Maximum Entropy Tagging
(for the Maximum Entropy method itself,
refer to NPFL067 added slides 2018/9)
The Task, Again

• Recall:
 – tagging ~ morphological disambiguation
 – tagset \(V_T \subset (C_1, C_2, \ldots, C_n) \)
 • \(C_i \) - morphological categories, such as POS, NUMBER, CASE, PERSON, TENSE, GENDER, ...
 – mapping \(w \rightarrow \{ t \in V_T \} \) exists
 • restriction of Morphological Analysis: \(A^+ \rightarrow 2^{(L, C_1, C_2, \ldots, C_n)} \)
 where \(A \) is the language alphabet, \(L \) is the set of lemmas
 – extension to punctuation, sentence boundaries (treated as words)
Maximum Entropy Tagging Model

• General
\[p(y,x) = \frac{1}{Z} e^{\sum_{i=1..N} \lambda_i f_i(y,x)} \]
Task: find \(\lambda_i \) satisfying the model and constraints
 • \(E_p(f_i(y,x)) = d_i \)
where
 • \(d_i = E'(f_i(y,x)) \) (empirical expectation i.e. feature frequency)

• Tagging
\[p(t,x) = \frac{1}{Z} e^{\sum_{i=1..N} \lambda_i f_i(t,x)} \] (\(\lambda_0 \) might be extra: cf. \(\mu \) in AR)
 • \(t \in \text{Tagset}, \)
 • \(x \sim \text{context (words and tags alike; say, up to three positions R/L)} \)
Features for Tagging

• Context definition
 – two words back and ahead, two tags back, current word:
 • \(x_i = (w_{i-2}, t_{i-2}, w_{i-1}, t_{i-1}, w_i, w_{i+1}, w_{i+2}) \)
 – features may ask any information from this window
 • e.g.:
 – previous tag is DT
 – previous two tags are PRP$ and MD, and the following word is “be”
 – current word is “an”
 – suffix of current word is “ing”
 • do not forget: feature also contains \(t_i \), the current tag:
 – feature #45: suffix of current word is “ing” & the tag is VBG \(\Leftrightarrow f_{45} = 1 \)
Feature Selection

• The PC\(^1\) way (see also yesterday’s class):
 – (try to) test all possible feature combinations
 • features may overlap, or be redundant; also, general or specific
 - impossible to select manually
 – greedy selection:
 • add one feature at a time, test if (good) improvement:
 – keep if yes, return to the pool of features if not
 – even this is costly, unless some shortcuts are made
 • see Berger & DPs for details

• The other way:
 – use some heuristic to limit the number of features
 • \(^1\)Politically (or, Probabilistically-stochastically) Correct
Limiting the Number of Features

• Always do (regardless whether you’re PC or not):
 – use contexts which appear in the training data (lossless selection)

• More or less PC, but entails huge savings (in the number of features to estimate λ_i weights for):
 – use features appearing only L-times in the data ($L \sim 10$)
 – use w_i-derived features which appear with rare words only
 – do not use all combinations of context (this is even “LC1”)
 – but then, use all of them, and compute the λ_i only once using the Generalized Iterative Scaling algorithm

1Linguistically Correct
Feature Examples (Context)

- From A. Ratnaparkhi (EMNLP, 1996, UPenn)
 - \(t_i = T, w_i = X \) (frequency \(c > 4 \)):
 - \(t_i = \text{VBG}, w_i = \text{selling} \)
 - \(t_i = T, w_i \) contains uppercase char (rare):
 - \(t_i = \text{NNP}, \text{tolower}(w_i) \neq w_i \)
 - \(t_i = T, t_{i-1} = Y, t_{i-2} = X \):
 - \(t_i = \text{VBP}, t_{i-2} = \text{PRP}, t_{i-1} = \text{RB} \)

- Other examples of possible features:
 - \(t_i = T, t_j \) is \(X \), where \(j \) is the closest left position where \(Y \)
 - \(t_i = \text{VBZ}, t_j = \text{NN}, Y \Leftrightarrow t_j \in \{\text{NNP}, \text{NNS}, \text{NN}\} \)
Feature Examples (Lexical/Unknown)

• From AR:
 – \(t_i = T \), suffix\((w_i) = X \) (length \(X < 5 \)):
 • \(t_i = JJ \), suffix\((w_i) = \text{eled} \) (traveled, leveled,)
 – \(t_i = T \), prefix\((w_i) = X \) (length \(X < 5 \)):
 • \(t_i = JJ \), prefix\((w_i) = \text{well-} \) (well-done, well-received,...)
 – \(t_i = T \), \(w_i \) contains hyphen:
 • \(t_i = JJ \), ‘-’ in \(w_i \) (open-minded, short-sighted,...)

• Other possibility, for example:
 – \(t_i = T \), \(w_i \) contains \(X \):
 • \(t_i = \text{NounPl} \), \(w_i \) contains umlaut (ä,ö,ü) (Wörter, Länge,...)
“Specialized” Word-based Features

• List of words with most errors (WSJ, Penn Treebank):
 – about, that, more, up, ...

• Add “specialized”, detailed features:
 – \(t_i = T, w_i = X, t_{i-1} = Y, t_{i-2} = Z \):
 • \(t_i = \text{IN}, w_i = \text{about}, t_{i-1} = \text{NNS}, t_{i-2} = \text{DT} \)
 – possible only for relatively high-frequency words

• Slightly better results (also, problems with inconsistent [test] data)
Maximum Entropy Tagging: Results

- Base experiment (133k words, < 3% unknown):
 - 96.31% word accuracy
- Specialized features added:
 - 96.49% word accuracy
- Consistent subset (training + test)
 - 97.04% word accuracy (97.13% w/specialized features)
 - Best in 2000; for details, see the AR paper
- Now: perceptron, ~97.4%
 - Collins 2002, Raab 2009