Transformation-Based Tagging
The Task, Again

• Recall:
 – tagging ~ morphological disambiguation
 – tagset \(V_T \subset (C_1, C_2, \ldots, C_n) \)
 • \(C_i \) - morphological categories, such as POS, NUMBER, CASE, PERSON, TENSE, GENDER, ...
 – mapping \(w \rightarrow \{ t \in V_T \} \) exists
 • restriction of Morphological Analysis: \(A^+ \rightarrow 2^{(L, C_1, C_2, \ldots, C_n)} \)
 where \(A \) is the language alphabet, \(L \) is the set of lemmas
 – extension to punctuation, sentence boundaries (treated as words)
Setting

• Not a source channel view
• Not even a probabilistic model (no “numbers” used when tagging a text after a model is developed)
• Statistical, yes:
 • uses training data (combination of supervised [manually annotated data available] and unsupervised [plain text, large volume] training)
 • learning [rules]
 • criterion: accuracy (that’s what we are interested in in the end, after all!)
The General Scheme

Training

- Annotated training data
- Plain text training data

LEARNER

- training iterations
- Partially annotated data

Tagging

- Data to annotate
- Automatically tagged data

TAGGER

- Rules learned
The Learner

(RULES)

Remove tags

ATD without annotation

Assign initial tags

Annotated training data

(THE “TRUTH”)

Interim annotation

Iteration 1

Add rule 1

Add rule 2

Iteration 2

Interim annotation

Interim annotation

Interim annotation

Iteration n

Add rule n
The I/O of an Iteration

• In (iteration i):
 – Intermediate data (initial or the result of previous iteration)
 – The TRUTH (the annotated training data)
 – [pool of possible rules]

• Out:
 – One rule $r_{\text{selected}(i)}$ to enhance the set of rules learned so far
 – Intermediate data (input data transformed by the rule learned in this iteration, $r_{\text{selected}(i)}$)
The Initial Assignment of Tags

- One possibility:
 - NN
- Another:
 - the most frequent tag for a given word form
- Even:
 - use an HMM tagger for the initial assignment
- Not particularly sensitive
The Criterion

• Error rate (or Accuracy):
 – beginning of an iteration: some error rate E_{in}
 – each possible rule r, when applied at every data position:
 • makes an improvement somewhere in the data ($c_{\text{improved}}(r)$)
 • makes it worse at some places ($c_{\text{worsened}}(r)$)
 • and, of course, does not touch the remaining data

• Rule contribution to the improvement of the error rate:
 • $\text{contrib}(r) = c_{\text{improved}}(r) - c_{\text{worsened}}(r)$

• Rule selection at iteration i:
 • $r_{\text{selected}(i)} = \text{argmax}_r \text{contrib}(r)$

• New error rate: $E_{out} = E_{in} - \text{contrib}(r_{\text{selected}(i)})$
The Stopping Criterion

- **Obvious:**
 - no improvement can be made
 - \(\text{contrib}(r) \leq 0 \)
 - or improvement too small
 - \(\text{contrib}(r) \leq \text{Threshold} \)

- **NB:** prone to overtraining!
 - therefore, setting a reasonable threshold advisable

- **Heldout?**
 - maybe: remove rules which degrade performance on H
The Pool of Rules (Templates)

- Format: change tag at position i from a to b / condition
- Context rules (condition definition - “template”):

\[
\begin{array}{cccccccc}
w_{i-3} & w_{i-2} & w_{i-1} & w_i & w_{i+1} & w_{i+2} & w_{i+3} \\
t_{i-3} & t_{i-2} & t_{i-1} & t_i & t_{i+1} & t_{i+2} & t_{i+3}
\end{array}
\]

Instantiation: w, t permitted
Lexical Rules

• Other type: lexical rules

\[w_{i-3} \quad w_{i-2} \quad w_{i-1} \quad w_i \quad w_{i+1} \quad w_{i+2} \quad w_{i+3} \]
\[t_{i-3} \quad t_{i-2} \quad t_{i-1} \quad t_i \quad t_{i+1} \quad t_{i+2} \quad t_{i+3} \]

“look inside the word”

• Example:
 – \(w_i \) has suffix -ied
 – \(w_i \) has prefix ge-
Rule Application

• Two possibilities:
 – immediate consequences (left-to-right):
 • data: DT NN VBP NN VBP NN...
 • rule: NN → NNS / preceded by NN VBP
 • apply rule at position 4:
 DT NN VBP NN VBP NN...
 DT NN VBP NN...
 • ...then rule cannot apply at position 6 (context not NN VBP).
 – delayed (“fixed input”):
 • use original input for context
 • the above rule then applies twice.
In Other Words...

• 1. Strip the tags off the truth, keep the original truth
• 2. Initialize the stripped data by some simple method
• 3. Start with an empty set of selected rules S.
• 4. Repeat until the stopping criterion applies:
 – compute the contribution of the rule r, for each r:
 \[\text{contrib}(r) = c_{\text{improved}}(r) - c_{\text{worsened}}(r) \]
 – select r which has the biggest contribution \text{contrib}(r), add it to the final set of selected rules S.
• 5. Output the set S.
The Tagger

• **Input:**
 - untagged data
 - rules (S) learned by the learner

• **Tagging:**
 - use the same initialization as the learner did
 - for $i = 1..n$ (n - the number of rules learnt)
 • apply the rule i to the whole intermediate data, changing (some) tags
 - the last intermediate data is the output.
N-best & Unsupervised Modifications

- **N-best modification**
 - allow adding tags by rules
 - criterion: optimal combination of accuracy and the number of tags per word (we want: close to $\downarrow 1$)

- **Unsupervised modification**
 - use only unambiguous words for evaluation criterion
 - work extremely well for English
 - does not work for languages with few unambiguous words