
Parsing: Introduction

2018/2019 UFAL MFF UK NPFL068/Intro to statistical NLP II/Jan Hajic and Pavel Pecina 75

Context-free Grammars
• Chomsky hierarchy

– Type 0 Grammars/Languages
• rewrite rules ; are any string of terminals and nonterminals

– Context-sensitive Grammars/Languages
• rewrite rules: X where X is nonterminal, any string of

terminals and nonterminals (must not be empty)

– Context-free Grammars/Lanuages
• rewrite rules: X where X is nonterminal, any string of terminals and

nonterminals

– Regular Grammars/Languages
• rewrite rules: X Y where X,Y are nonterminals, string of terminal

symbols; Y might be missing

2018/2019 UFAL MFF UK NPFL068/Intro to statistical NLP II/Jan Hajic and Pavel Pecina 76

Parsing Regular Grammars

• Finite state automata
– Grammar regular expression finite state

automaton

• Space needed:
– constant

• Time needed to parse:
– linear (~ length of input string)

• Cannot do e.g. anbn , embedded recursion (context-
free grammars can)

2018/2019 UFAL MFF UK NPFL068/Intro to statistical NLP II/Jan Hajic and Pavel Pecina 77

Parsing Context Free Grammars

• Widely used for surface syntax description (or
better to say, for correct word-order specification)
of natural languages

• Space needed:
– stack (sometimes stack of stacks)

• in general: items ~ levels of actual (i.e. in data) recursions

• Time: in general, O(n3)
• Cannot do: e.g. anbncn (Context-sensitive

grammars can)

2018/2019 UFAL MFF UK NPFL068/Intro to statistical NLP II/Jan Hajic and Pavel Pecina 78

Example Toy NL Grammar

• #1 S NP
• #2 S NP VP
• #3 VP V NP
• #4 NP N
• #5 N flies
• #6 N saw
• #7 V flies
• #8 V saw

flies saw saw

N V N

NP NP

VP

S

Shift-Reduce Parsing in Detail

2018/2019 UFAL MFF UK NPFL068/Intro to statistical NLP II/Jan Hajic and Pavel Pecina 80

Grammar Requirements

• Context Free Grammar with
– no empty rules (N)

• can always be made from a general CFG, except there might
remain one rule S (easy to handle separately)

– recursion OK

• Idea:
– go bottom-up (otherwise: problems with recursion)
– construct a Push-down Automaton (non-deterministic in

general, PNA)
– delay rule acceptance until all of a (possible) rule parsed

2018/2019 UFAL MFF UK NPFL068/Intro to statistical NLP II/Jan Hajic and Pavel Pecina 81

PNA Construction -
Elementary Procedures

• Initialize-Rule-In-State(q,A) procedure:
– Add the rule (A) into a state q.
– Insert a dot in front of the R[ight]H[and]S[ide]: A

• Initialize-Nonterminal-In-State(q,A) procedure:
– Do “Initialize-Rule-In-State(q,A)” for all rules having

the nonterminal A on the L[eft]H[and]S[ide]

• Move-Dot-In-Rule(q,A) procedure:
– Create a new rule in state q: A , Z term. or not

2018/2019 UFAL MFF UK NPFL068/Intro to statistical NLP II/Jan Hajic and Pavel Pecina 82

PNA Construction

• Put 0 into the (FIFO/LIFO) list of incomplete states,
and do Initialize-Nonterminal-In-State(0,S)

• Until the list of incomplete states is not empty, do:
1. Get one state, i from the list of incomplete states.
2. Expand the state:

• Do recursively Initialize-Nonterminal-In-State(i,A) for all
nonterminals A right after the dot in any of the rules in state i.

3. If the state matches exactly some other state already in the
list of complete states, renumber all shift-references to it to
the old state and discard the current state.

2018/2019 UFAL MFF UK NPFL068/Intro to statistical NLP II/Jan Hajic and Pavel Pecina 83

PNA Construction (Cont.)
4. Create a set T of Shift-References (or, transition/continuation

links) for the current state i {(Z,x)}:
• Suppose the highest number of a state in the incomplete state list is n.
• For each symbol Z (regardless if terminal or nonterminal) which appears

after the dot in any rule in the current state q, do:
– increase n to n+1
– add (Z,n) to T

• NB: each symbol gets only one Shift-Reference, regardless of how
many times (i.e. in how many rules) it appears to the right of a dot.

– Add n to the list of incomplete states
– Do Move-Dot-In-Rule(n,A)

5. Create Reduce-References for each rule in the current state i:
• For each rule of the form (A (i.e. dot at the end) in the current

state, attach to it the rule number r of the rule A from the grammar.

2018/2019 UFAL MFF UK NPFL068/Intro to statistical NLP II/Jan Hajic and Pavel Pecina 84

Using the PNA (Initialize)

• Maintain two stacks, the input stack I and the state
stack Q.

• Maintain a stack B[acktracking] of the two stacks.
• Initialize the I stack to the input string (of terminal

symbols), so that the first symbol is on top of it.
• Initialize the stack Q to contain state 0.
• Initialize the stack B to empty.

2018/2019 UFAL MFF UK NPFL068/Intro to statistical NLP II/Jan Hajic and Pavel Pecina 85

Using the PNA (Parse)
• Do until you are not stuck and/or B is empty:

– Take the top of stack Q state (“current” state i).
– Put all possible reductions in state i on stack B, including

the contents of the current stacks I and Q.
– Get the symbol from the top of the stack I (symbol Z).
– If (Z,x) exists in the set T associated with the current state

i, push state x onto the stack Q and remove Z from I.
Continue from beginning.

– Else pop the first possibility from B, remove n symbols
from the stack Q, and push A to I, where A Z1...Zn is the
rule according which you are reducing.

2018/2019 UFAL MFF UK NPFL068/Intro to statistical NLP II/Jan Hajic and Pavel Pecina 86

Small Example
#1 S NP VP 1 S NP . VP VP 5
#2 NP VP V NP V 6
#3 VP V NP V saw saw 7
#4 N a_cat 2 NP #2
#5 N a_dog 3 N a_cat . #4
#6 V saw 4 N a_dog . #5
Tables: <symbol> <state>: shift 5 S NP VP . #1

#<rule>: reduction 6 VP V . NP NP 8
0 S NP VP NP 1 NP

NP N a_cat a_cat 3
N a_cat a_cat 3 N a_dog a_dog 4
N a_dog a_dog 4 7 V saw . #6

NB: dotted rules in states need not be kept 8 VP V NP . #3
G

ram
m

ar

no ambiguity,
no recursion

2018/2019 UFAL MFF UK NPFL068/Intro to statistical NLP II/Jan Hajic and Pavel Pecina 87

Small Example: Parsing(1)

• To parse: a_dog saw a_cat
Input stack (top on the left) Rule State stack (top on the left) Comment(s)
• a_dog saw a_cat 0
• saw a_cat 4 0 shift to 4 over a_dog
• N saw a_cat #5 0 reduce #5: N a_dog
• saw a_cat 2 0 shift to 2 over N
• NP saw a_cat #2 0 reduce #2: NP
• saw a_cat 1 0 shift to 1 over NP
• a_cat 7 1 0 shift to 7 over saw
• V a_cat #6 1 0 reduce #6: V saw

2018/2019 UFAL MFF UK NPFL068/Intro to statistical NLP II/Jan Hajic and Pavel Pecina 88

Small Example: Parsing (2)

• ...still parsing: a_dog saw a_cat
• [V a_cat #6 1 0] Previous parser configuration
• a_cat 6 1 0 shift to 6 over V
• 3 6 1 0 empty input stack (not finished though!)
• N #4 6 1 0 N inserted back
• 2 6 1 0 ...again empty input stack
• NP #2 6 1 0
• 8 6 1 0 ...and again
• VP #3 1 0 two states removed (|RHS(#3)|=2)
• 5 1 0
• S #1 0 again, two items removed (RHS: NP VP)
Success: S/0 alone in input/state stack; reverse right derivation: 1,3,2,4,6,2,5

2018/2019 UFAL MFF UK NPFL068/Intro to statistical NLP II/Jan Hajic and Pavel Pecina 89

Big Example:
Ambiguous and Recursive Grammar

• #1 S NP VP #9 N a_cat
• #2 NP NP REL VP #10 N a_dog
• #3 NP N #11 N a_hat
• #4 NP N PP #12 PREP in
• #5 VP V NP #13 REL that
• #6 VP V NP PP #14 V saw
• #7 VP V PP #15 V heard
• #8 PP PREP NP

2018/2019 UFAL MFF UK NPFL068/Intro to statistical NLP II/Jan Hajic and Pavel Pecina 90

Big Example: Tables (1)
0 S . NP VP NP 1

NP . NP REL VP
NP . N N 2
NP . N PP
N . a_cat a_cat 3
N . a_dog a_dog 4
N . a_mirror a_hat 5

1 S NP . VP VP 6
NP NP . REL VP REL 7
VP . V NP V 8
VP . V NP PP
VP . V PP
REL . that that 9
V . saw saw 10
V . heard heard 11

2 NP N . #3
NP N . PP PP 12
PP . PREP NP PREP 13
PREP . in in 14

3 N a_cat . #9

4 N a_dog . #10

5 N a_hat . #11

6 S NP VP . #1

2018/2019 UFAL MFF UK NPFL068/Intro to statistical NLP II/Jan Hajic and Pavel Pecina 91

Big Example: Tables (2)
7 NP NP REL . VP VP 15

VP . V NP V 8
VP . V NP PP
VP . V PP
V . saw saw 10
V . heard heard 11

8 VP V . NP NP 16
VP V . NP PP
VP V . PP PP 17
NP . NP REL VP
NP . N N 2
NP . N PP
N . a_cat a_cat 3
N . a_dog a_dog 4
N . a_hat a_hat 5
PP . PREP NP PREP 13
PREP . in in 14

9 REL that . #13

10 V saw . #14

11 V heard . #15

12 NP NP PP . #4

13 PP PREP . NP NP 18
NP . NP REL VP
NP . N N 2
NP . N PP
N . a_cat a_cat 3
N . a_dog a_dog 4
N . a_hat a_hat 5

2018/2019 UFAL MFF UK NPFL068/Intro to statistical NLP II/Jan Hajic and Pavel Pecina 92

Big Example: Tables (3)
14 PREP in . #12

15 NP NP REL VP . #2

16 VP V NP . #5
VP V NP . PP PP 19
NP NP . REL VP REL 7
PP . PREP NP PREP 13
PREP . in in 14
REL . that that 9

17 VP V PP . #7

18 PP PREP NP . #8
NP NP . REL VP REL 7
REL . that that 9

19 VP V NP PP . #6

Comments:
- states 2, 16, 18 have shift-reduce

conflict
- no states with reduce-reduce

conflict
- also, again there is no need to store

the dotted rules in the states for
parsing. Simply store the pair
input/goto-state, or the rule number.

2018/2019 UFAL MFF UK NPFL068/Intro to statistical NLP II/Jan Hajic and Pavel Pecina 93

Big Example: Parsing (1)

• To parse: a_dog heard a_cat in a_hat
Input stack (top on the left) State stack (top on the left)

Rule Backtrack Comment(s)
• a_dog heard a_cat in a_hat 0 shifted to 4 over a_dog
• heard a_cat in a_hat 4 0 shift to 4 over a_dog
• N heard a_cat in a_hat #10 0 reduce #10: N a_dog
• heard a_cat in a_hat 2 0 shift to 2 over N1

• NP heard a_cat in a_hat #3 0 reduce #3: NP
• heard a_cat in a_hat 1 0 shift to 1 over NP
• a_cat in a_hat 11 1 0 shift to 11 over heard
• V a_cat in a_hat #15 1 0 reduce #15: V heard
• a_cat in a_hat 8 1 0 shift to 8 over V
1see also next slide, last comment

2018/2019 UFAL MFF UK NPFL068/Intro to statistical NLP II/Jan Hajic and Pavel Pecina 94

Big Example: Parsing (2)

• ...still parsing: a_dog heard a_cat in a_hat
Input stack (top on the left) State stack (top on the left)

Rule Backtrack Comment(s)
• [a_cat in a_hat 8 1 0] [previous parser configuration]
• in a_hat 3 8 1 0 shift to 3 over a_cat
• N in a_hat #9 8 1 0 reduce #9: N a_cat
• in a_hat 2 8 1 0 shift to 2 over N; see

why we need the state
stack? we are in 2 again,
but after we return, we
will be in 8 not 0;
also save for backtrack1!

1the whole input stack, state stack, and [reversed] list of rules used for reductions so far must be saved on the backtrack stack

2018/2019 UFAL MFF UK NPFL068/Intro to statistical NLP II/Jan Hajic and Pavel Pecina 95

Big Example: Parsing (3)
• ...still parsing: a_dog heard a_cat in a_hat

Input stack (top on the left) State stack (top on the left)
Rule Backtrack Comment(s)

• [in a_hat 2 8 1 0] [previous parser configuration]
• a_hat 14 2 8 1 0 shift to 14 over in
• PREP a_hat #12 2 8 1 0 reduce #12: PREP in1

• a_hat 13 2 8 1 0 shift to 13 over PREP
• 5 13 2 8 1 0 shift to 5 over a_hat
• N #11 13 2 8 1 0 reduce #11: N a_hat
• 2 13 2 8 1 0 shift to 2 over N
• NP #3 13 2 8 1 0 shift not possible; reduce

#3: NP N1 on s.19

• 18 13 2 8 1 0 shift to 18 over NP
1when coming back to an ambiguous state [here: state 2] (after some reduction), reduction(s) are not considered; nothing put on backtrk stack

2018/2019 UFAL MFF UK NPFL068/Intro to statistical NLP II/Jan Hajic and Pavel Pecina 96

Big Example: Parsing (4)
• ...still parsing: a_dog heard a_cat in a_hat

Input stack (top on the left) State stack (top on the left)
Rule Backtrack Comment(s)

• [18 13 2 8 1 0] [previous parser config.]
• PP #8 2 8 1 0 shift not possible;

reduce #81 on s.19:
PP PREP NP1,prev.slide

• 12 2 8 1 0 shift to 12 over PP
• NP #4 8 1 0 reduce #4: NP N PP
• 16 8 1 0 shift to 16 over NP
• VP #5 1 0 shift not possible,

reduce #51: VP V NP
1no need to keep the item on the backtrack stack; no shift possible now and there is only one reduction (#5) in state 16

2018/2019 UFAL MFF UK NPFL068/Intro to statistical NLP II/Jan Hajic and Pavel Pecina 97

Big Example: Parsing (5)
• ...still parsing: a_dog heard a_cat in a_hat

Input stack (top on the left) State stack (top on the left)
Rule Backtrack Comment(s)

• [VP #5 1 0] [previous parser configuration]
• 6 1 0 shift to 6 over VP
• S #1 0 reduce #1: S NP VP

first solution found:
1,5,4,8,3,11,12,9,15,3,10
backtrack to previous

• in a_hat 2 8 1 0 was: shift over in, now1:
• NP in a_hat #3 8 1 0 reduce #3: NP N
• in a_hat 16 8 1 0 shift to 16 over NP
• a_hat 14 16 8 1 0 shift, but put on backtrk
1no need to keep the item on the backtrack stack; no shift possible now and there is only one reduction (#3) in state 2

2018/2019 UFAL MFF UK NPFL068/Intro to statistical NLP II/Jan Hajic and Pavel Pecina 98

Big Example: Parsing (6)
• ...still parsing: a_dog heard a_cat in a_hat

Input stack (top on the left) State stack (top on the left)
Rule Backtrack Comment(s)

• [a_hat 14 16 8 1 0] [previous parser config.]
• PREP a_hat #12 16 8 1 0 reduce #12: PREP in
• a_hat 13 16 8 1 0 shift over PREP1 on s.17

• 5 13 16 8 1 0 shift over a_hat to 5
• N #11 13 16 8 1 0 reduce #11: N a_hat
• 2 13 16 1 0 shift to 2 over N
• NP #3 13 16 1 0 shift not possible1 on s.19

• 18 13 16 1 0 shift to 18
• PP #8 16 1 0 shift not possible1, red.#8
• 19 16 1 0 shift to 191 on s.17
1no need to keep the item on the backtrack stack; no shift possible now and there is only one reduction (#8) in state 18

2018/2019 UFAL MFF UK NPFL068/Intro to statistical NLP II/Jan Hajic and Pavel Pecina 99

Big Example: Parsing (7)
• ...still parsing: a_dog heard a_cat in a_hat

Input stack (top on the left) State stack (top on the left)
Rule Backtrack Comment(s)

• [19 16 8 1 0] [previous parser config.]
• VP #6 1 0 red. #6: VP V NP PP
• 6 1 0 shift to 6 over VP
• S #1 0 next (2nd) solution:

1,6,8,3,11,12,3,19,15,3,10
backtrack to previous

• in a_hat 16 8 1 0 was: shift over in1 on s.19,
• VP in a_hat #5 1 0 now red. #5: VP V NP
• in a_hat 6 1 0 shift to 6 over VP
• S in a_hat #1 0 error2; backtrack empty: stop
1continue list of rules at the orig. backtrack mark (s.16,line 3) 2S (the start symbol) not alone in input stack when state stack = (0)

