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ABSTRACT

Evaluating Optical Music Recognition (OMR) is notori-
ously difficult and automated end-to-end OMR evaluation
metrics are not available to guide development. In “To-
wards a Standard Testbed for Optical Music Recognition:
Definitions, Metrics, and Page Images”, Byrd and Simon-
sen recently stress that a benchmarking standard is needed
in the OMR community, both with regards to data and
evaluation metrics. We build on their analysis and def-
initions and present a prototype of an OMR benchmark.
We do not, however, presume to present a complete so-
lution to the complex problem of OMR benchmarking.
Our contributions are: (a) an attempt to define a multi-
level OMR benchmark dataset and a practical prototype
implementation for both printed and handwritten scores,
(b) a corpus-based methodology for assessing automated
evaluation metrics, and an underlying corpus of over 1000
qualified relative cost-to-correct judgments. We then as-
sess several straightforward automated MusicXML eval-
uation metrics against this corpus to establish a baseline
over which further metrics can improve.

1. INTRODUCTION

Optical Music Recognition (OMR) suffers from a lack of
evaluation standards and benchmark datasets. There is
presently no publicly available way of comparing vari-
ous OMR tools and assessing their performance. While
it has been argued that OMR can go far even in the ab-
sence of such standards [7], the lack of benchmarks and
difficulty of evaluation has been noted on multiple occa-
sions [2, 16, 21]. The need for end-to-end system evalu-
ation (at the final level of OMR when musical content is
reconstructed and made available for further processing),
is most pressing when comparing against commercial sys-
tems such as PhotoScore, 1 SmartScore 2 or SharpEye 3 :

1 http://www.neuratron.com/photoscore.htm
2 http://www.musitek.com/index.html
3 http://www.visiv.co.uk
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these typically perform as “black boxes”, so evaluating on
the level of individual symbols requires a large amount of
human effort for assessing symbols and their locations, as
done by Bellini et al. [18] or Sapp [19].

OMR systems have varying goals, which should be
reflected in evaluation. Helping speed up transcription
should be measured by some cost-to-correct metric; a hy-
pothetical automated score interpretation system could re-
quire accurate MIDI, but does not need to resolve all slurs
and other symbols; digitizing archive scores for retrieval
should be measured by retrieval accuracy; etc. We focus
on evaluating transcription, as it is most sensitive to errors
and most lacking in evaluation metrics.

Some OMR subtasks (binarization, staff identification
and removal, symbol localization and classification) have
natural ways of evaluating, but the end-to-end task does
not: it is difficult to say how good a semantic represen-
tation (e.g., MusicXML) is. Manually evaluating system
outputs is costly, slow and difficult to replicate; and aside
from Knopke and Byrd [12], Szwoch [20] and Padilla et
al. [21], we know of no attempts to even define an auto-
matic OMR evaluation metric, much less define a method-
ology for assessing how well it actually evaluates.

Our contribution does not presume to define an entire
evaluation standard. Instead, we propose a robust, cumula-
tive, data-driven methodology for creating one. We collect
human preference data that can serve as a gold standard for
comparing MusicXML automated evaluation metrics, mir-
roring how the BLEU metric and its derivatives has been
established as an evaluation metric for the similarly elu-
sive task of assessing machine translation based on agree-
ment with human judgements [17]. This “evaluating eval-
uation” approach is inspired by the Metrics track of the
Workshop of Statistical Machine Translation competition
(WMT) [3, 5, 14]. To collect cost-to-correct estimates for
various notation errors, we generate a set of synthetically
distorted “recognition outputs” from a set of equally syn-
thetic “true scores”. Then, annotators are shown examples
consisting of a true score and a pair of the distorted scores,
and they are asked to choose the simulated recognition out-
put that would take them less time to correct.

Additionally, we provide an OMR bechmark dataset
prototype with ground truth at the symbol and end-to-end
levels.

The main contributions of our work are:
• A corpus-based “evaluating evaluation” methodol-
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ogy that enables iteratively improving, refining and
fine-tuning automated OMR evaluation metrics.

• A corpus of 1230 human preference judgments as
gold-standard data for this methodology, and as-
sessments of example MusicXML evaluation met-
rics against this corpus.

• Definitions of ground truths that can be applied to
Common Western Music Notation (CWMN) scores.

• MUSCIMA++. A prototype benchmark with multi-
ple levels of ground truth that extends a subset of the
CVC-MUSCIMA dataset [9], with 3191 annotated
notation primitives.

The rest of this paper is organized as follows: in Sec. 2,
we review the state-of-the-art on OMR evaluation and
datasets; in Sec. 3, we describe the human judgment data
for developing automated evaluation metrics and demon-
strate how it can help metric development. In Sec. 4, we
present the prototype benchmark and finally, in Sec. 5, we
summarize our findings and suggest further steps to take. 4

2. RELATED WORK

The problem of evaluating OMR and creating a standard
benchmark has been discussed before [7,10,16,18,20] and
it has been argued that evaluating OMR is a problem as
difficult as OMR itself. Jones et al. [10] suggest that in or-
der to automatically measure and evaluate the performance
of OMR systems, we need (a) a standard dataset and stan-
dard terminology, (b) a definition of a set of rules and met-
rics, and (c) definitions of different ratios for each kind of
errors. The authors noted that distributors of commercial
OMR software often claim the accuracy of their system
is about 90 %, but provide no information about how that
value was estimated.

Bellini et al. [18] manually assess results of OMR sys-
tems at two levels of symbol recognition: low-level, where
only the presence and positioning of a symbol is assessed,
and high-level, where the semantic aspects such as pitch
and duration are evaluated as well. At the former level,
mistaking a beamed group of 32nds for 16ths is a minor
error; at the latter it is much more serious. They defined
a detailed set of rules for counting symbols as recognized,
missed and confused symbols. The symbol set used in [18]
is quite rich: 56 symbols. They also define recognition
gain, based on the idea that an OMR system is at its best
when it minimizes the time needed for correction as op-
posed to transcribing from scratch, and stress verification
cost: how much it takes to verify whether an OMR output
is correct.

An extensive theoretical contribution towards bench-
marking OMR has been made recently by Byrd and Simon-
sen [7]. They review existing work on evaluating OMR
systems and clearly formulate the main issues related to
evaluation. They argue that the complexity of CWMN is
the main reason why OMR is inevitably problematic, and

4 All our data, scripts and other supplementary materials are available
at https://github.com/ufal/omreval as a git repository, in or-
der to make it easier for others to contribute towards establishing a bench-
mark.

suggest the following stratification into levels of difficulty:
1. Music on one staff, strictly monophonic,
2. Music on one staff, polyphonic,
3. Music on multiple staves, but each strictly mono-

phonic, with no interaction between them,
4. “Pianoform”: music on multiple staves, one or more

having multiple voices, and with significant interac-
tion between and/or within staves.

They provide 34 pages of sheet music that cover the var-
ious sources of difficulty. However, the data does not in-
clude handwritten music and no ground truth for this cor-
pus is provided.

Automatically evaluating MusicXML has been at-
tempted most significantly by Szwoch [20], who proposes
a metric based on a top-down MusicXML node matching
algorithm and reports agreement with human annotators,
but how agreement was assessed is not made clear, no im-
plementation of the metric is provided and the description
of the evaluation metric itself is quite minimal. Due to the
complex nature of MusicXML (e.g., the same score can
be correctly represented by different MusicXML files), Sz-
woch also suggests a different representation may be better
than comparing two MusicXML files directly.

More recently, evaluating OMR with MusicXML out-
puts has been done by Padilla et al. [21]. While they pro-
vide an implementation, there is no comparison against
gold-standard data. (This is understandable, as the pa-
per [21] is focused on recognition, not evaluation.) Align-
ing MusicXML files has also been explored by Knopke
and Byrd [12] in a similar system-combination setting, al-
though not for the purposes of evaluation. They however
make an important observation: stems are often mistaken
for barlines, so the obvious simplification of first aligning
measures is not straightforward to make.

No publicly available OMR dataset has ground truth
for end-to-end recognition. The CVC-MUSCIMA dataset
for staffline identification and removal and writer identi-
fication by Fornés et al. [9] is most extensive, with 1000
handwritten scores (50 musicians copying a shared set of
20 scores) and a version with staves removed, which is
promising for automatically applying ground truth anno-
tations across the 50 versions of the same score. Fornés et
al. [8] have also made available a dataset of 2128 clefs and
1970 accidentals.

The HOMUS musical symbol collection for online
recognition [11] consists of 15200 samples (100 musi-
cians, 32 symbol classes, 4-8 samples per class per mu-
sician) of individual handwritten musical symbols. The
dataset can be used for both online and offline symbol clas-
sification.

A further dataset of 3222 handwritten and 2521 printed
music symbols is available upon request [1]. Bellini et
al. [18] use 7 selected images for their OMR assessment;
unfortunately, they do not provide a clear description of
the database and its ground truth, and no more information
is publicly available. Another staffline removal dataset is
Dalitz’s database, 5 consisting of 32 music pages that cov-

5 http://music-staves.sourceforge.net
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ers a wide range of music types (CWMN, lute tablature,
chant, mensural notation) and music fonts. Dalitz et al. [6]
define several types of distortion in order to test the ro-
bustness of the different staff removal algorithms, simulat-
ing both image degradation and page deformations. These
have also been used to augment CVC-MUSCIMA.

There are also large sources such as the Mutopia
project 6 with transcriptions to LilyPond and KernScores 7

with HumDrum. The IMSLP database 8 holds mostly
printed scores, but manuscripts as well; however, as op-
posed to Mutopia and KernScores, IMSLP generally only
provides PDF files and no transcription of their musical
content, except for some MIDI recordings.

3. EVALUATING EVALUATION

OMR lacks an automated evaluation metric that could
guide development and reduce the price of conducting
evaluations. However, an automated metric for OMR eval-
uation needs itself to be evaluated: does it really rank as
better systems that should be ranked better?

Assuming that the judgment of (qualified) annotators is
considered the gold standard, the following methodology
then can be used to assess an automated metric:

1. Collect a corpus of annotator judgments to define the
expected gold-standard behavior,

2. Measure the agreement between a proposed metric
and this gold standard.

This approach is inspired by machine translation (MT),
a field where comparing outputs is also notoriously diffi-
cult: the WMT competition has an evaluation track [5,14],
where automated MT metrics are evaluated against human-
collected evaluation results, and there is ongoing research
[3, 15] to design a better metric than the current standards
such as BLEU [17] or Meteor [13]. This methodology is
nothing surprising; in principle, one could machine-learn
a metric given enough gold-standard data. However: how
to best design the gold-standard data and collection proce-
dure, so that it encompasses what we in the end want our
application (OMR) to do? How to measure the quality of
such a corpus – given a collection of human judgments,
how much of a gold standard is it?

In this section, we describe a data collection scheme
for human judgments of OMR quality that should lead to
comparing automated metrics.

3.1 Test case corpus

We collect a corpus C of test cases. Each test case
c1 . . . cN is a triplet of music scores: an “ideal” score Ii
and two “mangled” versions, P (1)

i and P (2)
i , which we call

system outputs. We asked our K annotators a1 . . . aK to
choose the less mangled version, formalized as assigning
ra(ci) = −1 if they preferred P (1)

i over P (2)
i , and +1 for

the opposite preference. The term we use is to “rank” the
predictions. When assessing an evaluation metric against

6 http://www.mutopiaproject.org
7 http://humdrum.ccarh.org
8 http://imslp.org

this corpus, the test case rankings then constrain the space
of well-behaved metrics. 9

The exact formulation of the question follows the “cost-
to-correct” model of evaluation of [18]:

“Which of the two system outputs would take you less
effort to change to the ideal score?”

3.1.1 What is in the test case corpus?

We created 8 ideal scores and derived 34 “system outputs”
from them by introducing a variety of mistakes in a nota-
tion editor. Creating the system outputs manually instead
of using OMR outputs has the obvious disadvantage that
the distribution of error types does not reflect the current
OMR state-of-the-art. On the other hand, once OMR sys-
tems change, the distribution of corpus errors becomes ob-
solete anyway. Also, we create errors for which we can
assume the annotators have a reasonably accurate estimate
of their own correction speed, as opposed to OMR outputs
that often contain strange and syntactically incorrect nota-
tion, such as isolated stems. Nevertheless, when more an-
notation manpower becomes available, the corpus should
be extended with a set of actual OMR outputs.

The ideal scores (and thus the derived system outputs)
range from a single whole note to a “pianoform” fragment
or a multi-staff example. The distortions were crafted to
cover errors on individual notes (wrong pitch, extra acci-
dental, key signature or clef error, etc.: micro-errors on
the semantic level in the sense of [16, 18]), systematic er-
rors within the context of a full musical fragment (wrong
beaming, swapping slurs for ties, confusing staccato dots
for noteheads, etc.), short two-part examples to measure
the tradeoff between large-scale layout mistakes and lo-
calized mistakes (e.g., a four-bar two-part segment, as a
perfect concatenation of the two parts into one vs. in two
parts, but with wrong notes) and longer examples that con-
strain the metric to behave sensibly at larger scales.

Each pair of system outputs derived from the same ideal
score forms a test case; there are 82 in total. We also in-
clude 18 control examples, where one of the system out-
puts is identical to the ideal score. A total of 15 annota-
tors participated in the annotation, of whom 13 completed
all 100 examples; however, as the annotations were volun-
tary, only 2 completed the task twice for measuring intra-
annotator agreement.

3.1.2 Collection Strategy

While Bellini et al. [18] define how to count individual
errors at the level of musical symbols, assign some cost
to each kind of error (miss, add, fault, etc.) and define
the overall cost as composed of those individual costs, our
methodology does not assume that the same type of error
has the same cost in a different context, or that the overall
cost can be computed from the individual costs: for in-
stance, a sequence of notes shifted by one step can be in

9 We borrow the term “test case” from the software development prac-
tice of unit testing: test cases verify that the program (in our case the
evaluation metric) behaves as expected on a set of inputs chosen to cover
various standard and corner cases.
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most editors corrected simultaneously (so, e.g., clef errors
might not be too bad, because the entire part can be trans-
posed together).

Two design decisions of the annotation task merit fur-
ther explanation: why we ask annotators to compare ex-
amples instead of rating difficulty, and why we disallow
equality.

Ranking. The practice of ranking or picking the best
from a set of possible examples is inspired by machine
translation: Callison-Burch et al. have shown that peo-
ple are better able to agree on which proposed translation
is better than on how good or bad individual translations
are [4]. Furthermore, ranking does not require introducing
a cost metric in the first place. Even a simple 1-2-3-4-5
scale has this problem: how much effort is a “1” on that
scale? How long should the scale be? What would the
relationship be between short and long examples?

Furthermore, this annotation scheme is fast-paced. The
annotators were able to do all the 100 available compar-
isons within 1 hour. Rankings also make it straightforward
to compare automated evaluation metrics that output val-
ues from different ranges: just count how often the met-
ric agrees with gold-standard ranks using some measure of
monotonicity, such as Spearman’s rank correlation coeffi-
cient.

No equality. It is also not always clear which out-
put would take less time to edit; some errors genuinely
are equally bad (sharp vs. flat). These are also impor-
tant constraints on evaluation metrics: the costs associ-
ated with each should not be too different from each other.
However, allowing annotators to explicitly mark equality
risks overuse, and annotators using underqualified judg-
ment. For this first experiment, therefore, we elected not to
grant that option; we then interpret disagreement as a sign
of uncertainty and annotator uncertainty as a symptom of
this genuine tie.

3.2 How gold is the standard?

All annotators ranked the control cases correctly, except
for one instance. However, this only accounts for elemen-
tary annotator failure and does not give us a better idea
of systematic error present in the experimental setup. In
other words, we want to ask the question: if all annota-
tors are performing to the best of their ability, what level
of uncertainty should be expected under the given an-
notation scheme? (For the following measurements, the
control cases have been excluded.)

Normally, inter-annotator agreement is measured: if the
task is well-defined, i.e., if a gold standard can exist, the
annotators will tend to agree with each other towards that
standard. However, usual agreement metrics such as Co-
hen’s κ or Krippendorf’s α require computing expected
agreement, which is difficult when we do have a subset of
examples on which we do not expect annotators to agree
but cannot a priori identify them. We therefore start by
defining a simple agreement metric L. Recall:
• C stands for the corpus, which consists of N exam-

ples c1 . . . cN ,

• A is the set of K annotators a1 . . . aK , a, b ∈ A;
• ra is the ranking function of an annotator a that as-

signs +1 or -1 to each example in c,

L(a, b) =
1

N

∑

c∈C

|ra(c) + rb(c)|
2

This is simply the proportion of cases on which a and b
agree: if they disagree, ra(c)+rb(c) = 0. However, we ex-
pect the annotators to disagree on the genuinely uncertain
cases, so some disagreements are not as serious as others.
To take the existence of legitimate disagreement into ac-
count, we modify L(a, b) to weigh the examples according
to how certain the other annotators A \{a, b} are about the
given example. We define weighed agreement Lw(a, b):

Lw(a, b) =
1

N

∑

c∈C
w(−a,b)(c)

|ra(c) + rb(c)|
2

where w(−a,b) is defined for an example c as:

w(−a,b)(c) =
1

K − 2
|
∑

a′∈A\a,b
ra′(c)|

This way, it does not matter if a and b disagree on cases
where no one else agrees either, but if they disagree on an
example where there is strong consensus, it should bring
the overall agreement down. Note that while maximum
achievable L(a, b) is 1 for perfectly agreeing annotators
(i.e., all the sum terms equal to 1), because w(c) ≤ 1,
the maximum achievable Lw(a, b) will be less than 1, and
furthermore depends on the choice of a and b: if we take
notoriously disagreeing annotators away from the picture,
the weights will increase overall. Therefore, we finally
adjust Lw(a, b) to the proportion of maximum achievable
Lw(a, b) for the given (a, b) pair, which is almost the same
as Lw(a, a) with the exception that bmust also be excluded
from computing the weights. We denote this maximum as
L∗w(a, b), and the adjusted metric L̂w is then:

L̂w(a, b) = Lw(a, b)/L
∗
w(a, b)

This metric says: “What proportion of achievable
weighed agreement has been actually achieved?” The up-
per bound of L̂w is therefore 1.0 again; the lower bound
is agreement between two randomly generated annotators,
with the humans providing the consensus.

The resulting pairwise agreements, with the lower
bound established by averaging over 10 random annota-
tors, are visualized in Fig. 1. The baseline agreement
L̂w between random annotators weighed by the full human
consensus was close to 0.5, as expected. There seems to
be one group of annotators relatively in agreement (green
and above, which means adjusted agreement over 0.8), and
then several individuals who disagree with everyone – in-
cluding among themselves (lines 6, 7, 8, 11, 12, 14).

Interestingly, most of these “lone wolves” reported sig-
nificant experience with notation editors, while the group
more in agreement not as much. We suspect this is because
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Figure 1. Weighed pairwise agreement. The cell [a, b] rep-
resents L̂w(a, b). The scale goes from the average random
agreement (ca. 0.55) up to 1.

with increasing notation editor experience, users develop a
personal editing style that makes certain actions easier than
others by learning a subset of the “tricks” available with the
given editing tools – but each user learns a different sub-
set, so agreement on the relative editing cost suffers. To the
contrary, inexperienced users might not have spent enough
time with the editor to develop these habits.

3.3 Assessing some metrics

We illustrate how the test case ranking methodology helps
analyze these rather trivial automated MusicXML evalua-
tion metrics:

1. Levenshtein distance of XML canonization (c14n),
2. Tree edit distance (TED),
3. Tree edit distance with <note> flattening (TEDn),
4. Convert to LilyPond + Levenshtein distance (Ly).
c14n. Canonize the MusicXML file formatting and

measure Levenshtein distance. This is used as a trivial
baseline.

TED. Measure Tree Edit Distance on the MusicXML
nodes. Some nodes that control auxiliary and MIDI infor-
mation (work, defaults, credit, and duration)
are ignored. Replacement, insertion, and deletion all have
a cost of 1.

TEDn. Tree Edit Distance with special handling of
note elements. We noticed that many errors of TED are
due to the fact that while deleting a note is easy in an
editor, the edit distance is higher because the note ele-
ment has many sub-nodes. We therefore encode the notes
into strings consisting of one position per pitch, stem,
voice, and type. Deletion cost is fixed at 1, insertion
cost is 1 for non-note nodes, and 1 + length of code for
notes. Replacement cost between notes is the edit distance
between their codes; replacement between a note and non-
note costs 1 + length of code; between non-notes costs 1.

Metric rs r̂s ρ ρ̂ τ τ̂

c14n 0.33 0.41 0.40 0.49 0.25 0.36
TED 0.46 0.58 0.40 0.50 0.35 0.51
TEDn 0.57 0.70 0.40 0.49 0.43 0.63
Ly 0.41 0.51 0.29 0.36 0.30 0.44

Table 1. Measures of agreement for some proposed evalu-
ation metrics.

Ly. The LilyPond 10 file format is another possible rep-
resentation of a musical score. It encodes music scores
in its own LaTeX-like language. The first bar of the
“Twinkle, twinkle” melody would be represented as d’8[
d’8] a’8[ a’8] b’8[ b’8] a’4 | This repre-
sentation is much more amenable to string edit distance.
The Ly metric is Levenshtein distance on the LilyPond im-
port of the MusicXML system output files, with all whites-
pace normalized.

For comparing the metrics against our gold-standard
data, we use nonparametric approaches such as Spear-
man’s rs and Kendall’s τ , as these evaluate monotonicity
without assuming anything about mapping values of the
evaluation metric to the [−1, 1] range of preferences . To
reflect the “small-difference-for-uncertain-cases” require-
ment, however, we use Pearson’s ρ as well [14]. For each
way of assessing a metric, its maximum achievable with
the given data should be also estimated, by computing how
the metric evaluates the consensus of one group of anno-
tators against another. We randomly choose 100 splits of
8 vs 7 annotators, compute the average preferences for the
two groups in a split and measure the correlations between
the average preferences. The expected upper bounds and
standard deviations estimated this way are:
• r∗s = 0.814, with standard dev. 0.040
• ρ∗ = 0.816, with standard dev. 0.040
• τ∗ = 0.69, with standard dev. 0.045

We then define r̂s as rs
r∗s

, etc. Given a cost metric L, we

get for each example ci = (Ii, P
(1)
i , P

(2)
i ) the cost differ-

ence `(ci) = L(Ii, P (1)
i )−L(Ii, P (2)

i ) and pair it with the
gold-standard consensus r(ci) to get pairwise inputs for
the agreement metrics.

The agreement of the individual metrics is summarized
in Table 1. When developing the metrics, we did not use
the gold-standard data against which metric performance is
measured here; we used only our own intuition about how
the test cases should come out.

4. BENCHMARK DATASET PROTOTYPE

A benchmark dataset should have ground truth at levels
corresponding to the standard OMR processing stages, so
that sub-systems such as staff removal, or symbol local-
ization can be compared with respect to the end-to-end
pipeline they are a part of. We also suspect handwrit-
ten music will remain an open problem much longer than
printed music. Therefore, we chose to extend the CVC-
MUSCIMA dataset instead of Byrd and Simonsen’s pro-

10 http://www.lilypond.org
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posed test bed [7] because of the extensive handwritten
data collection effort that has been completed by Fornés
et al. and because ground truth for staff removal and bi-
narization is already present. At the same time, CVC-
MUSCIMA covers all the levels of notational complexity
from [7], as well as a variety of notation symbols, includ-
ing complex tuples, less common time signatures (5/4), C-
clefs and some symbols that could very well expose the dif-
ferences between purely symbol-based and more syntax-
aware methods (e.g., tremolo marks, easily confused for
beams). We have currently annotated symbols in printed
scores only, with the perspective of annotating the hand-
written scores automatically or semi-automatically.

We selected a subset of scores that covers the various
levels of notational complexity: single-part monophonic
music (F01), multi-part monophonic music (F03, F16),
and pianoform music, primarily based on chords (F10) and
polyphony (F08), with interaction between staves.

4.1 Symbol-level ground truth

Symbols are represented as bounding boxes, labeled by
symbol class. In line with the low-level and high-level
symbols discussed by [7], we differentiate symbols at the
level of primitives and the level of signs. The relation-
ship between primitives and signs can be one-to-one (e.g.,
clefs), many-to-one (composite signs: e.g. notehead, stem,
and flag form a note), one-to-many (disambiguation: e.g.,
a sharp primitive can be part of a key signature, acciden-
tal, or an ornament accidental), and many-to-many (the
same beam participates in multiple beamed notes, but each
beamed note also has a stem and notehead). We include
individual numerals and letters as notation primitives, and
their disambiguation (tuplet, time signature, dynamics...)
as signs.

We currently define 52 primitives plus letters and nu-
merals, and 53 signs. Each symbol can be linked to a Mu-
sicXML counterpart. 11 There are several groups of sym-
bols:
• Note elements (noteheads, stems, beams, rests...)
• Notation elements (slurs, dots, ornaments...)
• Part default (clefs, time and key signatures...)
• Layout elements (staves, brackets, braces...)
• Numerals and text.

We have so far annotated the primitive level. There are
3191 primitives marked in the 5 scores. Annotation took
about 24 hours of work in a custom editor.

4.2 End-to-end ground truth

We use MusicXML as the target representation, as it is
supported by most OMR/notation software, actively main-
tained and developed and available under a sufficiently per-
missive license. We obtain the MusicXML data by manu-
ally transcribing the music and postprocessing to ensure
each symbol has a MusicXML equivalent. Postprocessing
mostly consists of filling in default barlines and correcting

11 The full lists of symbol classes are available in the repos-
itory at https://github.com/ufal/omreval under
muscima++/data/Symbolic/specification.

staff grouping information. Using the MuseScore notation
editor, transcription took about 3.5 hours.

5. CONCLUSIONS AND FUTURE WORK

We proposed a corpus-based approach to assessing auto-
mated end-to-end OMR evaluation metrics and illustrated
the methodology on several potential metrics. A gold
standard annotation scheme based on assessment of rela-
tive cost-to-correct of synthetic “system outputs” was de-
scribed that avoids pre-defining any cost metric, and the re-
sulting corpus of 1230 human judgments was analyzed for
inter-annotator agreement, taking into account the possi-
bility that the compared system outputs may not be clearly
comparable. This preference-based setup avoids the need
to pre-define any notion of cost, requires little annotator
training, and it is straightforward to assess an evaluation
metric against this preference data.

Our results suggest that the central assumption of a sin-
gle ground truth for preferences among a set of system out-
puts is weaker with increasing annotator experience. To
make the methodology more robust, we recommend:
• Explicitly control for experience level; do not as-

sume that more annotator experience is better.
• Measure actual cost-to-correct (in time and interface

operations) through a notation editor, to verify how
much human estimation of this cost can be relied on.

• Develop models for computing expected agreement
for data where the annotations may legitimately be
randomized (the “equally bad” cases). Once ex-
pected agreement can be computed, we can use more
standard agreement metrics.

The usefulness of the test case corpus for developing
automated evaluation metrics was clear: the TEDn met-
ric that outperformed the others by a large margin was de-
veloped through analyzing the shortcomings of the TED
metric on individual test cases (before the gold-standard
data had been collected). As Szwoch [20] suggested, mod-
ifying the representation helped. However, if enough hu-
man judgments are collected, it should even be possible
to sidestep the difficulties of hand-crafting an evaluation
metric through machine learning; we can for instance try
learning the insertion, deletion, and replacement costs for
individual MusicXML node types.

An OMR environment where different systems can be
meaningfully compared, claims of commercial vendors are
verifiable and progress can be measured is in the best inter-
est of the OMR community. We believe our work, both on
evaluation and on a dataset, constitutes a significant step in
this direction.
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