Transformation-Based Tagging

The Task, Again

• Recall:

- tagging ~ morphological disambiguation
- tagset $V_T \subset (C_1, C_2, ..., C_n)$
 - C_i morphological categories, such as POS, NUMBER, CASE, PERSON, TENSE, GENDER, ...
- mapping $w \to \{t \in V_T\}$ exists
 - restriction of Morphological Analysis: $A^+ \rightarrow 2^{(L,C_1,C_2,...,C_n)}$ where A is the language alphabet, L is the set of lemmas
- extension to punctuation, sentence boundaries (treated as words)

Setting

- *Not* a source channel view
- *Not* even a probabilistic model (no "numbers" used when tagging a text after a model is developed)
- Statistical, yes:
 - uses training data (combination of supervised [manually annotated data available] and unsupervised [plain text, large volume] training)
 - learning [rules]
 - criterion: accuracy (that's what we are interested in in the end, after all!)

The General Scheme

The I/O of an Iteration

- In (iteration i):
 - Intermediate data (initial or the result of previous iteration)
 - The TRUTH (the annotated training data)
 - [pool of possible rules]
- Out:
 - One rule r_{selected(i)} to enhance the set of rules learned so far
 - Intermediate data (input data transformed by the rule learned in this iteration, $r_{selected(i)}$)

The Initial Assignment of Tags

- One possibility:
 - NN
- Another:
 - the most frequent tag for a given word form
- Even:
 - use an HMM tagger for the initial assignment
- Not particularly sensitive

The Criterion

- Error rate (or Accuracy):
 - beginning of an iteration: some error rate E_{in}
 - each possible rule \underline{r} , when applied at every data position:
 - makes an improvement somewhere in the data $(c_{improved}(r))$
 - makes it worse at some places (c_{worsened}(r))
 - and, of course, does not touch the remaining data
- Rule contribution to the improvement of the error rate:
 - $contrib(r) = c_{improved}(r) c_{worsened}(r)$
- Rule selection at iteration i:
 - $r_{\text{selected(i)}} = \operatorname{argmax}_r \operatorname{contrib}(r)$
- New error rate: $E_{out} = E_{in}$ contrib($r_{selected(i)}$)

The Stopping Criterion

- Obvious:
 - no improvement can be made
 - contrib(r) ≤ 0
 - or improvement too small
 - $contrib(r) \le Threshold$
- NB: prone to overtraining!
 - therefore, setting a reasonable threshold advisable
- Heldout?
 - maybe: remove rules which degrade performance on H

The Pool of Rules (Templates)

- Format: *change tag at position i from a to b / condition*
- Context rules (condition definition "template"):

Lexical Rules

• Other type: lexical rules

- Example:
 - w_i has suffix -ied
 - w_i has prefix ge-

Rule Application

- Two possibilities:
 - immediate consequences (left-to-right):
 - data: DT NN VBP NN VBP NN...
 - rule: NN \rightarrow NNS / preceded by NN VBP $\stackrel{\bullet}{}$
 - apply rule at position 4:
 DT NN VBP ND VBP NN VBP ND VBP ND
 - ...then rule cannot apply at position 6 (context not NN VBP).
 - delayed ("fixed input"):
 - use original input for context
 - the above rule then applies twice.

In Other Words...

- 1. Strip the tags off the truth, keep the original truth
- 2. Initialize the stripped data by some simple method
- 3. Start with an empty set of selected rules S.
- 4. Repeat until the stopping criterion applies:
 - compute the contribution of the rule r, for each r: $contrib(r) = c_{improved}(r) - c_{worsened}(r)$
 - select r which has the biggest contribution contrib(r), add it to the final set of selected rules S.
- 5. Output the set S.

The Tagger

• Input:

- untagged data
- rules (S) learned by the learner

• Tagging:

- use the same initialization as the learner did
- for i = 1..n (n the number of rules learnt)
 - apply the rule i to the whole intermediate data, changing (some) tags
- the last intermediate data is the output.

N-best & Unsupervised Modifications

- N-best modification
 - allow adding tags by rules
 - criterion: optimal combination of accuracy and the number of tags per word (we want: close to $\downarrow 1$)
- Unsupervised modification
 - use only unambiguous words for evaluation criterion
 - work extremely well for English
 - does not work for languages with few unambiguous words