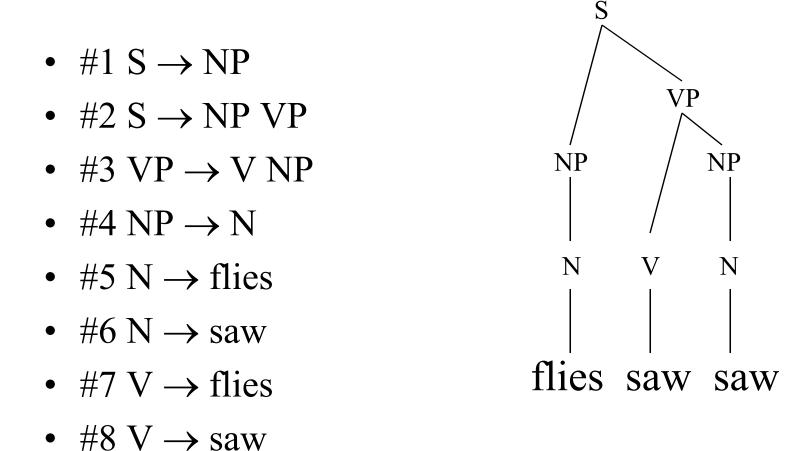
# Parsing: Introduction

### Context-free Grammars

- Chomsky hierarchy
  - Type 0 Grammars/Languages
    - rewrite rules  $\alpha \rightarrow \beta$ ;  $\alpha,\beta$  are any string of terminals and nonterminals
  - Context-sensitive Grammars/Languages
    - rewrite rules:  $\alpha X\beta \rightarrow \alpha \gamma \beta$ , where X is nonterminal,  $\alpha, \beta, \gamma$  any string of terminals and nonterminals ( $\gamma$  must not be empty)

#### - <u>Context-free Grammars/Lanuages</u>

- rewrite rules:  $X \rightarrow \gamma$ , where X is nonterminal,  $\gamma$  any string of terminals and nonterminals
- Regular Grammars/Languages
  - rewrite rules:  $X \rightarrow \alpha Y$  where X,Y are nonterminals,  $\alpha$  string of terminal symbols; Y might be missing


# Parsing Regular Grammars

- Finite state automata
  - Grammar ↔ regular expression ↔ finite state automaton
- Space needed:
  - constant
- Time needed to parse:
  - linear (~ length of input string)
- Cannot do e.g. a<sup>n</sup>b<sup>n</sup>, embedded recursion (context-free grammars can)

### Parsing Context Free Grammars

- Widely used for surface syntax description (or better to say, for correct word-order specification) of natural languages
- Space needed:
  - stack (sometimes stack of stacks)
    - in general: items ~ levels of actual (i.e. in data) recursions
- Time: in general,  $O(n^3)$
- Cannot do: e.g. a<sup>n</sup>b<sup>n</sup>c<sup>n</sup> (Context-sensitive grammars can)

### Example Toy NL Grammar



## Shift-Reduce Parsing in Detail

### Grammar Requirements

- Context Free Grammar with
  - no empty rules (N  $\rightarrow \epsilon$ )
    - can always be made from a general CFG, except there might remain one rule  $S \rightarrow \epsilon$  (easy to handle separately)
  - recursion OK
- Idea:
  - go bottom-up (otherwise: problems with recursion)
  - construct a Push-down Automaton (non-deterministic in general, PNA)

delay rule acceptance until all of a (possible) rule parsed
 2018/2019 UFAL MFF UK NPFL068/Intro to statistical NLP II/Jan Hajic and Pavel Pecina 80

# PNA Construction -Elementary Procedures

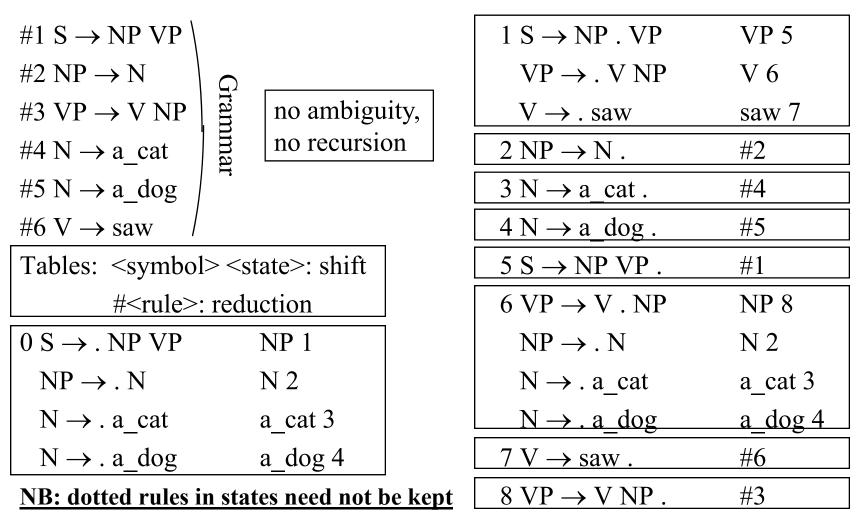
- Initialize-Rule-In-State(q,A  $\rightarrow \alpha$ ) procedure:
  - Add the rule  $(A \rightarrow \alpha)$  into a state q.
  - Insert a dot in front of the R[ight]H[and]S[ide]: A  $\rightarrow$  .  $\alpha$
- Initialize-Nonterminal-In-State(q,A) procedure:
  - Do "Initialize-Rule-In-State(q,A  $\rightarrow \alpha$ )" for all rules having the nonterminal A on the L[eft]H[and]S[ide]
- Move-Dot-In-Rule( $q, A \rightarrow \alpha \cdot Z\beta$ ) procedure:
  - Create a new rule in state q:  $A \rightarrow \alpha Z$ .  $\beta$ , Z term. or not

### PNA Construction

- Put 0 into the (FIFO/LIFO) list of incomplete states, and do Initialize-Nonterminal-In-State(0,S)
- Until the list of incomplete states is not empty, do:
  - 1. Get one state, i from the list of incomplete states.
  - 2. Expand the state:
    - Do recursively Initialize-Nonterminal-In-State(i,A) for all nonterminals A right <u>after</u> the dot in any of the rules in state i.
  - 3. If the state matches exactly some other state already in the list of complete states, renumber all shift-references to it to the old state and discard the current state.

## PNA Construction (Cont.)

- 4. Create a set T of Shift-References (or, transition/continuation links) for the current state i {(Z,x)}:
  - Suppose the highest number of a state in the incomplete state list is n.
  - For each symbol Z (regardless if terminal or nonterminal) which appears after the dot in any rule in the current state q, do:
    - increase n to n+1
    - add (Z,n) to T
      - *NB: each symbol gets only one Shift-Reference, regardless of how many times (i.e. in how many rules) it appears to the right of a dot.*
    - Add n to the list of incomplete states
    - Do Move-Dot-In-Rule( $n, A \rightarrow \alpha . Z\beta$ )
- 5. Create Reduce-References for each rule in the current state i:
  - For each rule of the form  $(A \rightarrow \alpha .)$  (i.e. dot at the end) in the current state, attach to it the rule number <u>r</u> of the rule  $A \rightarrow \alpha$  from the grammar.


# Using the PNA (Initialize)

- Maintain two stacks, the <u>input</u> stack I and the <u>state</u> stack Q.
- Maintain a stack B[acktracking] of the two stacks.
- Initialize the I stack to the input string (of terminal symbols), so that the first symbol is on top of it.
- Initialize the stack Q to contain state 0.
- Initialize the stack B to empty.

# Using the PNA (Parse)

- Do until you are not stuck and/or B is empty:
  - Take the top of stack Q state ("current" state  $\underline{i}$ ).
  - Put all possible reductions in state <u>i</u> on stack B, including the contents of the current stacks I and Q.
  - Get the symbol from the top of the stack I (symbol Z).
  - If (Z,x) exists in the set T associated with the current state
     <u>i</u>, push state x onto the stack Q and remove Z from I.
     Continue from beginning.
  - Else pop the first possibility from B, remove <u>n</u> symbols from the stack Q, and push A to I, where  $A \rightarrow Z_1...Z_n$  is the rule according which you are reducing.

### Small Example



### Small Example: Parsing(1)

#### • To parse: a dog saw a cat

Input stack (top on the left) Rule State stack (top on the left) Comment(s)

| ٠ | a_dog saw a_cat |    | 0   |                                  |
|---|-----------------|----|-----|----------------------------------|
| • | saw a_cat       |    | 4 0 | shift to 4 over a_dog            |
| ٠ | N saw a_cat     | #5 | 0   | reduce #5: N $\rightarrow$ a_dog |
| • | saw a_cat       |    | 2 0 | shift to 2 over N                |
| ٠ | NP saw a_cat    | #2 | 0   | reduce #2: NP $\rightarrow$ N    |
| ٠ | saw a_cat       |    | 10  | shift to 1 over NP               |
| ٠ | a_cat           |    | 710 | shift to 7 over saw              |
| ٠ | V a_cat         | #6 | 1 0 | reduce #6: $V \rightarrow saw$   |

### Small Example: Parsing (2)

#### • ...still parsing: a\_dog saw a\_cat

| ٠  | [V a_cat                                                                                | #6 | 1 0] $\leftarrow$ Previous parser configuration |                                          |  |  |  |  |
|----|-----------------------------------------------------------------------------------------|----|-------------------------------------------------|------------------------------------------|--|--|--|--|
| •  | a_cat                                                                                   |    | 610                                             | shift to 6 over V                        |  |  |  |  |
| ٠  |                                                                                         |    | 3610                                            | empty input stack (not finished though!) |  |  |  |  |
| •  | Ν                                                                                       | #4 | 610                                             | N inserted back                          |  |  |  |  |
| •  |                                                                                         |    | 2610                                            | again empty input stack                  |  |  |  |  |
| ٠  | NP                                                                                      | #2 | 610                                             |                                          |  |  |  |  |
| •  |                                                                                         |    | 8610                                            | and again                                |  |  |  |  |
| ٠  | VP                                                                                      | #3 | 10                                              | two states removed ( RHS(#3) =2)         |  |  |  |  |
| ٠  |                                                                                         |    | 510                                             |                                          |  |  |  |  |
| ٠  | S                                                                                       | #1 | 0                                               | again, two items removed (RHS: NP VP)    |  |  |  |  |
| Sı | Success: S/0 alone in input/state stack; reverse right derivation: 1,3,2,4,6,2,5        |    |                                                 |                                          |  |  |  |  |
|    | 2018/2019 UFAL MFF UK NPFL068/Intro to statistical NLP II/Jan Hajic and Pavel Pecina 88 |    |                                                 |                                          |  |  |  |  |

# Big Example: Ambiguous and Recursive Grammar

- #1 S  $\rightarrow$  NP VP
- $#2 \text{ NP} \rightarrow \text{NP REL VP}$
- $#3 \text{ NP} \rightarrow \text{N}$
- #4 NP  $\rightarrow$  N PP
- $#5 \text{ VP} \rightarrow \text{V NP}$
- $#6 \text{ VP} \rightarrow \text{V} \text{ NP} \text{ PP}$
- $\#7 \text{ VP} \rightarrow \text{VPP}$
- $#8 PP \rightarrow PREP NP$

- $#9 \text{ N} \rightarrow a_\text{cat}$
- $\#10 \text{ N} \rightarrow a\_dog$
- #11 N  $\rightarrow$  a\_hat
- #12 PREP  $\rightarrow$  in
- #13 REL  $\rightarrow$  that
- #14 V  $\rightarrow$  saw
- #15 V  $\rightarrow$  heard

### Big Example: Tables (1)

| $0 \text{ S} \rightarrow . \text{NP VP}$ | NP    | 1  | $2 \text{ NP} \rightarrow \text{N}$ .     | #3   |    |
|------------------------------------------|-------|----|-------------------------------------------|------|----|
| $NP \rightarrow . NP REL VP$             |       |    | $NP \rightarrow N \cdot PP$               | PP   | 12 |
| $NP \rightarrow . N$                     | Ν     | 2  | $PP \rightarrow . PREP NP$                | PREP | 13 |
| $NP \rightarrow . N PP$                  |       |    | $PREP \to . \text{ in }$                  | in   | 14 |
| $N \rightarrow . a_{cat}$                | a_cat | 3  |                                           |      |    |
| $N \rightarrow . a_dog$                  | a_dog | 4  | $3 \text{ N} \rightarrow a_\text{cat}$ .  | #9   |    |
| $N \rightarrow . a_{mirror}$             | a_hat | 5  |                                           |      |    |
|                                          |       |    | $4 \text{ N} \rightarrow a_{dog}$ .       | #10  |    |
| $1 \text{ S} \rightarrow \text{NP}$ . VP | VP    | 6  |                                           |      |    |
| $NP \rightarrow NP$ . REL VP             | REL   | 7  | $5 \text{ N} \rightarrow a \text{_hat}$ . | #11  |    |
| $VP \rightarrow . V NP$                  | V     | 8  |                                           |      |    |
| $VP \rightarrow . V NP PP$               |       |    | $6 \text{ S} \rightarrow \text{NP VP}$ .  | #1   |    |
| $VP \rightarrow . V PP$                  |       |    |                                           |      |    |
| $REL \rightarrow .$ that                 | that  | 9  |                                           |      |    |
| $V \rightarrow .$ saw                    | saw   | 10 |                                           |      |    |
| $V \rightarrow .$ heard                  | heard | 11 |                                           |      |    |

## Big Example: Tables (2)

| $7 \text{ NP} \rightarrow \text{NP REL} \cdot \text{VP}$ | VP    | 15 | 9 REL $\rightarrow$ that .                   | #13   |    |
|----------------------------------------------------------|-------|----|----------------------------------------------|-------|----|
| $VP \rightarrow . V NP$                                  | V     | 8  |                                              |       |    |
| $VP \rightarrow . V NP PP$                               |       |    | $10 \text{ V} \rightarrow \text{saw}$ .      | #14   |    |
| $VP \rightarrow . V PP$                                  |       |    |                                              |       |    |
| $V \rightarrow .$ saw                                    | saw   | 10 | 11 V $\rightarrow$ heard.                    | #15   |    |
| $V \rightarrow .$ heard                                  | heard | 11 |                                              |       |    |
|                                                          |       |    | $12 \text{ NP} \rightarrow \text{NP PP}$ .   | #4    |    |
| $8 \text{ VP} \rightarrow \text{V} \cdot \text{NP}$      | NP    | 16 |                                              |       |    |
| $VP \rightarrow V . NP PP$                               |       |    | $13 \text{ PP} \rightarrow \text{PREP}$ . NP | NP    | 18 |
| $VP \rightarrow V \cdot PP$                              | PP    | 17 | $NP \rightarrow . NP REL VP$                 |       |    |
| $NP \rightarrow . NP REL VP$                             |       |    | $NP \rightarrow . N$                         | Ν     | 2  |
| $NP \rightarrow . N$                                     | Ν     | 2  | $NP \rightarrow . N PP$                      |       |    |
| $NP \rightarrow . N PP$                                  |       |    | $N \rightarrow . a_cat$                      | a_cat | 3  |
| $N \rightarrow . a_cat$                                  | a_cat | 3  | $N \rightarrow . a_dog$                      | a_dog | 4  |
| $N \rightarrow . a_dog$                                  | a_dog | 4  | $N \rightarrow . a_{hat}$                    | a_hat | 5  |
| $N \rightarrow . a_{hat}$                                | a_hat | 5  |                                              |       |    |
| $PP \rightarrow . PREP NP$                               | PREP  | 13 |                                              |       |    |
| $PREP \to . \text{ in }$                                 | in    | 14 |                                              |       |    |

## Big Example: Tables (3)

| 14 PREP $\rightarrow$ in .                                                                                                                                                    | #12                                   |                          | $19 \text{ VP} \rightarrow \text{V NP PP} . \qquad \#6$                                                                                                                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $15 \text{ NP} \rightarrow \text{NP REL VP}$ .                                                                                                                                | #2                                    |                          | Comments:                                                                                                                                                                                        |
| 16 VP $\rightarrow$ V NP .<br>VP $\rightarrow$ V NP . PP<br>NP $\rightarrow$ NP . REL VP<br>PP $\rightarrow$ . PREP NP<br>PREP $\rightarrow$ . in<br>REL $\rightarrow$ . that | #5<br>PP<br>REL<br>PREP<br>in<br>that | 19<br>7<br>13<br>14<br>9 | <ul> <li>states 2, 16, 18 have shift-reduce conflict</li> <li>no states with reduce-reduce conflict</li> <li>also, again there is no need to store the dotted rules in the states for</li> </ul> |
| $17 \text{ VP} \rightarrow \text{V PP}$ .                                                                                                                                     | #7                                    |                          | parsing. Simply store the pair input/goto-state, or the rule numbe                                                                                                                               |
| $18 \text{ PP} \rightarrow \text{PREP NP} .$<br>NP $\rightarrow$ NP . REL VP<br>REL $\rightarrow$ . that                                                                      | #8<br>REL<br>that 9                   | 7                        |                                                                                                                                                                                                  |

## Big Example: Parsing (1)

| <ul> <li>To parse: a_dog heard a_cat in a_hat</li> </ul> |                        |                                   |  |  |  |
|----------------------------------------------------------|------------------------|-----------------------------------|--|--|--|
| Input stack (top on the left)                            | State stack (top on th | State stack (top on the left)     |  |  |  |
| Ru                                                       | ule Backtrack          | Comment(s)                        |  |  |  |
| <ul> <li>a_dog heard a_cat in a_hat</li> </ul>           | 0                      | shifted to 4 over a_dog           |  |  |  |
| • heard a_cat in a_hat                                   | 4 0                    | shift to 4 over a_dog             |  |  |  |
| • N heard a_cat in a_hat #1                              | 10 0                   | reduce #10: N $\rightarrow$ a_dog |  |  |  |
| <ul> <li>heard a_cat in a_hat</li> </ul>                 | 20                     | shift to 2 over N <sup>1</sup>    |  |  |  |
| • NP heard a_cat in a_hat #3                             | 3 0                    | reduce #3: NP $\rightarrow$ N     |  |  |  |
| <ul> <li>heard a_cat in a_hat</li> </ul>                 | 1 0                    | shift to 1 over NP                |  |  |  |
| <ul> <li>a_cat in a_hat</li> </ul>                       | 11 1 0                 | shift to 11 over heard            |  |  |  |
| • V a_cat in a_hat #1                                    | 15 10                  | reduce #15: V $\rightarrow$ heard |  |  |  |
| • a_cat in a_hat                                         | 810                    | shift to 8 over V                 |  |  |  |

<sup>1</sup>see also next slide, last comment

### Big Example: Parsing (2)

• ...still parsing: a\_dog heard a\_cat in a\_hat

|   | Input stack (top on the left) |      | State stack (top on the left)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                  |  |
|---|-------------------------------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--|
|   |                               | Rule | Backtrack                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Comment(s)                       |  |
| • | [a_cat in a_hat               |      | $8 \ 1 \ 0$ ] $\leftarrow$ [previous particular equation (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) | arser configuration]             |  |
| • | in a_hat                      |      | 3810                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | shift to 3 over a_cat            |  |
| • | N in a_hat                    | #9   | 810                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | reduce #9: N $\rightarrow$ a_cat |  |
| • | in a_hat                      |      | $2 8 1 0 \otimes$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | shift to 2 over N; see           |  |
|   |                               |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | why we need the state            |  |
|   |                               |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | stack? we are in 2 again,        |  |
|   |                               |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | but after we return, we          |  |
|   |                               |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                  |  |

will be in 8 not 0;

also save for backtrack<sup>1</sup>!

<sup>1</sup>the whole input stack, state stack, and [reversed] list of rules used for reductions so far must be saved on the backtrack stack

# Big Example: Parsing (3)

• ...still parsing: a\_dog heard a\_cat in a\_hat

|   | Input stack (top on the left) |      | State stack (top on the left)                    |                                                |  |
|---|-------------------------------|------|--------------------------------------------------|------------------------------------------------|--|
|   |                               | Rule | Backtrack                                        | Comment(s)                                     |  |
| ٠ | [in a_hat                     |      | $2 8 1 0 \otimes ] \leftarrow [\text{previous}]$ | ous parser configuration]                      |  |
| • | a_hat                         |      | 142810                                           | shift to 14 over in                            |  |
| • | PREP a_hat                    | #12  | 2810                                             | reduce #12: PREP $\rightarrow$ in <sup>1</sup> |  |
| • | a_hat                         |      | 13 2 8 1 0                                       | shift to 13 over PREP                          |  |
| • |                               |      | 5 13 2 8 1 0                                     | shift to 5 over a_hat                          |  |
| • | Ν                             | #11  | 13 2 8 1 0                                       | reduce #11: N $\rightarrow$ a_hat              |  |
| • |                               |      | 2 13 2 8 1 0                                     | shift to 2 over N                              |  |
| • | NP                            | #3   | 13 2 8 1 0                                       | shift not possible; reduce                     |  |
|   |                               |      |                                                  | #3: NP $\rightarrow$ N <sup>1 on s.19</sup>    |  |
| • |                               |      | 18 13 2 8 1 0                                    | shift to 18 over NP                            |  |
| 4 |                               |      |                                                  |                                                |  |

<sup>1</sup>when coming back to an ambiguous state [here: state 2] (after some reduction), reduction(s) are not considered; nothing put on backtrk stack 2018/2019 UFAL MFF UK NPFL068/Intro to statistical NLP II/Jan Hajic and Pavel Pecina 95

# Big Example: Parsing (4)

• ...still parsing: a\_dog heard a\_cat in a\_hat

|   | Input stack (top on the left) |      | State stack (top on the left)                                    |                                          |  |
|---|-------------------------------|------|------------------------------------------------------------------|------------------------------------------|--|
|   |                               | Rule | Backtrack                                                        | Comment(s)                               |  |
| • | [                             |      | $18\ 13\ 2\ 8\ 1\ 0] \leftarrow [procession 18\ 13\ 2\ 8\ 1\ 0]$ | evious parser config.]                   |  |
| • | PP                            | #8   | 2810                                                             | shift not possible;                      |  |
|   |                               |      |                                                                  | reduce $#8^{1 \text{ on s. 19}}$ :       |  |
|   |                               |      |                                                                  | $PP \rightarrow PREP NP^{1, prev.slide}$ |  |
| ٠ |                               |      | 122810                                                           | shift to 12 over PP                      |  |
| ٠ | NP                            | #4   | 810                                                              | reduce #4: NP $\rightarrow$ N PP         |  |
| • |                               |      | 16810                                                            | shift to 16 over NP                      |  |
| • | VP                            | #5   | 1 0                                                              | shift not possible,                      |  |
|   |                               |      |                                                                  | reduce $#5^1: VP \rightarrow V NP$       |  |

<sup>1</sup>no need to keep the item on the backtrack stack; no shift possible now and there is only one reduction (#5) in state 16

# Big Example: Parsing (5)

• ...still parsing: a\_dog heard a\_cat in a\_hat

|   | Input stack (top on the left) |      | State stack (top on the left)           |                                        |  |
|---|-------------------------------|------|-----------------------------------------|----------------------------------------|--|
|   |                               | Rule | Backtrack                               | Comment(s)                             |  |
| • | [VP                           | #5   | $1 0] \leftarrow [\text{previous par}]$ | ser configuration]                     |  |
| • |                               |      | 610                                     | shift to 6 over VP                     |  |
| • | S                             | #1   | 0                                       | reduce #1: S $\rightarrow$ NP VP       |  |
|   |                               |      |                                         | first solution found:                  |  |
|   |                               |      |                                         | 1,5,4,8,3,11,12,9,15,3,10              |  |
|   |                               |      |                                         | backtrack to previous $\otimes$ :      |  |
| • | in a_hat                      |      | 2810                                    | was: shift over in, now <sup>1</sup> : |  |
| • | NP in a_hat                   | #3   | 8 1 0                                   | reduce #3: NP $\rightarrow$ N          |  |
| • | in a_hat                      |      | $16 \ 8 \ 1 \ 0 \otimes$                | shift to 16 over NP                    |  |
| • | a_hat                         |      | 14 16 8 1 0                             | shift, but put on backtrk              |  |

<sup>1</sup>no need to keep the item on the backtrack stack; no shift possible now and there is only one reduction (#3) in state 2 2018/2019 UFAL MFF UK NPFL068/Intro to statistical NLP II/Jan Hajic and Pavel Pecina 97

# Big Example: Parsing (6)

• ...still parsing: a\_dog heard a\_cat in a\_hat

|   | Input stack (top on the left) |      | State stack (top on the left)             |                                          |  |
|---|-------------------------------|------|-------------------------------------------|------------------------------------------|--|
|   |                               | Rule | Backtrack                                 | Comment(s)                               |  |
| • | [a_hat                        |      | $14\ 16\ 8\ 1\ 0 \otimes] \leftarrow [pr$ | revious parser config.]                  |  |
| • | PREP a_hat                    | #12  | 16810                                     | reduce #12: PREP $\rightarrow$ in        |  |
| ٠ | a_hat                         |      | 13 16 8 1 0                               | shift over PREP <sup>1 on s.17</sup>     |  |
| ٠ |                               |      | 5 13 16 8 1 0                             | shift over a_hat to 5                    |  |
| • | Ν                             | #11  | 13 16 8 1 0                               | reduce #11: N $\rightarrow$ a_hat        |  |
| ٠ |                               |      | 2 13 16 1 0                               | shift to 2 over N                        |  |
| • | NP                            | #3   | 13 16 1 0                                 | shift not possible <sup>1 on s.19</sup>  |  |
| • |                               |      | 18 13 16 1 0                              | shift to 18                              |  |
| • | PP                            | #8   | 16 1 0                                    | shift not possible <sup>1</sup> , red.#8 |  |
| • |                               |      | 19 16 1 0                                 | shift to 19 <sup>1 on s.17</sup>         |  |
|   |                               |      |                                           |                                          |  |

<sup>1</sup>no need to keep the item on the backtrack stack; no shift possible now and there is only one reduction (#8) in state 18 2018/2019 UFAL MFF UK NPFL068/Intro to statistical NLP II/Jan Hajic and Pavel Pecina 98

# Big Example: Parsing (7)

• ...still parsing: a\_dog heard a\_cat in a\_hat

|   | Input stack (top on the left)                   |                | State stack (top on the left)       |                                                   |
|---|-------------------------------------------------|----------------|-------------------------------------|---------------------------------------------------|
|   |                                                 | Rule           | Backtrack                           | Comment(s)                                        |
| • | [                                               |                | 19 16 8 1 0] ← [pi                  | revious parser config.]                           |
| • | VP                                              | #6             | 1 0                                 | red. #6: VP $\rightarrow$ V NP PP                 |
| • |                                                 |                | 610                                 | shift to 6 over VP                                |
| • | S                                               | #1             | 0                                   | next (2 <sup>nd</sup> ) solution:                 |
|   |                                                 |                |                                     | 1,6,8,3,11,12,3, <sup>1</sup> 9,15,3,10           |
|   |                                                 |                |                                     | backtrack to previous $\otimes$ :                 |
| • | in a_hat                                        |                | 16810                               | was: shift over in <sup>1 on s.19</sup> ,         |
| • | VP in a_hat                                     | #5             | 1 0                                 | now red. #5: $VP \rightarrow V NP$                |
| • | in a_hat                                        |                | 610                                 | shift to 6 over VP                                |
| • | S in a_hat                                      | #1             | 0                                   | error <sup>2</sup> ; backtrack empty: <u>stop</u> |
|   | ntinue list of rules at the orig, backtrack mar | k (s.16.1ine 3 | $^{2}$ S (the start symbol) not all | lone in input stack when state stack $= (0)$      |

<sup>1</sup>continue list of rules at the orig. backtrack mark (s.16,line 3) <sup>2</sup>S (the start symbol) not alone in input stack when state stack = (0) 2018/2019 UFAL MFF UK NPFL068/Intro to statistical NLP II/Jan Hajic and Pavel Pecina 99