
Introduction Boolean retrieval Inverted index Boolean queries Text processing Phrase queries Proximity search

NPFL103: Information Retrieval (1)
Introduction, Boolean retrieval, Inverted index, Text processing

Pavel Pecina
pecina@ufal.mff.cuni.cz

Lecturer

Institute of Formal and Applied Linguistics
Faculty of Mathematics and Physics

Charles University

Based on slides by Hinrich Schütze, University of Stuttgart.

1 / 65

Introduction Boolean retrieval Inverted index Boolean queries Text processing Phrase queries Proximity search

Contents

Introduction

Boolean retrieval

Inverted index

Boolean queries

Text processing

Phrase queries

Proximity search

2 / 65

Introduction Boolean retrieval Inverted index Boolean queries Text processing Phrase queries Proximity search

Introduction

3 / 65

Introduction Boolean retrieval Inverted index Boolean queries Text processing Phrase queries Proximity search

Definition of Information Retrieval

Information retrieval (IR) is finding material (usually documents) of an

unstructured nature (usually text) that satisfies an information need from

within large collections (stored on computers).

4 / 65

Introduction Boolean retrieval Inverted index Boolean queries Text processing Phrase queries Proximity search

Boolean retrieval

5 / 65

Introduction Boolean retrieval Inverted index Boolean queries Text processing Phrase queries Proximity search

Boolean retrieval

▶ Arguably the simplest model to base an IR system on

▶ Based on Boolean logic and set theory

▶ Documents to be searched are conceived as sets of terms

▶ Queries are Boolean expressions, e.g., CaesaR and BRutus

▶ The system returns all documents that satisfy the Boolean expression.

Does Google use the Boolean model?

6 / 65

Introduction Boolean retrieval Inverted index Boolean queries Text processing Phrase queries Proximity search

Does Google use the Boolean model?

▶ On Google, the default interpretation of a query [w1 w2 …wn] is

w1 AND w2 AND . . . AND wn

▶ Cases where you get hits that do not contain one of the wi:
▶ anchor text (anchor text)
▶ page contains variant of wi (morphology, spelling, synonymy)
▶ long queries (n large)
▶ boolean expression generates very few hits

▶ Other operators supported: NOT (-), OR (|), …

▶ Simple Boolean vs. Ranking of result set
▶ Simple Boolean retrieval returns documents in no particular order.
▶ Google (and most well designed Boolean engines) rank the result set –

good hits ranked higher than bad hits (according to some estimator of
relevance).

7 / 65

Introduction Boolean retrieval Inverted index Boolean queries Text processing Phrase queries Proximity search

Inverted index

8 / 65

Introduction Boolean retrieval Inverted index Boolean queries Text processing Phrase queries Proximity search

Unstructured data in 1650: Plays of William Shakespeare

9 / 65

Introduction Boolean retrieval Inverted index Boolean queries Text processing Phrase queries Proximity search

Unstructured data in 1650

▶ Which plays of Shakespeare contain the words BRutus and CaesaR,
but not CalpuRnia?

▶ One could grep all of Shakespeare’s plays for BRutus and CaesaR,
then strip out lines containing CalpuRnia.

▶ Why is grep not the solution?
▶ Slow (for large collections)

▶ grep is line-oriented, IR is document-oriented

▶ “not CalpuRnia” is non-trivial

▶ Other operations (e.g. search for Romans near countRy) infeasible

10 / 65

Introduction Boolean retrieval Inverted index Boolean queries Text processing Phrase queries Proximity search

Term-document incidence matrix

Anthony Julius The Hamlet Othello Macbeth …
and Caesar Tempest

Cleopatra
Anthony 1 1 0 0 0 1
BRutus 1 1 0 1 0 0
CaesaR 1 1 0 1 1 1
CalpuRnia 0 1 0 0 0 0
CleopatRa 1 0 0 0 0 0
meRcy 1 0 1 1 1 1
woRseR 1 0 1 1 1 0
…

Entry is 1 if term occurs. Example: CalpuRnia occurs in Julius Caesar.
Entry is 0 if term doesn’t occur. Example: CalpuRnia doesn’t occur in The tempest.

11 / 65

Introduction Boolean retrieval Inverted index Boolean queries Text processing Phrase queries Proximity search

Incidence vectors

▶ So we have a 0/1 vector for each term.

▶ To answer the query BRutus and CaesaR and not CalpuRnia:

1. Take the vectors for BRutus, CaesaR, and CalpuRnia

110100, 110111, 010000

2. Complement the vector of CalpuRnia

not 010000 = 101111

3. Do a (bitwise) and on the three vectors:

110100 and 110111 and 101111 = 100100

12 / 65

Introduction Boolean retrieval Inverted index Boolean queries Text processing Phrase queries Proximity search

BRutus and CaesaR and not CalpuRnia

Anthony Julius The Hamlet Othello Macbeth …
and Caesar Tempest

Cleopatra
Anthony 1 1 0 0 0 1
BRutus 1 1 0 1 0 0
CaesaR 1 1 0 1 1 1
CalpuRnia 0 1 0 0 0 0
NOT CalpuRnia 1 0 1 1 1 1
CleopatRa 1 0 0 0 0 0
meRcy 1 0 1 1 1 1
woRseR 1 0 1 1 1 0
…
result: 1 0 0 1 0 0

13 / 65

Introduction Boolean retrieval Inverted index Boolean queries Text processing Phrase queries Proximity search

Answers to query

Anthony and Cleopatra, Act III, Scene ii:

Agrippa [Aside to Domitius Enobarbus]: Why, Enobarbus,
When Antony found Julius Caesar dead,
He cried almost to roaring; and he wept
When at Philippi he found Brutus slain.

Hamlet, Act III, Scene ii:

Lord Polonius: I did enact Julius Caesar: I was killed i’ the
Capitol; Brutus killed me.

14 / 65

Introduction Boolean retrieval Inverted index Boolean queries Text processing Phrase queries Proximity search

Bigger collections

▶ Consider N = 106 documents, each with about 1000 tokens

⇒ total of 109 tokens

▶ On average 6 bytes per token, including spaces and punctuation

⇒ size of document collection is about 6 · 109 = 6 GB

▶ Assume there are M = 500,000 distinct terms in the collection

⇒ M = 500,000× 106 = half a trillion 0s and 1s.

▶ But the matrix has no more than one billion 1s.

⇒Matrix is extremely sparse.

▶ What is a better representations?

⇒We only record the 1s.

15 / 65

Introduction Boolean retrieval Inverted index Boolean queries Text processing Phrase queries Proximity search

Inverted Index

For each term t, we store a list of all documents that contain t.

BRutus −→ 1 2 4 11 31 45 173 174

CaesaR −→ 1 2 4 5 6 16 57 132 …

CalpuRnia −→ 2 31 54 101

...

︸ ︷︷ ︸ ︸ ︷︷ ︸
dictionary postings

16 / 65

Introduction Boolean retrieval Inverted index Boolean queries Text processing Phrase queries Proximity search

Inverted index construction

1. Collect the documents to be indexed:

Friends, Romans, countrymen. So let it be with Caesar …

2. Tokenize the text, turning each document into a list of tokens:

Friends Romans countrymen So …

3. Do linguistic preprocessing, producing a list of normalized tokens,
which are the indexing terms: friend roman countryman so …

4. Index the documents that each term occurs in by creating an inverted
index, consisting of a dictionary and postings.

17 / 65

Introduction Boolean retrieval Inverted index Boolean queries Text processing Phrase queries Proximity search

Tokenization and preprocessing

Doc 1. I did enact Julius Caesar: I was
killed i’ the Capitol; Brutus killed me.

Doc 2. So let it be with Caesar. The
noble Brutus hath told you Caesar was
ambitious:

⇒
Doc 1. i did enact julius caesar i was
killed i’ the capitol brutus killed me

Doc 2. so let it be with caesar the no-
ble brutus hath told you caesar was
ambitious

18 / 65

Introduction Boolean retrieval Inverted index Boolean queries Text processing Phrase queries Proximity search

Generate postings, sort, create lists, determine document frequency

Doc 1. i did enact julius caesar i was
killed i’ the capitol brutus killed me

Doc 2. so let it be with caesar the no-
ble brutus hath told you caesar was
ambitious

⇒

term docID
i 1
did 1
enact 1
julius 1
caesar 1
i 1
was 1
killed 1
i’ 1
the 1
capitol 1
brutus 1
killed 1
me 1
so 2
let 2
it 2
be 2
with 2
caesar 2
the 2
noble 2
brutus 2
hath 2
told 2
you 2
caesar 2
was 2
ambitious 2

⇒

term docID
ambitious 2
be 2
brutus 1
brutus 2
capitol 1
caesar 1
caesar 2
caesar 2
did 1
enact 1
hath 1
i 1
i 1
i’ 1
it 2
julius 1
killed 1
killed 1
let 2
me 1
noble 2
so 2
the 1
the 2
told 2
you 2
was 1
was 2
with 2

⇒

term doc. freq. → postings lists
ambitious 1 → 2

be 1 → 2
brutus 2 → 1 → 2
capitol 1 → 1
caesar 2 → 1 → 2
did 1 → 1
enact 1 → 1
hath 1 → 2
i 1 → 1
i’ 1 → 1
it 1 → 2
julius 1 → 1
killed 1 → 1
let 1 → 2
me 1 → 1
noble 1 → 2
so 1 → 2
the 2 → 1 → 2
told 1 → 2
you 1 → 2
was 2 → 1 → 2
with 1 → 2

19 / 65

Introduction Boolean retrieval Inverted index Boolean queries Text processing Phrase queries Proximity search

Split the result into dictionary and postings file

BRutus −→ 1 2 4 11 31 45 173 174

CaesaR −→ 1 2 4 5 6 16 57 132 …

CalpuRnia −→ 2 31 54 101

...

︸ ︷︷ ︸ ︸ ︷︷ ︸
dictionary postings file

20 / 65

Introduction Boolean retrieval Inverted index Boolean queries Text processing Phrase queries Proximity search

Boolean queries

21 / 65

Introduction Boolean retrieval Inverted index Boolean queries Text processing Phrase queries Proximity search

Simple conjunctive query (two terms)

▶ Consider the query: BRutus AND CalpuRnia

▶ To find all matching documents using inverted index:

1. Locate BRutus in the dictionary

2. Retrieve its postings list from the postings file

3. Locate CalpuRnia in the dictionary

4. Retrieve its postings list from the postings file

5. Intersect the two postings lists

6. Return intersection to user

22 / 65

Introduction Boolean retrieval Inverted index Boolean queries Text processing Phrase queries Proximity search

Intersecting two postings lists

BRutus −→ 1 → 2 → 4 → 11 → 31 → 45 → 173 → 174

CalpuRnia −→ 2 → 31 → 54 → 101

Intersection =⇒ 2 → 31

▶ This is linear in the length of the postings lists.

▶ Note: This only works if postings lists are sorted.

23 / 65

Introduction Boolean retrieval Inverted index Boolean queries Text processing Phrase queries Proximity search

Intersecting two postings lists

InteRsect(p1, p2)
1 answer← ⟨ ⟩
2 while p1 ̸= nil and p2 ≠ nil
3 do if docID(p1) = docID(p2)
4 then Add(answer, docID(p1))
5 p1 ← next(p1)
6 p2 ← next(p2)
7 else if docID(p1) < docID(p2)
8 then p1 ← next(p1)
9 else p2 ← next(p2)

10 return answer

24 / 65

Introduction Boolean retrieval Inverted index Boolean queries Text processing Phrase queries Proximity search

Boolean queries

▶ Boolean model can answer any query that is a Boolean expression.

▶ Boolean queries use and, oR and not to join query terms.

▶ Views each document as a set of terms.

▶ Is precise: Document matches condition or not.

▶ Primary commercial retrieval tool for 3 decades

▶ Many professional searchers (e.g., lawyers) still like Boolean queries.

▶ You know exactly what you are getting.

25 / 65

Introduction Boolean retrieval Inverted index Boolean queries Text processing Phrase queries Proximity search

Text processing

26 / 65

Introduction Boolean retrieval Inverted index Boolean queries Text processing Phrase queries Proximity search

Documents

▶ So far: Simple Boolean retrieval system

▶ Our assumptions were:

1. We know what a document is.

2. We can “machine-read” each document.

▶ This can be complex in reality.

27 / 65

Introduction Boolean retrieval Inverted index Boolean queries Text processing Phrase queries Proximity search

Parsing a document

▶ We need to deal with format and language of each document.

▶ What format is it in? pdf, word, excel, html etc.

▶ What language is it in?

▶ What character set is in use?

▶ Each of these is a classification problem

▶ Alternative: use heuristics

28 / 65

Introduction Boolean retrieval Inverted index Boolean queries Text processing Phrase queries Proximity search

Format/Language: Complications

▶ A single index usually contains terms of several languages.

▶ Sometimes a document or its components contain multiple
languages/formats (e.g. French email with Spanish pdf attachment)

▶ What is the document unit for indexing?

▶ A file?

▶ An email?

▶ An email with 5 attachments?

▶ A group of files (ppt or latex in HTML)?

▶ Upshot: Answering the question “what is a document?” is not trivial
and requires some design decisions.

29 / 65

Introduction Boolean retrieval Inverted index Boolean queries Text processing Phrase queries Proximity search

Definitions

▶ Word – A delimited string of characters as it appears in the text.

▶ Term – A “normalized” word (morphology, spelling, etc.); an
equivalence class of words.

▶ Token – An instance of a word or term occurring in a document.

▶ Type – The same as a term in most cases: an equivalence class of
tokens.

30 / 65

Introduction Boolean retrieval Inverted index Boolean queries Text processing Phrase queries Proximity search

Normalization

▶ Need to “normalize” terms in indexed text as well as query terms into
the same form.

Example: We want to match U.S.A. and USA

▶ We most commonly implicitly define equivalence classes of terms.

▶ Alternatively: do asymmetric expansion
▶ window→ window, windows

▶ windows→Windows, windows

▶ Windows→Windows (no expansion)

▶ More powerful, but less efficient

▶ Why don’t you want to put window, Window, windows, and Windows
in the same equivalence class?

31 / 65

Introduction Boolean retrieval Inverted index Boolean queries Text processing Phrase queries Proximity search

Normalization: Other languages

▶ Normalization and language detection interact.

▶ Example:
▶ PETER WILL NICHT MIT.→MIT = mit

▶ He got his PhD from MIT.→MIT ̸= mit

32 / 65

Introduction Boolean retrieval Inverted index Boolean queries Text processing Phrase queries Proximity search

Recall: Inverted index construction

▶ Input: Friends, Romans, countrymen. So let it be with Caesar …

▶ Output: friend roman countryman so …

▶ Each token is a candidate for a postings entry.

▶ What are valid tokens to emit?

33 / 65

Introduction Boolean retrieval Inverted index Boolean queries Text processing Phrase queries Proximity search

Exercises

▶ How many word tokens? How many word types?

Example 1: In June, the dog likes to chase the cat in the barn.

Example 2: Mr. O’Neill thinks that the boys’ stories about Chile’s capital
aren’t amusing.

▶ …tokenization is difficult – even in English.

34 / 65

Introduction Boolean retrieval Inverted index Boolean queries Text processing Phrase queries Proximity search

Tokenization problems: One word or two? (or several)

▶ Hewlett-Packard

▶ State-of-the-art

▶ co-education

▶ the hold-him-back-and-drag-him-away maneuver

▶ data base

▶ San Francisco

▶ Los Angeles-based company

▶ cheap San Francisco-Los Angeles fares

▶ York University vs. New York University

35 / 65

Introduction Boolean retrieval Inverted index Boolean queries Text processing Phrase queries Proximity search

Numbers

▶ 3/20/91

▶ 20/3/91

▶ Mar 20, 1991

▶ B-52

▶ 100.2.86.144

▶ (800) 234-2333

▶ 800.234.2333

▶ Older IR systems may not index numbers …

…but generally it’s a useful feature.

36 / 65

Introduction Boolean retrieval Inverted index Boolean queries Text processing Phrase queries Proximity search

Chinese: No whitespace

莎拉波娃!在居住在美国"南部的佛#里$。今年４月

９日，莎拉波娃在美国第一大城市%&度'了１８(生

日。生日派)上，莎拉波娃露出了甜美的微笑。

37 / 65

Introduction Boolean retrieval Inverted index Boolean queries Text processing Phrase queries Proximity search

Ambiguous segmentation in Chinese

和尚
The two characters can be treated as one word meaning ‘monk’ or as a
sequence of two words meaning ‘and’ and ‘still’.

38 / 65

Introduction Boolean retrieval Inverted index Boolean queries Text processing Phrase queries Proximity search

Other cases of “no whitespace”

▶ Compounds in Dutch, German, Swedish

▶ Computerlinguistik→ Computer + Linguistik

▶ Lebensversicherungsgesellschaftsangestellter

▶ → leben + versicherung + gesellschaft + angestellter

▶ Inuit: tusaatsiarunnanngittualuujunga (I can’t hear very well.)

▶ Other languages with segmentation difficulties: Finnish, Urdu …

39 / 65

Introduction Boolean retrieval Inverted index Boolean queries Text processing Phrase queries Proximity search

Japanese

ノーベル平和賞を受賞したワンガリ・マータイさんが名誉会長を務め

るＭＯＴＴＡＩＮＡＩキャンペーンの一環として、毎日新聞社とマガ

ジンハウスは「私 の、もったいない」を募集します。皆様が日ごろ

「もったいない」と感じて実践していることや、それにまつわるエピ

ソードを８００字以内の文章にまとめ、簡 単な写真、イラスト、図

などを添えて１０月２０日までにお送りください。大賞受賞者には、

５０万円相当の旅行券とエコ製品２点の副賞が贈られます。

▶ 4 different “alphabets”:
▶ Chinese characters
▶ Hiragana syllabary for inflectional endings and function words
▶ Katakana syllabary for transcription of foreign words and other uses
▶ Latin

▶ No spaces (as in Chinese).

▶ End user can express query entirely in hiragana!

40 / 65

Introduction Boolean retrieval Inverted index Boolean queries Text processing Phrase queries Proximity search

Arabic script

 ك ِ ت ا ب ٌ ⇐ آَِ��بٌ
 un b ā t i k

/kitābun/ ‘a book’

41 / 65

Introduction Boolean retrieval Inverted index Boolean queries Text processing Phrase queries Proximity search

Arabic script: Bidirectionality

�ل ا������132 ��� 1962ا����
 ا��
ا�� �� ��� �� . #"!" ! ا�

 ← → ← → ← START

‘Algeria achieved its independence in 1962 after 132 years of French occupation.’

▶ Bidirectionality is not a problem if text is coded in Unicode.

42 / 65

Introduction Boolean retrieval Inverted index Boolean queries Text processing Phrase queries Proximity search

Accents and diacritics

▶ Accents: résumé vs. resume (simple omission of accent)

▶ Umlauts: Universität vs. Universitaet (substitution “ä” and “ae”)

▶ Most important criterion: How are users likely to write their queries
for these words?

▶ Even in languages that standardly have accents, users often do not
type them (e.g. Czech)

43 / 65

Introduction Boolean retrieval Inverted index Boolean queries Text processing Phrase queries Proximity search

Case folding

▶ Reduce all letters to lower case

▶ Possible exceptions: capitalized words in mid-sentence

Example: MIT vs. mit, Fed vs. fed

▶ It’s often best to lowercase everything since users will use lowercase
regardless of correct capitalization.

44 / 65

Introduction Boolean retrieval Inverted index Boolean queries Text processing Phrase queries Proximity search

Stop words

▶ stop words = extremely common words which would appear to be of
little value in helping select documents matching a user need

▶ Examples: a, an, and, are, as, at, be, by, for, from, has, he, in, is, it, its, of,
on, that, the, to, was, were, will, with

▶ Stop word elimination used to be standard in older IR systems.

▶ But you need stop words for phrase queries, e.g. “King of Denmark”

▶ Most web search engines index stop words.

45 / 65

Introduction Boolean retrieval Inverted index Boolean queries Text processing Phrase queries Proximity search

More equivalence classing

▶ Soundex: phonetic equivalence, e.g. Muller = Mueller

▶ Thesauri: semantic equivalence, e.g. car = automobile

46 / 65

Introduction Boolean retrieval Inverted index Boolean queries Text processing Phrase queries Proximity search

Lemmatization

▶ Reduce inflectional/variant forms to base form

▶ Examples:
▶ am, are, is→ be

▶ car, cars, car’s, cars’→ car

▶ the boy’s cars are different colors→ the boy car be different color

▶ Lemmatization implies doing “proper” reduction to dictionary
headword form (the lemma).

▶ Two types:
▶ inflectional (cutting→ cut)

▶ derivational (destruction→ destroy)

47 / 65

Introduction Boolean retrieval Inverted index Boolean queries Text processing Phrase queries Proximity search

Stemming

▶ Crude heuristic process that chops off the ends of words in the hope
of achieving what “principled” lemmatization attempts to do with a
lot of linguistic knowledge.

▶ Language dependent

▶ Often inflectional and derivational

▶ Example (derivational): automate, automatic, automation all reduce to
automat

48 / 65

Introduction Boolean retrieval Inverted index Boolean queries Text processing Phrase queries Proximity search

Porter algorithm

▶ Most common algorithm for stemming English

▶ Designed in 1980 by Martin Porter, later versions support other
languages (known as snowball)

▶ Results suggest that it is at least as good as other stemming options

▶ Conventions + 5 phases of reductions applied sequentially

▶ Each phase consists of a set of commands.

▶ Sample command: Delete final ement if what remains is longer than 1
character (replacement→ replac, cement→ cement)

▶ Sample convention: Of the rules in a compound command, select the
one that applies to the longest suffix.

49 / 65

Introduction Boolean retrieval Inverted index Boolean queries Text processing Phrase queries Proximity search

Porter stemmer: A few rules

Rule Example
SSES → SS caresses → caress
IES → I ponies → poni
SS → SS caress → caress
S → cats → cat

50 / 65

Introduction Boolean retrieval Inverted index Boolean queries Text processing Phrase queries Proximity search

Three stemmers: A comparison

Sample text: Such an analysis can reveal features that are not easily visible from
the variations in the individual genes and can lead to a picture of
expression that is more biologically transparent and accessible to
interpretation

Porter stemmer: such an analysi can reveal featur that ar not easili visibl from the
variat in the individu gene and can lead to a pictur of express that is
more biolog transpar and access to interpret

Lovins stemmer: such an analys can reve featur that ar not eas vis from th vari in th
individu gen and can lead to a pictur of expres that is mor biolog
transpar and acces to interpres

Paice stemmer: such an analys can rev feat that are not easy vis from the vary in
the individ gen and can lead to a pict of express that is mor biolog
transp and access to interpret

51 / 65

Introduction Boolean retrieval Inverted index Boolean queries Text processing Phrase queries Proximity search

Does stemming improve effectiveness?

▶ In general, stemming increases effectiveness for some queries, and
decreases effectiveness for others.

▶ Queries where stemming is likely to help:

▶ [taRtan sweateRs], [sightseeing touR san fRancisco]

▶ equivalence classes: {sweater,sweaters}, {tour,tours}

▶ Queries where stemming hurts:

▶ [opeRational ReseaRch], [opeRating system], [opeRative dentistRy]

▶ Porter Stemmer equivalence class oper contains all of operate,
operating, operates, operation, operative, operatives, operational.

52 / 65

Introduction Boolean retrieval Inverted index Boolean queries Text processing Phrase queries Proximity search

Phrase queries

53 / 65

Introduction Boolean retrieval Inverted index Boolean queries Text processing Phrase queries Proximity search

Phrase queries

▶ We answer a query such as [stanfoRd univeRsity] – as a phrase.

▶ “The inventor Stanford Ovshinsky never went to university”→ not a
match

▶ The concept of phrase query has proven easily understood by users.

▶ About 10% of web queries are phrase queries.

▶ Consequence for inverted index:
It no longer suffices to store docIDs in postings lists.

▶ Two ways of extending the inverted index:

1. biword index

2. positional index

54 / 65

Introduction Boolean retrieval Inverted index Boolean queries Text processing Phrase queries Proximity search

Biword indexes

▶ Index every consecutive pair of terms in the text as a phrase.

▶ Example: Friends, Romans, Countrymen generate two biwords:
“friends romans” and “romans countrymen”

▶ Each of these biwords is now a vocabulary term.

▶ Two-word phrases can now easily be answered.

55 / 65

Introduction Boolean retrieval Inverted index Boolean queries Text processing Phrase queries Proximity search

Longer phrase queries

▶ A long phrase like “stanford university palo alto” can be represented as
the Boolean query “stanfoRd univeRsity” AND “univeRsity palo”
AND “palo alto”

▶ We need to do post-filtering of hits to identify subset that actually
contains the 4-word phrase.

56 / 65

Introduction Boolean retrieval Inverted index Boolean queries Text processing Phrase queries Proximity search

Issues with biword indexes

Why are biword indexes rarely used?

▶ False positives, as noted above (post-filtering)

▶ Index blow-up due to very large term vocabulary

57 / 65

Introduction Boolean retrieval Inverted index Boolean queries Text processing Phrase queries Proximity search

Positional indexes

▶ Positional indexes are a more efficient alternative to biword indexes.

▶ Postings lists in a nonpositional index: each posting is just a docID

▶ Postings lists in a positional index: each posting is a docID and a list
of positions

58 / 65

Introduction Boolean retrieval Inverted index Boolean queries Text processing Phrase queries Proximity search

Positional indexes: Example

Query: “to1 be2 or3 not4 to5 be6”

to, 993427:
⟨ 1: ⟨7, 18, 33, 72, 86, 231⟩;
2: ⟨1, 17, 74, 222, 255⟩;
4: ⟨8, 16, 190, 429, 433⟩;
5: ⟨363, 367⟩;
7: ⟨13, 23, 191⟩; …⟩

be, 178239:
⟨ 1: ⟨17, 25⟩;
4: ⟨17, 191, 291, 430, 434⟩;
5: ⟨14, 19, 101⟩; …⟩

Document 4 is a match!

59 / 65

Introduction Boolean retrieval Inverted index Boolean queries Text processing Phrase queries Proximity search

Proximity search

60 / 65

Introduction Boolean retrieval Inverted index Boolean queries Text processing Phrase queries Proximity search

Proximity search

▶ We just saw how to use a positional index for phrase searches.

▶ We can also use it for proximity search.

▶ For example: employment /4 place
▶ ⇒ find all documents that contain employment and place within 4

words of each other.

▶ “Employment agencies that place healthcare workers are seeing growth”
→ is a hit.

▶ “Employment agencies that have learned to adapt now place healthcare
workers”→ is not a hit.

61 / 65

Introduction Boolean retrieval Inverted index Boolean queries Text processing Phrase queries Proximity search

Proximity search

▶ Use the positional index

▶ Simplest algorithm: look at all combinations of positions of (i)
employment in document and (ii) place in document

▶ Very inefficient for frequent words, especially stop words

▶ Note that we want to return the actual matching positions, not just a
list of documents.

▶ This is important for dynamic summaries etc.

62 / 65

Introduction Boolean retrieval Inverted index Boolean queries Text processing Phrase queries Proximity search

“Proximity” intersection

PositionalInteRsect(p1, p2, k)
1 answer← ⟨ ⟩
2 while p1 ̸= nil and p2 ≠ nil
3 do if docID(p1) = docID(p2)
4 then l← ⟨ ⟩
5 pp1 ← positions(p1)
6 pp2 ← positions(p2)
7 while pp1 ̸= nil
8 do while pp2 ̸= nil
9 do if |pos(pp1)− pos(pp2)| ≤ k

10 then Add(l, pos(pp2))
11 else if pos(pp2) > pos(pp1)
12 then break
13 pp2 ← next(pp2)
14 while l ̸= ⟨ ⟩ and |l[0]− pos(pp1)| > k
15 do Delete(l[0])
16 for each ps ∈ l
17 do Add(answer, ⟨docID(p1), pos(pp1), ps⟩)
18 pp1 ← next(pp1)
19 p1 ← next(p1)
20 p2 ← next(p2)
21 else if docID(p1) < docID(p2)
22 then p1 ← next(p1)
23 else p2 ← next(p2)
24 return answer

63 / 65

Introduction Boolean retrieval Inverted index Boolean queries Text processing Phrase queries Proximity search

Combination scheme

▶ Biword indexes and positional indexes can be profitably combined.

▶ Many biwords extremely frequent: Michael Jackson, Lady Gaga etc.

▶ For these biwords, increased speed compared to positional postings
intersection is substantial.

▶ Combination scheme: Include frequent biwords as vocabulary terms
in the index. Do all other phrases by positional intersection.

▶ Williams et al. (2004) evaluate a more sophisticated mixed indexing
scheme. Faster than a positional index, at a cost of 26% more space
for index.

64 / 65

Introduction Boolean retrieval Inverted index Boolean queries Text processing Phrase queries Proximity search

“Positional” queries on Google

▶ For web search engines, positional queries are much more expensive
than regular Boolean queries.

▶ Let’s look at the example of phrase queries.

▶ Why are they more expensive than regular Boolean queries?

▶ Can you demonstrate on Google that phrase queries are more
expensive than Boolean queries?

65 / 65

	Introduction
	Boolean retrieval
	Inverted index
	Boolean queries
	Text processing
	Phrase queries
	Proximity search

