Maximum Entropy Tagging (for the Maximum Entropy method itself, refer to NPFL067 added slides 2018/9)

The Task, Again

- Recall:
 - tagging ~ morphological disambiguation
 - tagset $V_T \subset (C_1, C_2, \dots C_n)$
 - C_i morphological categories, such as POS, NUMBER, CASE, PERSON, TENSE, GENDER, ...
 - mapping $w \rightarrow \{t \in V_T\}$ exists
 - restriction of Morphological Analysis: $A^+ \rightarrow 2^{(L,C1,C2,...,Cn)}$ where A is the language alphabet, L is the set of lemmas
 - extension to punctuation, sentence boundaries (treated as words)

Maximum Entropy Tagging Model

• General

 $p(y,x) = (1/Z) e^{\sum_{i=1..N} \lambda_i f_i(y,x)}$

Task: find λ_i satisfying the model <u>and</u> constraints

• $E_p(f_i(y,x)) = d_i$

where

- $d_i = E'(f_i(y,x))$ (empirical expectation i.e. feature frequency)
- Tagging

 $p(t,x) = (1/Z) e^{\sum_{i=1..N} \lambda_i f_i(t,x)} (\lambda_0 \text{ might be extra: cf. } \mu \text{ in AR})$ • $t \in \text{Tagset},$

• $x \sim \text{context}$ (words and tags alike; say, up to three positions R/L)

2018/2019 UFAL MFF UK NPFL068/Intro to statistical NLP II/Jan Hajic and Pavel Pecina 50

Features for Tagging

- Context definition
 - two words back and ahead, two tags back, current word:
 - $\mathbf{x}_{i} = (\mathbf{w}_{i-2}, \mathbf{t}_{i-2}, \mathbf{w}_{i-1}, \mathbf{t}_{i-1}, \mathbf{w}_{i}, \mathbf{w}_{i+1}, \mathbf{w}_{i+2})$
 - features may ask any information from this window
 - e.g.:
 - previous tag is DT
 - previous two tags are PRP\$ and MD, and the following word is "be"
 - current word is "an"
 - suffix of current word is "ing"
 - do not forget: feature also contains t_i, the current tag:
 - feature #45: suffix of current word is "ing" & the tag is VBG \Leftrightarrow $f_{45} = 1$

Feature Selection

- The PC¹ way (see also yesterday's class):
 - (try to) test all possible feature combinations
 - features may <u>overlap</u>, or be <u>redundant</u>; also, <u>general</u> or <u>specific</u>
 - impossible to select manually
 - greedy selection:
 - add one feature at a time, test if (good) improvement:
 - keep if yes, return to the pool of features if not
 - even this is costly, unless some shortcuts are made
 - see Berger & DPs for details
- The other way:
 - use some heuristic to limit the number of features
- ¹Politically (or, Probabilistically-stochastically) Correct

2018/2019 UFAL MFF UK NPFL068/Intro to statistical NLP II/Jan Hajic and Pavel Pecina 52

Limiting the Number of Features

- Always do (regardless whether you're PC or not):
 - use contexts which appear in the training data (lossless selection)
- More or less PC, but entails huge savings (in the number of features to estimate λ_i weights for):
 - use features appearing only L-times in the data (L \sim 10)
 - use w_i -derived features which appear with rare words only
 - do not use all combinations of context (this is even "LC1")
 - but then, use all of them, and compute the λ_i only once using the Generalized Iterative Scaling algorithm
- ¹Linguistically Correct

2018/2019 UFAL MFF UK NPFL068/Intro to statistical NLP II/Jan Hajic and Pavel Pecina 53

Feature Examples (Context)

• From A. Ratnaparkhi (EMNLP, 1996, UPenn)

$$-t_i = T, w_i = X$$
 (frequency $c > 4$):

• $t_i = VBG, w_i = selling$

 $- t_i = T$, w_i contains uppercase char (rare):

•
$$t_i = NNP$$
, tolower(w_i) $\neq w_i$

-
$$t_i = T, t_{i-1} = Y, t_{i-2} = X$$
:

- $t_i = VBP, t_{i-2} = PRP, t_{i-1} = RB$
- Other examples of possible features:

- $t_i = T$, t_j is X, where j is the closest left position where Y • $t_i = VBZ$, $t_j = NN$, $Y \Leftrightarrow t_j \in \{NNP, NNS, NN\}$

Feature Examples (Lexical/Unknown)

- From AR:
 - $t_i = T$, suffix(w_i)= X (length X < 5):
 - $t_i = JJ$, suffix(w_i) = eled (traveled, leveled,)
 - $t_i = T$, prefix(w_i)= X (length X < 5):
 - $t_i = JJ$, prefix(w_i) = well- (well-done, well-received,...)
 - $t_i = T$, w_i contains hyphen:
 - $t_i = JJ$, '-' in w_i (open-minded, short-sighted,...)
- Other possibility, for example:
 - $t_i = T$, w_i contains X:
 - $t_i = \text{NounPl}, w_i$ contains umlaut (ä,ö,ü) (Wörter, Länge,...)

"Specialized" Word-based Features

• List of words with most errors (WSJ, Penn Treebank):

– about, that, more, up, ...

• Add "specialized", detailed features:

$$-t_i = T, w_i = X, t_{i-1} = Y, t_{i-2} = Z:$$

- $t_i = IN, w_i = about, t_{i-1} = NNS, t_{i-2} = DT$
- possible only for relatively high-frequency words
- Slightly better results (also, problems with inconsistent [test] data)

Maximum Entropy Tagging: Results

- Base experiment (133k words, < 3% unknown):
 - 96.31% word accuracy
- Specialized features added:
 - 96.49% word accuracy
- Consistent subset (training + test)
 - 97.04% word accuracy (97.13% w/specialized features)
 - Best in 2000; for details, see the AR paper
- Now: perceptron, ~97.4%
 - Collins 2002, Raab 2009