Statistical Machine Translation

The Main Idea

• Treat translation as a noisy channel problem:

- The Model: P(E|F) = P(F|E) P(E) / P(F)
- Interested in rediscovering <u>E</u> given <u>F</u>:
 After the usual simplification (P(F) fixed):

$$\operatorname{argmax}_{E} P(E|F) = \operatorname{argmax}_{E} P(F|E) P(E) \bullet$$

The Necessities

- Language Model (LM) P(E)
- Translation Model (TM): Target given source P(F|E)
- Search procedure
 - Given E, find best F using the LM and TM distributions.
- Usual problem: sparse data
 - We cannot create a "sentence dictionary" $E \leftrightarrow F$
 - Typically, we do not see a sentence even twice!

The Language Model

- Any LM will do:
 - 3-gram LM
 - 3-gram class-based LM (cf. HW #2!)
 - decision tree LM with hierarchical classes
- Does not necessarily operates on word forms:
 - cf. later the "analysis" and "generation" procedures
 - for simplicity, imagine now it *does* operate on word forms

The Translation Models

- Do not care about correct strings of English words (that's the task of the LM)
- Therefore, we can make more independence assumptions:
 - for start, use the "tagging" approach:
 - 1 English word ("tag") ~ 1 French word ("word")
 - not realistic: rarely even the number of words is the same in both sentences (let alone there is 1:1 correspondence!)
- \Rightarrow use "Alignment".

The Alignment

5

6

• e₀ And the program has been implemented

4

- f_0 Le programme a été mis en application
 - 0 1 2 3 4 5 6 7
- Linear notation:

1 2 3

()

- $f_0(1)$ Le(2) programme(3) a(4) été(5) mis(6) en(6) application(6)
- e₀ And(0) the(1) program(2) has(3) been(4) implemented(5,6,7)

Alignment Mapping

- In general:
 - |F| = m, |E| = 1 (length of sent.):
 - 1m connections (each French word to any English word),
 - 2^{1m} different alignments for any pair (E,F) (any subset)
- In practice:
 - From English to French
 - each English word 1-n connections (n empirical max.)
 - each French word *exactly* 1 connection
 - therefore, "only" (l+1)^m alignments ($\leq 2^{lm}$)
 - $a_i = i$ (link from j-th French word goes to i-th English word)

Elements of Translation Model(s)

- Basic distribution:
- P(F,A,E) the joint distribution of the English sentence, the Alignment, and the French sentence (length m)
- Interested also in marginal distributions:

 $P(F,E) = \sum_{A} P(F,A,E)$

 $P(F|E) = P(F,E) / P(E) = \Sigma_A P(F,A,E) / \Sigma_{A,F} P(F,A,E) = \Sigma_A P(F,A|E)$

• Useful decomposition [one of possible decompositions]: $P(F,A|E) = P(m | E) \prod_{j=1..m} P(a_j | a_1^{j-1}, f_1^{j-1}, m, E) P(f_j | a_1^{j}, f_1^{j-1}, m, E)$

Decomposition

• Decomposition formula again:

 $P(F,A|E) = P(m | E) \prod_{j=1..m} P(a_j | a_1^{j-1}, f_1^{j-1}, m, E) P(f_j | a_1^{j}, f_1^{j-1}, m, E)$ m - length of French sentence

- a_j the alignment (single connection) going from j-th French w. f_j the j-th French word from F
- a_1^{j-1} sequence of alignments a_i up to the word preceding f_j a_1^{j} - sequence of alignments a_i up to and including the word f_j f_1^{j-1} - sequence of French words up to the word preceding f_j

Decomposition and the Generative Model

• ...and again:

 $P(F,A|E) = P(m | E) \prod_{j=1..m} P(a_j | a_1^{j-1}, f_1^{j-1}, m, E) P(f_j | a_1^{j}, f_1^{j-1}, m, E)$

- Generate:
 - first, the length of the French given the English words E;
 - then, the link from the first position in F (not knowing the actual word yet) \Rightarrow <u>now</u> we know the English word
 - then, given the link (and thus the English word), generate the French word at the current position
 - then, move to the next position in F until m position filled.

Approximations

- Still too many parameters
 - similar situation as in n-gram model with "unlimited" n
 - impossible to estimate reliably.
- Use 5 models, from the simplest to the most complex (i.e. from heavy independence assumptions to light)
- Parameter estimation:

Estimate parameters of Model 1; use as an initial estimate for estimating Model 2 parameters; etc.

Model 1

- Approximations:
 - French length P(m | E) is constant (small ε)
 - Alignment link distribution $P(a_j|a_1^{j-1}, f_1^{j-1}, m, E)$ depends on English length 1 only (= 1/(1+1))
 - French word distribution depends only on the English and French word connected with link a_i.
- \Rightarrow Model 1 distribution:

$$P(F,A|E) = \varepsilon / (l+1)^m \prod_{j=1..m} p(f_j|e_{a_j})$$

Models 2-5

- Model 2
 - adds more detail into $P(a_i|...)$: more "vertical" links preferred
- Model 3
 - adds "fertility" (number of links for a given English word is explicitly modeled: $P(n|e_i)$
 - "distortion" replaces alignment probabilities from Model 2
- Model 4
 - the notion of "distortion" extended to chunks of words
- Model 5 is Model 4, but not deficient (does not waste probability to non-strings)

The Search Procedure

- "Decoder":
 - given "output" (French), discover "input" (English)
- Translation model goes in the opposite direction:
 p(f|e) =
- Naive methods do not work.
- Possible solution (roughly):
 - generate English words one-by-one, keep only n-best (variable n) list; also, account for different lengths of the English sentence candidates!

Analysis - Translation - Generation (A-T-G)

- Word forms: too sparse
- Use four basic analysis, generation steps:
 - tagging
 - lemmatization
 - word-sense disambiguation
 - noun-phrase "chunks" (non-compositional translations)
- Translation proper:
 - use chunks as "words"

Training vs. Test with A-T-G

- Training:
 - analyze both languages using all four analysis steps
 - train TM(s) on the result (i.e. on chunks, tags, etc.)
 - train LM on analyzed source (English)
- Runtime/Test:
 - analyze given language sentence (French) using identical tools as in training
 - translate using the trained Translation/Language model(s)
 - generate source (English), reversing the analysis process

Analysis: Tagging and Morphology

- Replace word forms by morphologically processed text:
 - lemmas
 - tags
 - original approach: mix them into the text, call them "words"
 - e.g. She bought two books. \Rightarrow she buy VBP two book NNS.
- Tagging: yes
 - but reversed order:
 - tag <u>first</u>, then lemmatize [NB: does not work for inflective languages]
 - technically easy
- Hand-written deterministic rules for tag+form \Rightarrow lemma

Word Sense Disambiguation, Word Chunking

- Sets of senses for each E, F word:
 - e.g. book-1, book-2, ..., book-n
 - prepositions (de-1, de-2, de-3,...), many others
- Senses derived automatically using the <u>TM</u>
 - translation probabilities measured on senses: p(de-3|from-5)
- Result:
 - statistical model for assigning senses monolingually based on context (also MaxEnt model used here for each word)
- Chunks: group words for non-compositional translation 2018/2019 UFAL MFF UK NPFL068/Intro to statistical NLP II/Jan Hajic and Pavel Pecina 155

Generation

- Inverse of analysis
- Much simpler:
 - Chunks \Rightarrow words (lemmas) with senses (trivial)
 - Words (lemmas) with senses \Rightarrow words (lemmas) (trivial)
 - Words (lemmas) + tags \Rightarrow word forms
- Additional step:
 - Source-language ambiguity:
 - electric vs. electrical, hath vs. has, you vs. thou: treated as a single unit in translation proper, but must be disambiguated at the end of generation phase; using additional pure LM on word forms.