Feature-Based Tagging
The Task, Again

• Recall:
 – tagging ~ morphological disambiguation
 – tagset $V_T \subset (C_1,C_2,...C_n)$
 • C_i - morphological categories, such as POS, NUMBER, CASE, PERSON, TENSE, GENDER, ...
 – mapping $w \rightarrow \{t \in V_T\}$ exists
 • restriction of Morphological Analysis: $A^+ \rightarrow 2^{(L,C_1,C_2,...,C_n)}$
 where A is the language alphabet, L is the set of lemmas
 – extension to punctuation, sentence boundaries (treated as words)
Feature Selection Problems

- Main problem with Maximum Entropy [tagging]:
 - Feature Selection (if number of possible features is in the hundreds of thousands or millions)
 - No good way
 - best so far: Berger & DP’s greedy algorithm
 - heuristics (cutoff based: ignore low-count features)

- Goal:
 - few but “good” features (“good” ~ high predictive power ~ leading to low final cross entropy)
Feature-based Tagging

• Idea:
 – save on computing the weights (λ_i)
 • are they really so important?
 – concentrate on feature selection

• Criterion (training):
 – error rate (~ accuracy; borrows from Brill’s tagger)

• Model form (probabilistic - same as for Maximum Entropy):
 \[p(y|x) = \frac{1}{Z(x)} e^{\sum_{i=1..N} \lambda_i f_i(y,x)} \]
 \[\rightarrow \text{Exponential (or Loglinear) Model} \]
Feature Weight (Lambda) Approximation

• Let Y be the sample space from which we predict (tags in our case), and \(f_i(y, x) \) a b.v. feature

• Define a “batch of features” and a “context feature”:

 \[B(x) = \{ f_i; \text{all } f_i \text{'s share the same context } x \} \]

 \[f_{B(x)}(x') = 1 \iff df x \subseteq x' \text{ (x is part of } x') \]

 • in other words, holds wherever a context x is found

• Example:

 \[f_1(y, x) = 1 \iff df y=JJ, \text{ left tag = JJ} \]

 \[f_2(y, x) = 1 \iff df y=NN, \text{ left tag = JJ} \]

 \[B(\text{left tag = JJ}) = \{ f_1, f_2 \} \text{ (but not, say, } [y=JJ, \text{ left tag = DT}]) \]
Estimation

• Compute:

\[p(y|B(x)) = \frac{1}{Z(B(x))} \sum_{d=1..|T|} \delta(y_d, y) f_{B(x)}(x_d) \]

 • frequency of \(y \) relative to all places where any of \(B(x) \) features holds for some \(y \); \(Z(B(x)) \) is the natural normalization factor

\[Z(B(x)) = \sum_{d=1..|T|} f_{B(x)}(x_d) \]

“compare” to uniform distribution:

\[\alpha(y, B(x)) = \frac{p(y|B(X))}{(1 / |Y|)} \]

\(\alpha(y, B(x)) > 1 \) for \(p(y|B(x)) \) better than uniform; and vice versa

• If \(f_i(y, x) \) holds for exactly one \(y \) (in a given context \(x \)),

 then we have 1:1 relation between \(\alpha(y, B(x)) \) and \(f_i(y, x) \) from \(B(x) \)

 and \(\lambda_i = \log(\alpha(y, B(x))) \)

 NB: works in constant time independent of \(\lambda_j, j \neq i \)
What we got

• Substitute:

\[p(y|x) = \frac{1}{Z(x)} \exp \left(\sum_{i=1}^{N} \lambda_i f_i(y,x) \right) = \]

\[= \frac{1}{Z(x)} \prod_{i=1}^{N} \alpha(y,B(x)) f_i(y,x) \]

\[= \frac{1}{Z(x)} \prod_{i=1}^{N} (|Y| p(y|B(x))) f_i(y,x) \]

\[= \frac{1}{Z'(x)} \prod_{i=1}^{N} (p(y|B(x))) f_i(y,x) \]

\[= \frac{1}{Z'(x)} \prod_{B(x'); x' \subset x} p(y|B(x')) \]

... Naive Bayes (independence assumption)
The Reality

- take advantage of the exponential form of the model (do not reduce it completely to naive Bayes):
 - vary $\alpha(y,B(x))$ up and down a bit (quickly)
 - captures dependence among features
 - recompute using "true" Maximum Entropy
 - the ultimate solution
 - combine feature batches into one, with new $\alpha(y,B(x'))$
 - getting very specific features
Search for Features

- Essentially, a way to get rid of unimportant features:
 - start with a pool of features extracted from full data
 - remove infrequent features (small threshold, < 2)
 - organize the pool into batches of features

- Selection from the pool P:
 - start with empty S (set of selected features)
 - try all features from the pool, compute $\alpha(y, B(x))$, compute error rate over training data.
 - add the best feature batch permanently; stop when no correction made [complexity: $|P| \times |S| \times |T|$]
Adding Features in Blocks, Avoiding the Search for the Best

• Still slow; solution: add ten (5, 20) best features at a time, assuming they are independent (i.e., the next best feature would change the error rate the same way as if no intervening addition of a feature is made).

• Still slow \([(|P| \times |S| \times |T|)/10, \text{ or } 5, \text{ or } 20]\); solution:

• Add all features improving the error rate by a certain threshold; then gradually lower the threshold down to the desired value; complexity \([|P| \times \log{|S|} \times |T|]\) if \(\text{threshold}^{(n+1)} = \text{threshold}^{(n)} / k, k > 1\) (e.g. \(k = 2\))
Types of Features

• Position:
 – current
 – previous, next
 – defined by the closest word with certain major POS

• Content:
 – word (w), tag(t) - left only, “Ambiguity Class” (AC) of a subtag (POS, NUMBER, GENDER, CASE, ...)

• Any combination of position and content
• Up to three combinations of (position, content)
Ambiguity Classes (AC)

• Also called “pseudowords” (MS, for word sense disambiguationi task), here: “pseudotags”

• AC (for tagging) is a set of tags (used as an indivisible token).
 – Typically, these are the tags assigned by a morphology to a given word:
 • MA(books) [restricted to tags] = \{ NNS, VBZ \}:
 \[AC = NNS_VBZ \]

• Advantage: deterministic
 → looking at the ACs (and words, as before) to the right allowed
Subtags

• Inflective languages: too many tags → data sparseness
• Make use of separate categories (remember morphology):
 – tagset $V_T \subseteq (C_1,C_2,...C_n)$
 • C_i - morphological categories, such as POS, NUMBER, CASE, PERSON, TENSE, GENDER, ...
• Predict (and use for context) the individual categories
• Example feature:
 – previous word is a noun, and current CASE subtag is genitive
• Use separate ACs for subtags, too ($AC_{POS} = N_V$)
Combining Subtags

• Apply the separate prediction (POS, NUMBER) to
 – MA(books) = { (Noun, Pl), (VerbPres, Sg)}

• Now what if the best subtags are
 – Noun for POS
 – Sg for NUMBER
 • (Noun, Sg) is not possible for books

• Allow only possible combinations (based on MA)

• Use independence assumption (Tag = (C₁, C₂, ..., Cₙ)):

 \[
 \text{(best) Tag} = \arg\max_{Tag \in MA(w)} \prod_{i=1..|Categories|} p(C_i|w,x)
 \]
Smoothing

• Not needed in general (as usual for exponential models)
 – however, some basic smoothing has an advantage of not learning unnecessary features at the beginning
 – very coarse: based on ambiguity classes
 • assign the most probable tag for each AC, using MLE
 • e.g. NNS for AC = NNS_VBZ
 – last resort smoothing: unigram tag probability
 – can be even parametrized from the outside
 – also, needed during training
Overtraining

• Does not appear in general
 – usual for exponential models
 – does appear in relation to the training curve:
 – but does not go down until very late in the training
 (singletons do cause overtraining)