, most of the hierarchies in the ex-
isting STR data are very flat, so such complex annotation
would not pay off.
This is related to a problematic syntactic phenomena for
the block definition which are coordinations indicated en-
tirely by visual means where a coordination token is miss-
ing. Other ellipsis could be identified also on the pragmatic
level (e.g., missing ‘this shop offers:’ on a signboard).
To avoid these problems we disregard all dependencies that
are not explicitly present in the text. Unlike the standard
STR benchmarks, we do not rely on the visual evidence
only and also include cases where the text is obvious from
the language context.

3.1. Original STR Data
The most frequently used benchmarks in STR come from
the ICDAR Robust Reading Competition (Karatzas et al.,
2015). For every competition, the annotation and eval-
uation protocol slightly differ. In the 2015 competition,
all words in the images were localized in quadrilaterals
and most of them were accompanied with a transcription.
Words that are not readable or are shorter than 3 characters
are marked as “not-care” words. Focused ST and incidental
ST (see Figure 2 for examples) are distinguished as separate
categories.
In the focused ST dataset, the main purpose of taking the
pictures was the text. The pictures usually capture sign-
boards and notices from an urban environment together
with a few book covers and signs of electronics. The dataset
consists of 229 training and 223 test images. On average,
there are 6 words in an image out of which less than 3 are
the “not-care” words. Most of the text is in English, with a
few images containing signboards with a text in German.
The dataset of incidental ST consists of 1,000 training im-
ages and 500 test images taken in streets, shopping cen-
ters, and public transport of Singapore. The images capture
complete urban scenes with a lot of text which often suffer
from being out of focus and motion-blurred. There is, on

pilot final
dataset F acc F acc
English focused .820 .705 .943 .917
English incidental .533 .190 —
Czech focused .853 .600 .962 .900

Table 1: Average inter-annotator agreement for both the pi-
lot and final annotation.

average, 12 words in each image out of which 7 are “not-
care” words. Most of the text is in English with some signs
in non-Latin scripts which are localized but not transcribed.
The benchmarks only expect words from certain vocabular-
ies to be recognized. For that purpose, sets of 50, 1k and
90k words are provided. Even though, the biggest lexicon
may seem big enough for English, it may not be sufficient
for languages with rich inflection or compounding. In ad-
dition, we use 81 images of Czech focused text (Hadáček,
2014) with 16 words per image.
Apart from the mentioned datasets, there exist other
datasets worth mentioning. The KAIST Scene Text
Database (Jung et al., 2011) consists of 3k images with
focused texts in English and Korean. The NEOCR dataset
(Nagy et al., 2012) is a set of 659 real world images with
more than 13k words annotated on line level instead of
word level.

3.2. Annotation Process
We annotated the coherence by explicitly marking chains of
words in the images. Initially, we did a pilot annotation of
20 images from both ICDAR 2015 focused and incidental
datasets and the Czech focused text dataset. Five annota-
tors were provided with a simple definition of the task with
little further details. They were asked to add transcription
of “not-care” words if possible and to mark cases where a
single word has been falsely split into multiple bounding
boxes. An example of the annotation is in Figure 3.
We measured the inter-annotator agreement by mutual ac-
curacy defined as a proportion of images that have been
equally annotated and mutual F -score defined as a har-
monic mean of the precision of the first annotator given the
second one and vice versa. Values are tabulated in Table 3.
During the pilot annotation we experienced some problems
with guessing the text. Different annotators set themselves
different thresholds when they are certain about a word.
The incidental text dataset was acquired in Singapore with
a high density of shops. One annotator familiar with the
fashion brands was able to transcribe much more signs than
the others. Another annotator admitted he searched the In-
ternet to find unreadable titles of books whose covers were
in the dataset claiming that the image provided him with
enough information to find out what the rest of the text is.
The low agreement in the incidental dataset was mostly be-
cause the annotators were inconsistent in deciding what is
readable in the images and what is not. With 10 seconds per
word on average, the incidental text took more than twice
as long as in the case of focused text annotation.
Based on the pilot annotation, we decided to only annotate
the focused ST images. The annotation guidelines were re-
fined to cover the most frequent inconsistent cases. These
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image STR annotation coherent text
35,120,390,120,390,222,35,222,HSBC
39,256,131,256,131,295,39,295,The
151,259,327,259,327,298,151,298,world’s
350,261,461,261,461,300,350,300,local
484,262,602,262,602,301,484,301,bank

1(The),2(world’s),
3(local),4(bank);
0(HSBC)

Figure 3: An example of annotation of an image with focused ST. Numbers preceding the brackets refer to the line numbers
in the original annotation, blocks are separated by semicolons.

were: a headline is a separate chunk; if a new line in the
text is a substitute for a punctuation mark, it is a block sep-
arator; an address should be segmented as on an envelope;
ignore characters which are not text (e.g., P for parking

place); searching for additional knowledge is not allowed.
An ex-post standardization was done on the annotation of
rare punctuation (trade-marks, bullets, and vertical bars) in-
creasing the mutual accuracy by 10 percentage points. The
inter-annotator agreement on the final annotation is tabu-
lated in Table 3.
In total, 81 images of Czech and 452 images of English
focused ST were annotated. The images contain 3.6 blocks
per image on average with the average length of 3.3 words.
The images with the Czech focused text contain on average
4.9 blocks per image with the average length of 2.7 words.
The dataset is relatively small. We expect the training part
of the ICDAR Focused Scene Text can to be used for train-
ing postprocessing of the STR results. The Czech data and
the test part of the ICDAR dataset will be used for testing.

4. Evaluation Metric
For training and comparing automatic methods for coher-
ent text recognition, an automatic evaluation measure is
needed. The standard STR evaluation metric (Karatzas et
al., 2015) is a conjunction of the localization and string
correctness. With coherent text recognition, we would like
to have a measure that captures how comprehensible text
would be if we did not have an access to the image. We
believe we can disregard the text location and evaluate the
transcription purely based on text similarity because for fur-
ther text processing the text location does not matter at all.
We first tried to explore the human perception of the recog-
nition errors and based on that we designed an evaluation
measure. We then explored different configurations of the
measure and selected one that agreed the most with the hu-
man judgment.

4.1. Experiments
We asked annotators to evaluate erroneous transcriptions of
the ST. It was done by three annotators who participated
in the pilot annotation (were familiar with the task) but not
in the main annotation (were not biased by already having
seen images).
We generated two artificial erroneous transcriptions for
each of the images that were previously unseen by the an-
notators. They were asked to imagine they are receiving
the blocks in a random order and should translate them to
a different language without seeing the image. Then they
chose the one they think would lead to better translation.

error type weight
human machine

character insertion 12.8 3.6
character deletion 12.4 5.9
character substitution 12.8 6.0
block join 20.5 34.8
block split 24.0 34.7
block permutation 17.6 15.0

Table 2: Comparison of the estimated error weights for hu-
man annotators and the best fitting automatic measure.

The transcription errors were: character insertions, dele-
tions, and substitutions, joining two blocks, splitting a
block into two, permuting words within a block. The edit
operations were sampled randomly from the distribution of
edit changes obtained from running the TextSpotter STR
tool (Neumann and Matas, 2012) on the same dataset. The
annotators evaluated three different pairs of transcriptions
for each image. One third of them was common for all an-
notators and was used to measure the inter-annotator agree-
ment. The average-pairwise agreement was 0.670 with Co-
hen’s kappa equal to 0.341.
To roughly estimate the importance of different error types
for the annotators, we can view their decisions as a result
of a linear combination of the error counts in each image.
We do the estimation by fitting a logistic regression model.
Normalized weights obtained from the model are tabulated
in Table 2.
The model shows that the annotators consider joining or
splitting blocks to be more serious errors than the character
edit operations that all received similar weights.

4.2. Automatic Measure Description

Because the blocks can be recognized in a random order,
we need to match the transcription and reference chunks
before measuring their similarity. Expecting a reasonable
quality of the underlying STR, we can match the reference
with the recognition using entirely by the string similarity,
disregarding their spacial position.
Formally, let b = (b1, . . . , bn) be a machine-generated
blocks, b̂ = (b̂1, . . . , b̂m) its reference blocks and G a com-
plete bipartite graph with b and b̂ its partite sets. The edges
are weighted by string similarity sim(bi, b̂j) ∈ [0, 1]. A
chunk matching M ⊂ b × b̂ is obtained as the minimum
weighted maximum bipartite matching (Munkres, 1957) in
the one-to-one case or as a minimum weighted edge cover
(Schrijver, 2003) in case of many-to-many matching. We
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MM MWEC
norm. Levensthein .723 .722
Marzal-Vidal .726 .724
Jaro-Winkler .701 .715
PER .645 .646
3-gram prec. .685 .682
4-gram prec. .696 .690
5-gram prec. .696 .688

Table 3: Average agreement of the different configurations
of thea automatic measure with the human judgment.

define the evaluation measure as:

m(b, b̂) =

∑
(b1,b2)∈M 1− sim(b1, b2)

max(|b|, |b̂|)
(1)

We explored the following string similarity measures: nor-
malized Levenshtein distance, Marzal-Vidal distance
(Marzal and Vidal, 1993), Jaro-Winkler distance (Win-
kler, 1990), position independent word error rate (Tillmann
et al., 1997), and character n-gram precision as defined
by Papineni et al. (2002). The last two measures are non-
symmetric. Marzal-Vidal distance is the only one satisfying
the triangular inequality, thus combined with the maximum
matching algorithm, yields a distance metric.

4.3. Agreement with Human Judgment
For each pair of transcriptions presented to the annota-
tors, we compute the similarity with the ground truth tran-
scription. We measure the agreement as a proportion of
cases when the annotator voted for the transcription with
higher similarity score with the annotation. Surprisingly,
the agreement with the automatic measures is higher that
between the annotators themselves. It may be because the
annotators must have picked randomly in cases when it was
hardly distinguishable which transcription is better. The
values are tabulated in Table 3.
The asymmetric measures lead to approximately the same
agreement as the annotators reached with each other. A
higher agreement was achieved by using the similarity mea-
sure that counts the edit operations which corresponds to
the finding that the annotators attributed approximately the
same weight to all character-level edit operations. The best
underlying similarity measure is the Marzal-Vidal distance.
The best measure also appears to weight the importance of
the error types more similarly to the human annotators (see
Table 2), although it underestimates character edit opera-
tions.

5. Conclusions & Future Work
We introduced a task of coherent text recognition from
scene images, enriched the existing STR benchmarks for
this task, and proposed an automatic evaluation metric. Al-
though the measure disregards the localization and is based
entirely on text similarity, it achieves high agreement with
human judgment. As a future work, we would like to
machine-learn automatic procedures for this task.
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