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Ranked retrieval

▶ So far, our queries have been boolean - document is a match or not.

▶ Good for experts: precise understanding of the needs and collection.

▶ Good for applications: can easily consume thousands of results.

▶ Not good for the majority of users.

▶ Most users are not capable or lazy to write Boolean queries.

▶ Most users don’t want to wade through 1000s of results.

▶ This is particularly true of web search.
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Problem with Boolean search: ”Feast” or ”famine”

▶ Boolean queries often result in either too few or too many results
(too few ∼ 0, too many ∼ 1000s).

▶ Query 1 (boolean conj.): [standard user dlink 650]
→ 200,000 hits: ”feast”

▶ Query 2 (boolean conj.): [standard user dlink 650 no card found]
→ 0 hits: ”famine”

▶ In Boolean retrieval, it takes a lot of skill
to come up with a query that produces
a manageable number of hits.
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Feast or famine: No problem in ranked retrieval

▶ With ranking, large result sets are not an issue.

▶ Just show the top 10 results.

▶ This doesn’t overwhelm the user.

▶ Premise: the ranking algorithm works.

… More relevant results are ranked higher than less relevant results.
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Scoring as the basis of ranked retrieval

▶ We wish to rank documents that are more relevant higher than
documents that are less relevant.

▶ How can we accomplish such a ranking of the documents in the
collection with respect to a query?

▶ Assign a score to each query-document pair, say in [0, 1].

▶ This score measures how well document and query “match”.
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Query-document matching scores

▶ How do we compute the score of a query-document pair?

▶ Let’s start with a one-term query.

▶ If the query term does not occur in the document: score should be 0.

▶ The more frequent the query term in the document, the higher the
score

▶ We will look at a number of alternatives for doing this.
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Take 1: Jaccard coefficient

▶ A commonly used measure of overlap of two sets

▶ Let A and B be two sets

▶ Jaccard coefficient:

jaccaRd(A,B) =
|A ∩ B|
|A ∪ B|

, where(A ̸= ∅ or B ̸= ∅)

▶ jaccaRd(A,A) = 1

▶ jaccaRd(A,B) = 0 if A ∩ B = 0

▶ A and B don’t have to be the same size.

▶ Always assigns a number between 0 and 1.
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Jaccard coefficient: Example

What is the query-document score the Jaccard coefficient computes for:

▶ Query: “ides of March”

▶ Document: “Caesar died in March”

▶ jaccaRd(q, d) = 1/6
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What’s wrong with Jaccard?

▶ It ignores term frequency (how many occurrences a term has).

▶ Rare terms are more informative than frequent terms. Jaccard does
not consider this information.

→ We need a more sophisticated way of normalizing for the length of a
document.
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Term weighting
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Binary incidence matrix

Anthony Julius The Hamlet Othello Macbeth …
and Caesar Tempest

Cleopatra
Anthony 1 1 0 0 0 1
BRutus 1 1 0 1 0 0
CaesaR 1 1 0 1 1 1
CalpuRnia 0 1 0 0 0 0
CleopatRa 1 0 0 0 0 0
meRcy 1 0 1 1 1 1
woRseR 1 0 1 1 1 0
…

▶ Each document is represented as a binary vector ∈ {0, 1}|V|.

15 / 61



Ranked retrieval Term weighting Vector space model Length normalization

Count matrix

Anthony Julius The Hamlet Othello Macbeth …
and Caesar Tempest

Cleopatra
Anthony 157 73 0 0 0 1
BRutus 4 157 0 2 0 0
CaesaR 232 227 0 2 1 0
CalpuRnia 0 10 0 0 0 0
CleopatRa 57 0 0 0 0 0
meRcy 2 0 3 8 5 8
woRseR 2 0 1 1 1 5
…

▶ Each document is represented as a count vector ∈ N|V|.
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Bag of words model

▶ We do not consider the order of words in a document.

▶ “John is quicker than Mary” and “Mary is quicker than John” are
represented the same way.

▶ This is called a bag of words model.

▶ In a sense, this is a step back: The positional index was able to
distinguish these two documents.

▶ We will look at “recovering” positional information later in this
course.

▶ For now: bag of words model
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Term frequency (tf)

▶ The term frequency tft,d of term t in document d is defined as the
number of times that t occurs in d.

▶ We want to use tf when computing query-document match scores.

▶ But how?

▶ Raw term frequency is not what we want because:

▶ A document with tf = 10 occurrences of the term is more relevant
than a document with tf = 1 occurrence of the term.

▶ But not 10 times more relevant.
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Instead of raw frequency: Log frequency weighting

▶ The log frequency weight of term t in d is defined as follows:

wt,d =

{
1 + log10 tft,d if tft,d > 0
0 otherwise

▶ tft,d → wt,d: 0 → 0, 1 → 1, 2 → 1.3, 10 → 2, 1000 → 4, etc.

▶ Score for a document-query pair: sum over terms t in both q and d:

tf-matching-score(q, d) =
∑
t∈q∩d

(1 + log tft,d)

▶ The score is 0 if none of the query terms is present in the document.
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Frequency in document vs. frequency in collection

▶ In addition, to the frequency of the term in the document …

… we also want to use the frequency of the term in the collection

… for weighting and ranking.
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Desired weight for rare terms

▶ Rare terms are more informative than frequent terms.

▶ Consider a term in the query that is rare in the collection
(e.g., aRachnocentRic).

▶ A document containing this (query) term is very likely to be relevant.

→ we want high weights for rare terms like aRachnocentRic.
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Desired weight for frequent terms

▶ Frequent terms are less informative than rare terms.

▶ Consider a term in the query that is frequent in the collection
(e.g., good, incRease, line).

▶ A document containing this (query) term is more likely to be relevant
than a document that doesn’t but words like good, incRease and line
are not sure indicators of relevance.

→ For frequent terms like good, incRease, and line, we want positive
weights but lower weights than for rare terms.
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Document frequency

▶ We want high weights for rare terms like aRachnocentRic.

▶ We want low (positive) weights for frequent words like good,
incRease, and line.

▶ We will use document frequency to factor this into computing the
matching score.

▶ The document frequency is the number of documents in the
collection that the term occurs in.
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From tf to idf (inverse document frequency)

▶ dft is document frequency, the number of documents t occurs in.

▶ dft is an inverse measure of the informativeness of term t.

▶ We define the idf weight of term t in a collection of N documents as:

idft = log10
N
dft

▶ idft is a measure of the informativeness of the term.

▶ logN/dft instead of [N/dft] to “dampen” the effect of idf

▶ Note that we use the log transformation for both term frequency and
document frequency.
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Examples for idf

Compute idft using the formula: idft = log10 N
dft

, N = 1,000,000

term dft idft
calpurnia 1 6
animal 100 4
sunday 1000 3
fly 10,000 2
under 100,000 1
the 1,000,000 0
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Effect of idf on ranking

▶ idf affects the documents ranking for queries with at least two terms.

▶ For example, in the query “arachnocentric line”, idf weighting
increases the relative weight of aRachnocentRic and decreases the
relative weight of line.
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Collection frequency vs. Document frequency

word collection frequency document frequency
insuRance 10440 3997
tRy 10422 8760

▶ Collection frequency of t: number of tokens of t in the collection

▶ Document frequency of t: number of documents t occurs in

▶ Which word is a better search term (should get a higher weight)?

▶ This example suggests that df/idf is better for weighting than cf.

29 / 61



Ranked retrieval Term weighting Vector space model Length normalization

tf-idf weighting

▶ tf-idf weight of a term is product of its tf weight and its idf weight.

wt,d = (1 + log tft,d) · log N
dft

▶ tf-weight

▶ idf-weight

▶ Best known weighting scheme in information retrieval.

▶ Increases with the number of occurrences within a document (tf).

▶ Increases with the rarity of the term in the collection (idf).

▶ Note: the “-” in tf-idf is a hyphen, not a minus (altso tf.idf, tf x idf).
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Vector space model

32 / 61



Ranked retrieval Term weighting Vector space model Length normalization

Binary incidence matrix

Anthony Julius The Hamlet Othello Macbeth …
and Caesar Tempest

Cleopatra
Anthony 1 1 0 0 0 1
BRutus 1 1 0 1 0 0
CaesaR 1 1 0 1 1 1
CalpuRnia 0 1 0 0 0 0
CleopatRa 1 0 0 0 0 0
meRcy 1 0 1 1 1 1
woRseR 1 0 1 1 1 0
…

▶ Each document is represented as a binary vector ∈ {0, 1}|V|.
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Count matrix

Anthony Julius The Hamlet Othello Macbeth …
and Caesar Tempest

Cleopatra
Anthony 157 73 0 0 0 1
BRutus 4 157 0 2 0 0
CaesaR 232 227 0 2 1 0
CalpuRnia 0 10 0 0 0 0
CleopatRa 57 0 0 0 0 0
meRcy 2 0 3 8 5 8
woRseR 2 0 1 1 1 5
…

▶ Each document is represented as a count vector ∈ N|V|.
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tf-idf weight matrix

Anthony Julius The Hamlet Othello Macbeth …
and Caesar Tempest

Cleopatra
Anthony 5.25 3.18 0.00 0.00 0.00 0.35
BRutus 1.21 6.10 0.00 1.00 0.00 0.00
CaesaR 8.59 2.54 0.00 1.51 0.25 0.00
CalpuRnia 0.00 1.54 0.00 0.00 0.00 0.00
CleopatRa 2.85 0.00 0.00 0.00 0.00 0.00
meRcy 1.51 0.00 1.90 0.12 5.25 0.88
woRseR 1.37 0.00 0.11 4.15 0.25 1.95
…

▶ Each document is represented as a real-valued vector ∈ R|V|.
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Documents as vectors

▶ Each document is now represented as a real-valued vector of tf-idf
weights ∈ R|V|.

▶ So we have a |V|-dimensional real-valued vector space.

▶ Terms are axes of the space.

▶ Documents are points or vectors in this space.

▶ Very high-dimensional: tens/hundreds of millions of dimensions
when you apply this to web search engines

▶ Each vector is very sparse - most entries are zero.
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Queries as vectors

▶ Key idea 1: Do the same for queries: represent them as vectors

▶ Key idea 2: Rank documents according to their proximity to query

▶ proximity = similarity

▶ proximity ≈ negative distance

▶ Recall: We’re doing this because we want to get away from the
you’re-either-in-or-out, feast-or-famine Boolean model.

▶ Instead: rank relevant documents higher than nonrelevant ones
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How do we formalize vector space similarity?

▶ Negative distance between two points/end points of the two vectors?

▶ Euclidean distance?

▶ Bad idea – Euclidean distance is large for vectors of different lengths.
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Why distance is a bad idea

0 1
0

1

Rich

pooR

q: [rich poor]

d1:Ranks of starving poets swell
d2:Rich poor gap grows

d3:Record baseball salaries in 2010

The Euclidean distance of q⃗ and d⃗2 is large although the distribution of
terms in query q and the distribution of terms in document d2 are similar.

41 / 61



Ranked retrieval Term weighting Vector space model Length normalization

Use angle instead of distance

▶ Rank documents according to angle with query

▶ Thought experiment: take a document d and append it to itself. Call
this document d′ (d′ is twice as long as d).

▶ “Semantically” d and d′ have the same content.

▶ The angle between the two documents is 0, corresponding to maximal
similarity …

… even though the Euclidean distance between the two documents
can be quite large.
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From angles to cosines

▶ Ranking documents according to the angle between query and
document in decreasing order

is equivalent to

▶ Ranking documents according to cosine(query,document) in
increasing order.

▶ Cosine is a monotonically decreasing function of the angle for the
interval [0◦, 180◦]
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Length normalization

▶ How do we compute the cosine?

▶ A vector can be (length-) normalized by dividing each of its

components by its length – e.g. by the L2 norm: ||x||2 =
√∑

i x
2
i

▶ This maps vectors onto the unit sphere since after normalization:

||x||2 =
√∑

i x
2
i = 1.0

▶ As a result, longer documents and shorter documents have weights of
the same order of magnitude.

▶ Effect on the two documents d and d′ (d appended to itself) from
earlier slide: they have identical vectors after length-normalization.
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Cosine similarity between query and document

cos(⃗q, d⃗) = sim(⃗q, d⃗) =
q⃗ · d⃗
|⃗q||⃗d|

=

∑|V|
i=1 qidi√∑|V|

i=1 q
2
i

√∑|V|
i=1 d

2
i

▶ qi is the tf-idf weight of term i in the query.

▶ di is the tf-idf weight of term i in the document.

▶ |⃗q| and |⃗d| are the lengths of q⃗ and d⃗.

▶ This is the cosine similarity of q⃗ and d⃗ or, equivalently: the cosine of
the angle between q⃗ and d⃗.

▶ For normalized vectors, the cosine is equivalent to the dot product:

cos(⃗q, d⃗) = q⃗ · d⃗ =
∑
i

qi · di
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Cosine similarity illustrated (normalized vectors)

0 1
0

1

Rich

pooR

v⃗(q)

v⃗(d1)

v⃗(d2)

v⃗(d3)

θ

46 / 61



Ranked retrieval Term weighting Vector space model Length normalization

Cosine: Example

How similar are these novels?

SaS: Sense and Sensibility

PaP: Pride and Prejudice

WH: Wuthering Heights

term frequencies (counts)

term SaS PaP WH
affection 115 58 20
jealous 10 7 11
gossip 2 0 6
wutheRing 0 0 38
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Cosine: Example

term frequencies (counts)

term SaS PaP WH
affection 115 58 20
jealous 10 7 11
gossip 2 0 6
wutheRing 0 0 38

log frequency weighting

term SaS PaP WH
affection 3.06 2.76 2.30
jealous 2.00 1.85 2.04
gossip 1.30 0 1.78
wutheRing 0 0 2.58

(To simplify this example, we don’t do idf weighting.)

48 / 61



Ranked retrieval Term weighting Vector space model Length normalization

Cosine: Example

log frequency weighting

term SaS PaP WH
affection 3.06 2.76 2.30
jealous 2.00 1.85 2.04
gossip 1.30 0 1.78
wutheRing 0 0 2.58

log frequency weighting
& cosine normalization

term SaS PaP WH
affection 0.79 0.83 0.52
jealous 0.52 0.56 0.47
gossip 0.34 0.00 0.41
wutheRing 0.00 0.00 0.59

▶ cos(SaS,PaP) ≈ 0.79∗0.83+0.52∗0.56+0.34∗0.0+0.0∗0.0 ≈ 0.94

▶ cos(SaS,WH) ≈ 0.79

▶ cos(PaP,WH) ≈ 0.69

▶ Why do we have cos(SaS,PaP) > cos(SAS,WH)?

49 / 61



Ranked retrieval Term weighting Vector space model Length normalization

Components of tf-idf weighting

Term frequency Document frequency Normalization
n (natural) tft,d n (no) 1 n (none)

1

l (logarithm) 1 + log(tft,d) t (idf) log N
dft

c (cosine)
1√

w2
1+w2

2+...+w2
M

a (augmented) 0.5 + 0.5×tft,d
maxt(tft,d)

p (prob idf) max{0, log N−dft
dft } u (pivoted

unique)
1/u

b (boolean)
{
1 if tft,d > 0
0 otherwise

b (byte size) 1/CharLengthα,
α < 1

L (log ave) 1+log(tft,d)
1+log(avet∈d(tft,d))

Best known combination of weighting options

Default: no weighting
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tf-idf example

▶ We often use different weightings for queries and documents.

▶ Notation: ddd.qqq

▶ Example: lnc.ltn
▶ document: logarithmic tf, no df weighting, cosine normalization

▶ query: logarithmic tf, idf, no normalization

▶ Example query: “best car insurance”

▶ Example document: “car insurance auto insurance”
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tf-idf example: lnc.ltn

Query: “best car insurance”. Document: “car insurance auto insurance”.

word query document product
tf tf-w df idf weight tf tf-w weight n’lized

auto 0 0.0 5000 2.3 0.0 1 1.0 1.0 0.52 0.00
best 1 1.0 50000 1.3 1.3 0 0.0 0.0 0.00 0.00
car 1 1.0 10000 2.0 2.0 1 1.0 1.0 0.52 1.04
insurance 1 1.0 1000 3.0 3.0 2 1.3 1.3 0.68 2.04

Key to columns: tf: raw term frequency, tf-w: logarithmically weighted term frequency, df:
document frequency, idf: inverse document frequency, weight: the final weight of the term in
the query or document, n’lized: document weights after cosine normalization, product: the
product of final query weight and final document weight

√
12 + 02 + 12 + 1.32 ≈ 1.92

1/1.92 ≈ 0.52
1.3/1.92 ≈ 0.68

Similarity score between query and document:
∑

i wqi · wdi = 0 + 0 + 1.04 + 2.04 = 3.08
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Summary: Ranked retrieval in the vector space model

▶ Represent the query as a weighted tf-idf vector

▶ Represent each document as a weighted tf-idf vector

▶ Compute the similarity between the query vector and each document
vector

▶ Rank documents with respect to the query

▶ Return the top K (e.g., K = 10) to the user

53 / 61



Ranked retrieval Term weighting Vector space model Length normalization

Length normalization
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Why distance is a bad idea

0 1
0

1

Rich

pooR

q: [rich poor]

d1:Ranks of starving poets swell
d2:Rich poor gap grows

d3:Record baseball salaries in 2010

The Euclidean distance of q⃗ and d⃗2 is large although the distribution of
terms in query q and the distribution of terms in document d2 are similar.

That’s why we do length normalization or, equivalently, use cosine to
compute query-document matching scores.
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Exercise: A problem for cosine normalization

▶ Query q: “anti-doping rules Beijing 2008 olympics”

▶ Compare three documents
▶ d1: a short document on anti-doping rules at 2008 Olympics
▶ d2: a long document that consists of a copy of d1 and 5 other news

stories, all on topics different from Olympics/anti-doping
▶ d3: a short document on anti-doping rules at the 2004 Athens Olympics

▶ What ranking do we expect in the vector space model?
▶ d2 is likely to be ranked below d3 …
▶ …but d2 is more relevant than d3.

▶ What can we do about this?
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Pivot normalization

▶ Cosine normalization produces weights that are too large for short
documents and too small for long documents (on average).

▶ Adjust cosine normalization by linear adjustment: “turning” the
average normalization on the pivot

▶ Effect: Similarities of short documents with query decrease;
similarities of long documents with query increase.

▶ This removes the unfair advantage that short documents have.

▶ Note that “pivoted” scores are no longer bounded by 1.
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Predicted and true probability of relevance

source: Lillian Lee
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Pivot normalization

source: Lillian Lee

▶ Normalizing factor: α|⃗d|+ (1− α)piv , where |⃗d| =
√∑|V|

i=1 d
2
i

▶ The slope is α < 1

▶ It crosses the y = x line at piv
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Pivoted normalization: Amit Singhal’s experiments

Relevant documents retrieved and (change in) average precision.
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